MIT OpenCourseWare http://ocw.mit.edu

8.821 String Theory Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Physics

String Theory (8.821) – Prof. J. McGreevy – Fall 2008

Problem Set 2 $\mathcal{N} = 4$ SYM, BPS property

Reading: D'Hoker-Freedman, §2-4; Polchinski vol II appendix B.

1. How to remember the $\mathcal{N}=4$ action.

Show that ten-dimensional $\mathcal{N}=1$ SYM dimensionally reduces to 4d $\mathcal{N}=4$. The 10d lagrangian density is

$$\mathcal{L}_{10} = -\frac{1}{2g_{YM}^2} \operatorname{tr} \left(F_{MN} F^{MN} - 2i\bar{\lambda} \Gamma^M D_M \lambda \right);$$

M, N are 10d indices; λ here is a 10d Majorana-Wel spinor (16 real components). By 'dimensionally reduce,' we mean consider the 10d theory on a 6-torus of volume V, and restrict to field configurations which have no momentum along the torus (*i.e.* are independent of the coordinates on the torus).

The 4d $\mathcal{N} = 4$ lagrangian density is¹

$$\mathcal{L}_{4} = -\frac{1}{g_{YM}^{2}} \operatorname{tr} \left(\frac{1}{4} F^{2} + \frac{1}{2} D_{\mu} X^{i} D^{\mu} X^{i} + \frac{i}{2} \bar{\lambda}^{I} \gamma^{\mu} D_{\mu} \lambda^{I} - \frac{1}{2} \sum_{i < j} [X^{i}, X^{j}]^{2} + \frac{1}{2} \bar{\lambda}^{I} \Gamma_{IJ}^{i} [X^{i}, \lambda^{J}] \right).$$

Here λ^I are four 4d Weyl spinors (4 real components), γ^{μ} are 4d gamma matrices, and Γ^i_{IJ} are gamma matrices for SO(6).

2. Show that the $\mathcal{N}=4$ lagrangian explicitly breaks the diagonal abelian part

$$U(1) \subset U(\mathcal{N}=4)_R$$

of the R-symmetry group.

3. Show that the 1-loop β -function for $\mathcal{N}=4$ SYM vanishes. If you don't like arcane group theory, do it for the case when the gauge group is SU(N).

¹This footnote corrects the expression I wrote in lecture (the Yukawa terms were wrong).

4. $\mathcal{N}=4\supset\mathcal{N}=1$.

A 4d $\mathcal{N}=4$ supersymmetric theory is a special case of a 4d $\mathcal{N}=1$ supersymmetric theory.

- a) Describe the field content of $\mathcal{N}=4$ SYM in terms of multiplets of some $\mathcal{N}=1$ subgroup.
- b) Write the $\mathcal{N}=4$ lagrangian in $\mathcal{N}=1$ superspace.
- c) Convince yourself that this Lagrangian has SO(6) R-symmetry (e.g. by examining the Lagrangian written in components). Is $\mathcal{N}=1$ supersymmetry plus this R-symmetry enough to convince you that this action is actually $\mathcal{N}=4$ supersymmetric?

5. Extremal = BPS.

In this problem we will consider 4d $\mathcal{N}=2$ supergravity (which has eight real supercharges). Along the lines of the discussion from lecture 5 one can see that the graviton multiplet for this theory must also contain a spin-3/2 gravitino field ψ_{μ} , and an abelian vector field (the 'graviphoton') A_{μ} . So this is a simple supersymmetric completion of the system we studied in problem set 1 problem 3.

The action is invariant under supersymmetry transformations which include the following variation for the gravitino ψ_{μ} :

$$\delta\psi_{\mu} = \left(\nabla_{\mu} - \frac{1}{4}F^{-}\gamma_{\mu}\right)\epsilon$$

where

$$F^{-} \equiv F_{\nu\rho}^{-} \gamma^{\nu} \gamma^{\rho} , \quad F_{\nu\rho}^{\pm} = \frac{1}{2} \left(F_{\nu\rho} \pm (\star F)_{\nu\rho} \right)$$

are the self-dual (SD) and anti-self-dual (ASD) parts of the field strength of the graviphoton field. The covariant derivative acting on spinors is

$$\nabla_{\mu}\psi \equiv \left(\partial_{\mu} + \frac{1}{4}\omega_{\mu}^{ab}\gamma_{ab}\right)\psi$$

where ω is the spin connection, $de^a = -\omega^{ab} \wedge e^b$ and $\gamma_{ab} \equiv \frac{1}{2} [\gamma_a, \gamma_b]$.

a) Show that the extremal RN black hole from problem set 1 lies in a short (BPS) multiplet of the $\mathcal{N}=2$ supersymmetry. Do this by examining the supersymmetry variations of the fermionic fields (given above) and showing

that they vanish for some choice of spinors ϵ . How many supersymmetries (choices of ϵ , which are called Killing spinors) are left unbroken?

- b) Show that the 'Bertotti-Robinson' solution, i.e. $AdS_2 \times S^2$ (which arises as the near-horizon limit of the extremal RN black hole) preserves eight Killing spinors.
- c) If you are feeling energetic, show that $AdS_5 \times S^5$ preserves 32 supercharges of 10-dimensional type IIB supergravity. The supersymmetry variations of the fermion fields in that case are

$$\delta\psi_{\mu} = \left(\nabla_{\mu} - \frac{i}{1920}F_{5}^{-}\Gamma_{\mu}\right)\epsilon + \dots$$
$$\delta\lambda = \dots$$

where

$$F_5^+ \equiv \Gamma^{\mu_1 \dots \mu_5} (F_5)_{\mu_1 \dots \mu_5} ,$$

 λ is the 'dilatino' field and ... means terms that vanish when F_5 is the only nontrivial field other than the metric (*i.e.* they depend on derivatives of the dilaton, and the other fluxes). If you want to know what the full variations are, see Kiritsis eqns (H.26-28).

6. W-bosons from adjoint higgsing. Using the $\mathcal{N}=4$ lagrangian, show that giving an expectation value to the scalars in the $\mathcal{N}=4$ theory of the form

$$\langle X^{i=1,\dots,6} \rangle = \operatorname{diag}(x_1^i,\dots x_N^i)$$

gives a mass to the off-diagonal gauge bosons of the form

$$m_{ab}^2 \propto \sum_{i=1}^6 (x_a^i - x_b^i)^2 \equiv |\vec{x}_a - \vec{x}_b|^2 ;$$

this is meant to be the mass of the gauge boson with indices ab. Show that the scalars with the same gauge charges get the same mass.