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Figure 8: SCETI zero-bin from one collinear direction scaling into the ultrasoft region. 

there are ultrasoft subtractions for the collinear modes, but no collinear subtractions for the ultrasoft 
modes. 

It also should be remarked that depending on the choice of infrared regulators, the subtraction terms 
very often give scaleless integrations of combined dimension d − 4 in dimensional regularization. These 

j jthen just yield terms proportional to (1/E − 1/E ), which are only important to properly interpret UV IR

whether factors of 1/E from the naive collinear loop integration that used Eq. (4.60) are UV poles that 
require a counterterm, or are IR poles that correspond with physical IR singularities in QCD. In particular 
this is often the case for the simplest measurements with an offshellness IR regulator for collinear external 
lines. More complicated measurements (such as those depending on a jet algorithm) or other choices of IR 
regulators (like a gluon mass or a cutoff) will lead to zero-bin subtractions that are not scaleless. 

We will return to this discussion when carrying out explicit examples of collinear loops in section 7. 

Symmetries of SCET 

In quantum field theory Lagrangians are often built up from symmetries and dimensional analysis. So far 
our leading order SCET Lagrangians were derived directly from QCD at tree level. To go further, and 
determine whether loops can change the form of the Lagrangians (through Wilson coefficients or additional 
operators) we need to exploit symmetries and power counting. In this section, we will introduce the SCET 
gauge symmetries and reparameterization invariance (RPI) as a way to constrain SCET operators. We will 
find that the gauge symmetry formalism is a simple restatement of the standard QCD picture except with 
two separate gauge fields. RPI is a manifestation of the Lorentz symmetry which was broken by the choice 
of light-cone coordinates, and which acts independently in each collinear sector. We will also examine the 
spin symmetries of the SCET Lagrangian, although here we will find that there are no surprises beyond 
what we know from QCD. 
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5.1 Spin Symmetry 

(0)
To examine the spin symmetry of L it is convenient to write the Lagrangian in a two component form. nξ 
From Eq. (3.11) we can write 

 

where ϕn is a two-component field, dim ϕn = dim ξn = 3/2, and ϕn ∼ λ. With this two-component field 
the SCET Lagrangian is 

Due to the σ3 the spin symmetry is not an SU(2), but rather just the U(1) helicity symmetry corresponding 
to spin along the direction of motion n of the collinear fields. The relevant generator is 

Sz = iEµν [γµ, γν ] → h = σ3. (5.3)⊥ 

We can relate this symmetry to the chiral symmetry by noting that under chiral symmetry ξn transforms 
as 

This U(1)A axial-symmetry is broken by fermion masses and non-perturbative instanton effects. Just like 
in QCD it is a useful symmetry for determining the structure of perturbation theory results. This implies 
that in SCET it is useful for determining the basis of operators we obtain when integrating out hard 
particles, and for relating Wilson coefficients. 

5.2 Gauge Symmetry 

The standard gauge transformation in QCD is 

U(x) = exp[iαA(x)T A] . (5.5) 

When we go to SCET we need to have gauge transformations which do not inject large momenta into our 
EFT fields, that is, the transformations must leave us withing our effective field theory. For example, if we 
used a gauge transformation where αA satisfied 

i∂µα
A ∼ QαA (5.6) 

then ξ ' = U(x)ξn would no longer have p2 ≤ Q2λ2 and would not be described by SCET. There are two n 
acceptable SCET gauge transformations which are defined by their momentum scale. They are 

collinear Un(x) : i∂µUn(x) ∼ Q(λ2 , 1, λ)Un(x) (5.7) 
ultrasoft Uu(x) : i∂µUu(x) ∼ Q(λ2, λ2, λ2)Uu(x). (5.8) 

There is also a global color transformation which for convenience we group together with the Uu. To 
avoid double counting, in the collinear transformation we fix Un(n · x = −∞) = 1. We can implement a 
collinear gauge transformation on the collinear fields ξn, pl via a Fourier transform. Since ψ(x) → U(x)ψ(x)t 
is equivalent to ψ̃(p) → dq Ũ(p − q)ψ̃(q), the transformation involves a convolution in label momenta. To 
understand how the collinear gauge field transforms under a collinear gauge transformation, we need to 
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ξn =
1√ ϕ

2

(
n

σ3ϕn

)
, (5.1)

L = ϕ†n

[
in · µ 1

D + iDn⊥ iDν

in̄ ·D n (g⊥⊥ µν + iε⊥µνσ3)

]
ϕn . (5.2)

ξn → γ5ξn =

(
0 1
1 0

)
1√
2

(
σ3φn
φn

)
so ϕn → σ3ϕn . (5.4)
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recall that there is a background usoft gauge field Aµ
us. Consequently we must take ∂µ → Dus so that Aµ

nµ 
transforms as a quantum field in an Aµ background. Therefore the collinear gauge transformations are us 

where we sum over repeated momentum label indices. It is convenient to setup a matrix notation for these 
convolutions by defining 

(Ûn)p£,q£ ≡ (Un)p£−q£ ,	 (5.10) 

where the LHS is the (pc, qc) element of a matrix in momentum space, and the RHS is a number (both 
are of course also matrices in color). Then Eq. (5.9) with a sum over repeated indices becomes ξn, p£ → 
(Ûn)p£,q£ ξn,q£ . And if we suppress indices then we have ξn → (Ûn)ξn. 

Finally the ultrasoft fields do not transform under a collinear gauge transformation, since the resulting 
field would have a large momentum and hence no longer be ultrasoft. Essentially this means that by 
definition our collinear gauge transformations do not turn ultrasoft gluons into collinear gluons. 
Collinear Gauge Transformations : Un(x) 

Therefore our set of Collinear Gauge Transformations with the matrix notation for momentum space labels 
are 

•	 ξn(x) → Ûn(x)ξn(x)  

Dµ † • Aµ
n(x) → Ûn(x)(An

µ(x) + i us)Ûn(x)g 

• qus(x) → qus(x) 

• Aµ 
us(x) → Aµ 

us(x) 

When using the momentum label notation the condition Un(n · x = −∞) = 1 becomes (Un)p£→0 = δp£,0 
for the zero-bin pc = 0 (the ultrasoft transformations do not modify large momenta, but the collinear 
transformations do). 

For usoft gauge transformations, the field ξn and Aµ
n transform as quantum fields under a background 

gauge transformation, which is to say they transform as matter fields with the appropriate representation. 
The usoft fields have their usual gauge transformations from QCD. 
Usoft Gauge Transformations : Uu(x) 

Therefore for the Ultrasoft Gauge Transformations we have 

• ξn(x) → Uus(x)ξn(x) 

• Aµ	 † 
n(x) → Uus(x)A

µ
n(x)Uus(x) 

• qus(x) → Uus(x)qus(x) 

†• Aµ (x)(Aµ ∂µ)Uus(x) → Uus us(x) + i us(x)g 

Since all of the fields transform, these ultrasoft gauge transformations connect fields in operators that are 
mixtures of collinear and ultrasoft fields. This differs from Un(x) which only connects collinear fields to 
each other. 
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ξn, p(x)→ (Un)p q(x) ξ (− n,q x) ,

Aµn,p(x)→ µU µ
n,p−q(x)

(
gA (x) + δn,q−q′ q,q′iDus

)
Un,q
† (x) , (5.9)′
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It is important to note that the Un and Uu gauge transformations are homogeneous in the power 
counting, so they do not change the order in λ for transformed operators. They are exact, there are no 
corrections to these transformations at higher orders in λ, and thus the power expansion will have gauge 
invariant operators at each order in λ. 

The transformation of the fields yield transformations for objects that are built from the fields. An 
important case is the Wilson line Wn which is like the Fourier transform of W (x, −∞). In QCD a general 
Wilson line with the gauge field along a path will transform on each end as W (x, y) → U(x)W (x, y)U †(x). 
For the collinear gauge transformation we have fields in momentum space for labels, and position space 
representing residual momenta, and Un

†(−∞) = 1, so the Wilson line transforms only on one side for 
collinear transformations. For ultrasoft transformations Wn(x) is actually a local operator with all fields 

† † at x, and the product of multiple n̄ · An(x) → Uus(x)n̄ · An(x)Uus(x) leads to one Uus and Uus on the left 
and right. Thus with the matrix notation 

collinear : Wn(x) → Ûn(x)Wn(x) , 

ultrasoft : Wn(x) → Uus(x)Wn(x)U
† 
us(x) . (5.11) 

It is useful to consider the correspondence between the appearance of the Wilson line Wn in operators, 
and the collinear gauge symmetry. If we consider our example of the heavy-to-light current then without the 

Γhus 
n
†ΓhusWilson line the operator ξ̄n is not gauge invariant, transforming to ξ̄nU . Here the ξn transformsv v 

because collinear gluons couple to ξn without taking it offshell, but hus does not transform because this v 
ultrasoft field can not interact with the collinear gluons while remaining near its mass shell. But recall 
that when the offshell collinear gluons are accounted for in matching onto the SCET operator that the 
n̄ · An ∼ λ0 gluons generate a Wilson line Wn, so the complete result from tree level matching is 

¯ ΓhusJSCET = ξnWn v . (5.12) 

¯ ˆ † ˆ Γhus ¯ ΓhusNow under a collinear gauge transformation JSCET → ξnUnUnWn = ξnWn , so the current is v v 
¯ † † huscollinear gauge invariant. Under an ultrasoft gauge transformation JSCET → ξnU WnU = usUus usΓUus v 

¯ ΓhusξnWn , so the current is also ultrasoft gauge invariant. Thus the leading order attachments of n̄ · Anv 
gluons that lead to the Wilson line Wn are necessary to obtain a gauge invariant result. Furthermore, 

¯by gauge symmetry the fact that the product ξnWn appears in the operator will not be modified by loop 
corrections. We will take up what modifications can be generated by loop corrections in section 6.2 below. 

Gauge symmetry forces gauge fields and derivatives to occur in the following combinations 

in · D = in · ∂ + gn · An + gn · Aus , (5.13) 
iDµ = Pµ + gAµ 

n ⊥ ⊥ n ⊥ , 
in̄ · Dn = P + gn̄ · An , 
iDµ = i∂µ + gAµ .us us 

We see that gauge symmetry is a powerful tool in determining the structure of operators. It is reasonable 
(0)

to ask, is power counting and gauge invariance enough to fix the leading order Lagrangian L for ξn?nξ 
Only the operators in · D and (1/P)Dn⊥Dn⊥ are O(λ2) and have the correct mass dimension. The latter 
will have the correct gauge transformation properties once we include Wns. Nevertheless, nothing so far 
rules out the operator 

1 n̄/
ξ iDµ Wn W †iD⊥ ξn (5.14)n n⊥ n nµ P 2 

which is gauge invariant and has the correct λ scaling. To exclude this term we need to consider another 
symmetry prinicple, namely reparameterization invariance. 
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5.3 Reparamterization Invariance 

Our choice of the n and n̄ reference vectors explicitly breaks Lorentz symmetry in SCET, much like v does 
in HQET. Part of this breaking is natural, SCETI is describing a collimated jet which explicitly picks out 
a corresponding n-collinear direction about which the field theory is describing fluctuations. There is also 
a part of the symmetry that is restored by the freedom we have in choosing our n and n̄ vectors, which 
is a reparameterization invariance (RPI). A second attribute of the reparameterization symmetry is the 
freedom we have in splitting momenta between label and residual components. We will explore these two 
in turn. 

The only required property of a set of n, n̄ basis vectors is that they satisfy 

n 2 = n̄ 2 = 0, n · n̄ = 2. (5.15) 

Consequently a different choice for n and n̄ can yield a valid set of light-cone coordinates as long as our 
result still obeys (5.15). Specifically, there are three sets of transformations which can be made on a set of 
light-cone coordinates to obtain another, equally valid, set. 

I II III 
+Δ⊥ → e nnµ → nµ µ nµ → nµ nµ 

α µ (5.16) 
−α ̄n̄µ → n̄µ n̄µ → n̄µ + ε⊥ n̄µ → e nµµ 

where n̄ · ε⊥ = n · ε⊥ = n̄ · Δ⊥ = n · Δ⊥ = 0. The first two transformations are inifinitesimal. The third is a 
finite transformation (where the form is simple), but can be made infinitesimal by expansion in α. These 
transformations must leave a collinear momentum collinear in the same directions, so we can obtain the 
λ-scaling of these parameters by noting that: 

λ2 ∼ n · p → n · p +Δ⊥ · p⊥ =⇒ Δ⊥ ∼ λ1 (5.17) 

λ0 ∼ n̄ · p → n̄ · p + ε⊥ · p⊥ =⇒ ε⊥ ∼ λ0 

α ∼ λ0 

Thus only Δ⊥ is constrained by the power counting, while large changes are allowed for α and E⊥ . These 
RPI transformations are a manifestation of the Lorentz symmetry which was broken by introducing the 
vectors n and n̄. The five infinitesimal parameters Δ⊥ , ε⊥, and α correpsond to the five generators of the µ µ 
Lorentz group which were broken by introducing the vectors n and n̄. These generators are defined by 

Mµν{nµ , n̄µM
µν } or in terms of our standard light-cone coordinates Q± = J1 ± K2, Q± = J2 ± K1, and 1 2 

K3. Here Mµν are the usual 6 antisymmetric SO(3,1) generators. 
If we start with our canonical basis choice n = (1, 0, 0, 1) and n̄ = (1, 0, 0, −1) then we can visualize 

the Type I and Type II transformations as changes in the directions orthogonal to the ẑ direction 

I 
=⇒ 

II 
=⇒ 
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and we can visualize Type III transformations as boosts in the ẑ direction. For Type I we can transform n 
by an O(λ) amount, into another vector within this collinear sector, without changing any of the physics. 
For Type II we recall that the auxillary vector n̄ was chosen simply to enable us to decompose momenta, 
so their is a considerable freedom in its definition, and this corresponds to the freedom to make large 
transformations. (If we start with a more general choice for n and n̄ that satisfies Eq. (5.15) then the 
picture for the Type-III transformation is more complicated than a simple boost.) 

The implications of the Type III transformation for SCET operators are very simple, n and n̄ must 
appear in operators either together, or with one factor of n̄/n in both the numerator and denominator. 
That is, in one of the combinations 

A · n A · n̄
(A · n)(B · n̄), , (5.18)

B · n B · n̄

where Aµ and Bµ are arbitrary 4-vectors. 
In order to derive the complete set of transformation relations we must also determine how pµ trans­⊥ 

forms. Recall that the definition of p⊥ depends on n and n̄, since it is orthogonal to n and n̄, satisfying 
n · p⊥ = 0 = n̄ · p⊥. We can work out its transformation by noting that the four vector pµ does not depend 
on the basis for coordinates. Using the Type-I transformation as an example 

µ µ µ µ Δµ µn n̄ n n̄ n̄µ µ µ ⊥ µ µp = n̄ · p + n · p + p =⇒ n̄ · p + n · p + p + n̄ · p + Δ⊥ · p⊥ + δI(p ) = p . (5.19)⊥ ⊥ ⊥2 2 2 2 2 2 

Thus pµ must transform as ⊥ 
µ Δµ
n̄µ I µ ⊥p⊥ =⇒ p⊥ − Δ⊥ · p⊥ − n̄ · p . (5.20)
2 2 

⊥
The projection relation (n/n̄//4)ξn = ξn also implies that ξn → [1 + ( Δ/ n̄/)/4]ξn. Similar relations can also 
be worked out for type-II transformations, for example 

nµ εµ 
µ II µp =⇒ p − ε⊥ · p⊥ − ⊥ n · p . (5.21)⊥ ⊥ 2 2 

Summarizing all the type-I and type-II transformations on vectors and fields (using Dµ as a typical vector) 
we have 

  

For type-III transformations p⊥ 
µ does not transform, and neither does Wn. 

We can show that our leading order SCET Lagrangian 

n̄/ 1 n̄/L(0) 
= ξnin · D ξn + ξ iD/ iD/ ξn (5.23)nξ n n, ⊥ n ⊥2 in̄ · D 2 
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I II

n→ n+ ∆⊥ n→ n
n̄→ n̄ n̄→ n̄+ ε⊥

n ·D → n ·D + ∆⊥ ·D⊥ n ·D → n ·D
Dµ
⊥ → Dµ

⊥ − ∆⊥µ
2 n̄ ·D − n̄µ

2 ∆⊥ ·D D⊥µ → D⊥µ −
ε⊥µ
2 n ·D −

nµ ε2
⊥ ·D

n̄ ·D → n̄ ·D( n̄ ·D → n̄ ·D + ε⊥ ·D⊥

ξn → 1 + 1
4
/∆
⊥
/̄n
)
ξn ξn →

(
1 + 1

2/ε
⊥ 1 iD/in̄·D ⊥

)
ξn

Wn →Wn Wn →
(
1− 1

in̄·D ε
⊥ · iD⊥

)
Wn

(5.22)
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is invariant under these transformations. Under a type-I transformation we have 

where to obtain the second line we used n̄/2 = 0, the orthogonal properties of the 4-vectors, and ignored 
quadratic combinations of the Δ⊥ infinitesimal. Hence the SCET quark Lagrangian obtained from tree 
level matching is indeed invaraiant under δI. However, this Lagrangian is not completely determined by 
invariance under δI. For example, the term we encountered at the end of the gauge symmetry section 
transforms as 

which is the same transformation as for the second term in (5.24). Consequently, we may replace the 
second term with this new term with no violation of power counting, gauge symmetry, or RPI type-I. 
This ambiguity is only resolved by using invariance under RPI of type-II. The detailed calculation is given 

(0)
in [7] with the final result that our Lagrangian L remains invariant under δII while the term given in nξ 
(5.14) does transforms in a way that can not be compensated by any other leading order term in the 

(0)
Lagrangian. Therefore our SCETI Lagrangian L is unique by power counting, gauge invariance, and nξ 
reparameterization invariance. This also implies that its form is not modifed by loop corrections. In general 
type-III RPI will restrict operators at the same order in λ, type-I restricts operators at different orders in 
λ, and type-II will restrict operators at both the same and different orders in λ. 

Reparameterization invariance also manifests itself in the ambiguity of label and residual momenta 
decomposition. We can separate the total momenta 

µ µ µn̄ · p = n̄ · (pc + pr) p = p + p (5.26)⊥ l ⊥ r ⊥ 

into pc and pr in different ways as long as we maintain the power counting. Specifically, a transformation 
that takes 

Pµ → Pµ + βµ i∂µ → i∂µ − βµ (5.27) 
implements this freedom. The transformation on i∂µ is induced by the β-transformation of the fields, for 
example 

ξn,p(x) → e iβ(x)ξn,p+β(x) . (5.28) 
The set of these β transformations also determines the space of equivalent decompositions I that we mod 
out by when constructing pairs of label and residual momenta components (pc, pr) in R3 ×R4/I. Invariance 
under this RPI requires the combination 

Pµ + i∂µ (5.29) 
to be grouped together for collinear fields. Since P and in̄ · ∂ (and Pµ and i∂µ ) appear at different orders ⊥ ⊥
in the power counting, this RPI connects the Wilson coefficients of operators at different orders in λ. 

A natural question is how to gauge the connection between label and residual derivatives in (5.29). 
Recall that the gauge transformations for derivatives are 

collinear ultrasoft 
† †iDn ⊥ → UciDn ⊥Uc UusiDn ⊥Uus 

in̄ · Dn → Ucin̄ · DnU
† in̄ · DnU

† 
c Uus usm 
† †in · D → Ucin · DUc Uusin · DUus 

†iDµ → us iDµ 
usus iDµ Uus usU
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(0)
δIL = δnξ I

(
n/̄

ξnin ·D ξn
2

)
+ δI

(
1

ξniD/n,⊥
n/̄

iD/
in̄ · nD ⊥ ξn

2

)
(5.24)

= ξni∆
⊥ ·D⊥

/̄n

2
ξn − ξni∆⊥ ·D⊥

/̄n
ξn

2
= 0

δ(I)

(
ξniD

⊥
µ

1

in̄ ·D
iD⊥µ

/̄n

2
ξn

)
= −ξni∆⊥ ·D

/̄n

2
ξn (5.25)
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The most natural guess for the gauging of (5.29) would be 

iDµ + iDµ in̄ · Dn + i¯ (5.30)n ⊥ us ⊥ , n · Dus . 

However, with the above transformations these combinations do not have uniform transformations under 
the gauge symmetries, since Dus does not transform under Un. We can rectify this problem by introducing 
our Wilson line Wn into the combination of these derivatives. The unique result which preserves the SCET 
gauge symmetries without changing the power counting of the terms is 

iDus, µ iDµ ≡ iDµ + Wn W † (5.31)⊥ n⊥ n⊥ n 

in̄ · D ≡ in̄ · Dn + Wnin̄ · DusWn 
† , (5.32) 

where Wn transforms as Wn → UnWn. Stripping off the regular derivative terms, the extra multi-gluon 
terms appearing in the formulae like Aµ = Aµ + Aµ + . . . are the terms we denoted by ellipses in (4.9).⊥ n⊥ us⊥ 
These terms are necessary to form gauge invariant subleading operators. 

Like in HQET, the RPI in SCET connects the Wilson coefficients of leading and λ-suppressed La­
grangians and external currents and operators. As an example, applying the connection to the term 

† (0)¯ iD/ (1/P) WniD/ in L yields the subleading Lagrangian that couples collinear quarks to Ausξn n,⊥Wn n,⊥ξn nξ ⊥ 
gluons, 

(1) us 1 1 usL = (ξ̄nWn)iD/⊥ (Wn
†iD/n,⊥ξn) + (ξ̄niD/n,⊥Wn) iD/⊥ (Wn

†ξn). (5.33)nξ P P 

The complete set of SCETI Lagrangian interactions up to O(λ2) can be found in Ref. [10]. 

5.4 Discrete Symmetries 

After considering the residual form of Lorentz symmetry encoded in reparameterization invariance it is 
natural to consider how our SCET fields transform under C, P, and T transformations. In this case we 
will satisfy ourselves with the transformations of the collinear field ξn,p. We have 

C−1ξn,p(x)C = −[ξ̄n,−p(x)C]T (5.34) 
P −1ξn,p(x)P n,˜(xP )= γ0ξ¯ p

T −1ξn,p(x)T n,˜(xT )= T ξ¯ p

+ − + −where n = (1, 0, 0, 1), n̄ = (1, 0, 0, −1), p ≡ (p , p , p⊥), x ≡ (x , x , x⊥), C is the standard matrix induced 
− + − +by charge conjugation symmetry, and we have defined p̃ = (p , p , −p⊥) as well as xP = (x , x , −x⊥) 

− +and xT = (−x , −x , xT ). 

5.5 Extension to Multiple Collinear Directions 

For processes with more than one energetic hadron, or more than one energetic jet our list of degrees of 
freedom must include more than one type of collinear mode, and hence more than one type of collinear 
quark and collinear gluon. When two collinear modes in different directions interact, the resulting particle 
is offshell, and does not change the formulation of the leading order collinear Lagrangians. Therefore the 
Lagrangian with multiple collinear directions is 
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L(0)
SCET =

I
L(0)
us +

∑
n

[
L(0)

+nξ L(0)
ng

]
. (5.35)
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