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Figure 8: SCET} zero-bin from one collinear direction scaling into the ultrasoft region.

there are ultrasoft subtractions for the collinear modes, but no collinear subtractions for the ultrasoft
modes.

It also should be remarked that depending on the choice of infrared regulators, the subtraction terms
very often give scaleless integrations of combined dimension d — 4 in dimensional regularization. These
then just yield terms proportional to (1/€{;y, — 1/€]g), which are only important to properly interpret
whether factors of 1/e from the naive collinear loop integration that used Eq. (4.60) are UV poles that
require a counterterm, or are IR poles that correspond with physical IR singularities in QCD. In particular
this is often the case for the simplest measurements with an offshellness IR regulator for collinear external
lines. More complicated measurements (such as those depending on a jet algorithm) or other choices of IR
regulators (like a gluon mass or a cutoff) will lead to zero-bin subtractions that are not scaleless.

We will return to this discussion when carrying out explicit examples of collinear loops in section 7.

5 Symmetries of SCET

In quantum field theory Lagrangians are often built up from symmetries and dimensional analysis. So far
our leading order SCET Lagrangians were derived directly from QCD at tree level. To go further, and
determine whether loops can change the form of the Lagrangians (through Wilson coefficients or additional
operators) we need to exploit symmetries and power counting. In this section, we will introduce the SCET
gauge symmetries and reparameterization invariance (RPI) as a way to constrain SCET operators. We will
find that the gauge symmetry formalism is a simple restatement of the standard QCD picture except with
two separate gauge fields. RPI is a manifestation of the Lorentz symmetry which was broken by the choice
of light-cone coordinates, and which acts independently in each collinear sector. We will also examine the
spin symmetries of the SCET Lagrangian, although here we will find that there are no surprises beyond
what we know from QCD.

37



5.1 Spin Symmetry 5 SYMMETRIES OF SCET

5.1 Spin Symmetry
(0)

To examine the spin symmetry of ‘Cnf it is convenient to write the Lagrangian in a two component form.

From Eq. (3.11) we can write
1
b= 5 < Uf;n > : (5.1)

where ¢, is a two-component field, dim ¢,, = dim &, = 3/2, and ¢,, ~ A\. With this two-component field
the SCET Lagrangian is

. ‘ . .
£ =gl |in - D+iDf DY gk + ichon)] . (5.2

Due to the o3 the spin symmetry is not an SU(2), but rather just the U(1) helicity symmetry corresponding
to spin along the direction of motion n of the collinear fields. The relevant generator is

S, =iy, 4] = h = o3. (5.3)

We can relate this symmetry to the chiral symmetry by noting that under chiral symmetry &, transforms

as
3
fn—>75§n=<(l) é)%(:ﬁ”) SO ©n —> 030n . (5.4)

This U(1)4 axial-symmetry is broken by fermion masses and non-perturbative instanton effects. Just like
in QCD it is a useful symmetry for determining the structure of perturbation theory results. This implies
that in SCET it is useful for determining the basis of operators we obtain when integrating out hard
particles, and for relating Wilson coefficients.

5.2 Gauge Symmetry
The standard gauge transformation in QCD is
U(z) = explia(z)T4]. (5.5)

When we go to SCET we need to have gauge transformations which do not inject large momenta into our
EFT fields, that is, the transformations must leave us withing our effective field theory. For example, if we
used a gauge transformation where o satisfied

00t ~ Qa?t (5.6)

then & = U(x)&, would no longer have p? < Q2)\? and would not be described by SCET. There are two
acceptable SCET gauge transformations which are defined by their momentum scale. They are

collinear U, (z): i0"Up(z) ~ QN2 1, \)Uy(z) (5.7)
ultrasoft  Uy(x): id*Uy,(z) ~ QA2 A2 DU, ().

There is also a global color transformation which for convenience we group together with the U,. To
avoid double counting, in the collinear transformation we fix U,(n -z = —oo) = 1. We can implement a
collinear gauge transformation on the collinear fields &, ,, via a Fourier transform. Since ¢ (z) — U(z)¢(x)
is equivalent to ¢(p) — [ dq U(p—q)¥(q), the transformation involves a convolution in label momenta. To
understand how the collinear gauge field transforms under a collinear gauge transformation, we need to
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5.2 Gauge Symmetry 5 SYMMETRIES OF SCET

recall that there is a background usoft gauge field Af;. Consequently we must take 9, — D, so that Al
transforms as a quantum field in an A% background. Therefore the collinear gauge transformations are

fn,p($) - (Un)p*(I(-r) gn,q(x) )
Al () = Un () (94% () + 60 iDI8 ) UL (2, (5.9)

n,q—q’
where we sum over repeated momentum label indices. It is convenient to setup a matrix notation for these
convolutions by defining

(Un)m,qe = (Un>m—qz ) (5.10)
where the LHS is the (py,q¢) element of a matrix in momentum space, and the RHS is a number (both
are of course also matrices in color). Then Eq. (2.9) with a sum over repeated indices becomes &, ,, —
(Un)pp.ge€n.q,- And if we suppress indices then we have &, — (Up)&p.

Finally the ultrasoft fields do not transform under a collinear gauge transformation, since the resulting
field would have a large momentum and hence no longer be ultrasoft. Essentially this means that by
definition our collinear gauge transformations do not turn ultrasoft gluons into collinear gluons.

Collinear Gauge Transformations : U, (z)

Therefore our set of Collinear Gauge Transformations with the matrix notation for momentum space labels
are

o &u(@) = Un(2)én()
o Ali(z) = Up(x)(Ali(z) + LDs) Ul ()
L4 Qus(x) - qus(x)

o Alis(z) — Alis(x)

When using the momentum label notation the condition U, (n -z = —o0) = 1 becomes (Up)p,—0 = 0p,.0
for the zero-bin p; = 0 (the ultrasoft transformations do not modify large momenta, but the collinear
transformations do).

For usoft gauge transformations, the field &, and A}, transform as quantum fields under a background
gauge transformation, which is to say they transform as matter fields with the appropriate representation.
The usoft fields have their usual gauge transformations from QCD.

Usoft Gauge Transformations : U,(x)

Therefore for the Ultrasoft Gauge Transformations we have
o &u(w) = Uus(w)én()
o Al(x) — Uys() AL(2)Ufs(2)
L4 Qus(x) — Uus(x)QUs(x)
o Alls(x) = Uns(@)(Alls(2) + 204)Ul(2)

Since all of the fields transform, these ultrasoft gauge transformations connect fields in operators that are
mixtures of collinear and ultrasoft fields. This differs from U, (z) which only connects collinear fields to
each other.

39



5.2 Gauge Symmetry 5 SYMMETRIES OF SCET

It is important to note that the U, and U, gauge transformations are homogeneous in the power
counting, so they do not change the order in A for transformed operators. They are exact, there are no
corrections to these transformations at higher orders in A\, and thus the power expansion will have gauge
invariant operators at each order in A.

The transformation of the fields yield transformations for objects that are built from the fields. An
important case is the Wilson line W,, which is like the Fourier transform of W (z, —00). In QCD a general
Wilson line with the gauge field along a path will transform on each end as W (x,y) — U(z)W (z,y)UT(z).
For the collinear gauge transformation we have fields in momentum space for labels, and position space
representing residual momenta, and U,[(—oo) = 1, so the Wilson line transforms only on one side for
collinear transformations. For ultrasoft transformations W, (z) is actually a local operator with all fields
at z, and the product of multiple 7 - Ay, (2) — Uys(2)7t - Ap(2)Uds(z) leads to one U,s and Ujs on the left
and right. Thus with the matrix notation

collinear : Wi(z) = Up(z)Wa(z),
ultrasoft : Wi(z) = Uys(2) Wy (2)US () . (5.11)

It is useful to consider the correspondence between the appearance of the Wilson line W,, in operators,
and the collinear gauge symmetry. If we consider our example of the heavy-to-light current then without the
Wilson line the operator &,I'hU is not gauge invariant, transforming to &,U,} TFh“S Here the &, transforms
because collinear gluons couple to &, without taking it offshell, but A%* does not transform because this
ultrasoft field can not interact with the collinear gluons while remaining near its mass shell. But recall
that when the offshell collinear gluons are accounted for in matching onto the SCET operator that the
n- A, ~ A0 gluons generate a Wilson line W,,, so the complete result from tree level matching is

JsceT = E Wil hy®. (5.12)

Now under a collinear gauge transformation Jgcgr — §nU U W,I'hy® = E W, %%, so the current is
collinear gauge invariant. Under an ultrasoft gauge transformation Jscgr — §nUJsUu5W UuSFUushus =
£, W,T'h¥ so the current is also ultrasoft gauge invariant. Thus the leading order attachments of 7 - A,,

gluons that lead to the Wilson line W, are necessary to obtain a gauge invariant result. Furthermore,
by gauge symmetry the fact that the product &,W,, appears in the operator will not be modified by loop
corrections. We will take up what modifications can be generated by loop corrections in section 6.2 below.

Gauge symmetry forces gauge fields and derivatives to occur in the following combinations

m-D=in-0+gn-A,+gn- Ay, (5.13)
iDP =P +gAl
in-Dp,=P+gn-A,,
iDl =0t + gA~,
We see that gauge symmetry is a powerful tool in determining the structure of operators. It is reasonable

to ask, is power counting and gauge invariance enough to fix the leading order Lagrangian E ) for &7

Only the operators in - D and (1/P)D,1 D,,1 are O(\?) and have the correct mass dimension. The latter
will have the correct gauge transformation properties once we include Wys. Nevertheless, nothing so far
rules out the operator

B ;DL %
§anL "fW Dnu2§n (5.14)

which is gauge invariant and has the correct A scaling. To exclude this term we need to consider another
symmetry prinicple, namely reparameterization invariance.
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5.3 Reparamterization Invariance

Our choice of the n and 7n reference vectors explicitly breaks Lorentz symmetry in SCET, much like v does
in HQET. Part of this breaking is natural, SCET] is describing a collimated jet which explicitly picks out
a corresponding n-collinear direction about which the field theory is describing fluctuations. There is also
a part of the symmetry that is restored by the freedom we have in choosing our n and n vectors, which
is a reparameterization invariance (RPI). A second attribute of the reparameterization symmetry is the
freedom we have in splitting momenta between label and residual components. We will explore these two
in turn.

The only required property of a set of n, 7 basis vectors is that they satisfy
n?=n?=0, n-n=2 (5.15)

Consequently a different choice for n and 7 can yield a valid set of light-cone coordinates as long as our
result still obeys (5.15). Specifically, there are three sets of transformations which can be made on a set of
light-cone coordinates to obtain another, equally valid, set.

I I I11
ny, = ny + A Ny — Ny, ny, — ent (5.16)
iy — My My = M+ ey Ny — e Yy,
where i-et =n-et =n-AL =n- AL = 0. The first two transformations are inifinitesimal. The third is a

finite transformation (where the form is simple), but can be made infinitesimal by expansion in «. These
transformations must leave a collinear momentum collinear in the same directions, so we can obtain the
A-scaling of these parameters by noting that:

MNeonpon-pt+At-p = At~ A} (5.17)
MNaaposn-ptet-p=et~ A\

a~ 20

Thus only A is constrained by the power counting, while large changes are allowed for a and e*. These
RPI transformations are a manifestation of the Lorentz symmetry which was broken by introducing the
vectors n and n. The five infinitesimal parameters At, slf, and « correpsond to the five generators of the
Lorentz group which were broken by introducing the vectors n and n. These generators are defined by
{n, M 7, M"} or in terms of our standard light-cone coordinates f = J1 £ Ko, Q2i = Jy+ K1, and

Ks3. Here M* are the usual 6 antisymmetric SO(3,1) generators.

If we start with our canonical basis choice n = (1,0,0,1) and n = (1,0,0,—1) then we can visualize
the Type I and Type II transformations as changes in the directions orthogonal to the Z direction

ﬁ“._én# L ”4—%
nH
ﬁ“._én# RIN ‘é»n“
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5.3 Reparamterization Invariance 5 SYMMETRIES OF SCET

and we can visualize Type III transformations as boosts in the Z direction. For Type I we can transform n
by an O(\) amount, into another vector within this collinear sector, without changing any of the physics.
For Type II we recall that the auxillary vector 7 was chosen simply to enable us to decompose momenta,
so their is a considerable freedom in its definition, and this corresponds to the freedom to make large
transformations. (If we start with a more general choice for n and 7 that satisfies Eq. (5.15) then the
picture for the Type-III transformation is more complicated than a simple boost.)

The implications of the Type III transformation for SCET operators are very simple, n and 7 must
appear in operators either together, or with one factor of 7/n in both the numerator and denominator.
That is, in one of the combinations

3

(A-n)(B-n), gz A

= (5.18)

3

where A* and B* are arbitrary 4-vectors.

In order to derive the complete set of transformation relations we must also determine how p‘i trans-
forms. Recall that the definition of p; depends on n and 7, since it is orthogonal to n and n, satisfying
n-p; =0=mn-p;. We can work out its transformation by noting that the four vector p* does not depend
on the basis for coordinates. Using the Type-I transformation as an example

nt nH nt nk AN nk
p“zin-p%—?n-p%—p‘i == Tn-p—i—in-p—i—p‘i—i—fn-p—l—?AL~p¢—|—51(p‘i):p“. (5.19)
Thus p‘i must transform as
1 n# AR
pﬁ_==>pi~—45ﬂﬁL~p¢-—4§£n-p- (5.20)

The projection relation (##/4)§, = &, also implies that &, — [1 + (AJ'ﬁi) /4]&,. Similar relations can also
be worked out for type-II transformations, for example

I nt et
pizpi—?sL-pL—?Ln-p. (5.21)

Summarizing all the type-I and type-II transformations on vectors and fields (using D" as a typical vector)

we have
I 11
n—n+ AL n—n
n—n n—n+et
n-D—n-D+AL. DL n-D—n-D 5 99
L _ n .
Df 5 DL—2n.D-ZAL.D| DI DE-%n.D-"eD (5:22)
n-D—n-D n-D—n-D+et- Dt
L .
Wy, = Wy Wy = (1= et -iDH) W,
For type-III transformations p’i does not transform, and neither does W,,.
We can show that our leading order SCET Lagrangian
0 ) ﬁ _ 1 . ﬁ
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is invariant under these transformations. Under a type-I transformation we have

- 1
51/:5105) = (fnin . D?@) + o1 <§nz’]Dn7 LWUD” L?&) (5.24)
= iA" Dﬂ;gn — &uit Dﬂ;gn
=0

where to obtain the second line we used #2 = 0, the orthogonal properties of the 4-vectors, and ignored
quadratic combinations of the Al infinitesimal. Hence the SCET quark Lagrangian obtained from tree
level matching is indeed invaraiant under §;. However, this Lagrangian is not completely determined by
invariance under J;. For example, the term we encountered at the end of the gauge symmetry section

transforms as )

5(1) (fnzDi‘szDJ‘”?gn> = _fniAJ— ’ D?fn (5'25)
which is the same transformation as for the second term in (5.24). Consequently, we may replace the
second term with this new term with no violation of power counting, gauge symmetry, or RPI type-I.
This ambiguity is only resolved by using invariance under RPI of type-II. The detailed calculation is given
in [7] with the final result that our Lagrangian L';OE) remains invariant under dr; while the term given in
(5.14) does transforms in a way that can not be compensated by any other leading order term in the
Lagrangian. Therefore our SCET Lagrangian ES? is unique by power counting, gauge invariance, and
reparameterization invariance. This also implies that its form is not modifed by loop corrections. In general
type-IIT1 RPI will restrict operators at the same order in A, type-I restricts operators at different orders in

A, and type-II will restrict operators at both the same and different orders in .

Reparameterization invariance also manifests itself in the ambiguity of label and residual momenta
decomposition. We can separate the total momenta

n-p=n-(pe+p) PL=p +0 ) (5.26)
into py and p, in different ways as long as we maintain the power counting. Specifically, a transformation
that takes

PH — PH+ pH 10t — ot — pH (5.27)
implements this freedom. The transformation on 79" is induced by the S-transformation of the fields, for
example '

Enp(@) = P06, 1 s(@). (5.28)
The set of these § transformations also determines the space of equivalent decompositions Z that we mod
out by when constructing pairs of label and residual momenta components (py, p,) in R? x R*/Z. Invariance
under this RPI requires the combination
PH 4ot (5.29)
to be grouped together for collinear fields. Since P and in -9 (and Pj‘_ and z@ﬁ) appear at different orders
in the power counting, this RPI connects the Wilson coefficients of operators at different orders in .

A natural question is how to gauge the connection between label and residual derivatives in (5.29).
Recall that the gauge transformations for derivatives are

collinear ultrasoft
iD, | — U.D, Ul UwsiDyy L Uds
in- Dy — Ugdn - DaUl Uysifi - DpUdsm
in-D—  Usin-DUJ Uysin - DU
iDl — iDH, UysiDILUL
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The most natural guess for the gauging of (5.29) would be
iDl' | +iDl i - Dy + i - Dys . (5.30)

However, with the above transformations these combinations do not have uniform transformations under
the gauge symmetries, since D,,; does not transform under U,. We can rectify this problem by introducing
our Wilson line W, into the combination of these derivatives. The unique result which preserves the SCET
gauge symmetries without changing the power counting of the terms is

iD! =iD! | + WyoiDi Wl (5.31)

n n

ifi - D = ifi - Dy, + Wyift - Dys W, (5.32)

where W, transforms as W,, — U,W,. Stripping off the regular derivative terms, the extra multi-gluon
terms appearing in the formulae like A" = A" + A" |+ .. are the terms we denoted by ellipses in (4.9).
These terms are necessary to form gauge invariant subleading operators.

Like in HQET, the RPI in SCET connects the Wilson coefficients of leading and A-suppressed La-
grangians and external currents and operators. As an example, applying the connection to the term

&nilD, | Wn(1/P) Wgz]Dn 1&n in Enog) yields the subleading Lagrangian that couples collinear quarks to A**
gluons,

L) = (EWn)i f;(wgiwn,m + <§niwn,LWn>;iwiS<Wan>. (5.33)

The complete set of SCET] Lagrangian interactions up to O(A2?) can be found in Ref. [10].

5.4 Discrete Symmetries

After considering the residual form of Lorentz symmetry encoded in reparameterization invariance it is
natural to consider how our SCET fields transform under C, P, and T transformations. In this case we
will satisfy ourselves with the transformations of the collinear field &, ,. We have

C™ e p(2)C = —[€n,—p(x)C]" (5.34)
P_lgn,p(l')P = ’7057’1,13(1‘P)
T71§n7p(1')T = Tgﬁﬁ(l'T

where n = (1,0,0,1), n = (1,0,0, 1), p= (p*,p~, p*), = (z7, 27, z1), C is the standard matrix induced

by charge conjugation symmetry, and we have defined p = (p~,pT, —pt) as well as zp = (z~, 2+, —2t)
and xp = (—z~, —a T, 27).

5.5 Extension to Multiple Collinear Directions

For processes with more than one energetic hadron, or more than one energetic jet our list of degrees of
freedom must include more than one type of collinear mode, and hence more than one type of collinear
quark and collinear gluon. When two collinear modes in different directions interact, the resulting particle
is offshell, and does not change the formulation of the leading order collinear Lagrangians. Therefore the
Lagrangian with multiple collinear directions is

0 0
£8m, = £90 + 7 £+ £9)]. (5.35)
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