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where 

(3.34)

Here Wn is the momentum space version of a Wilson line built from collinear An gluon fields. In position 
space the corresponding Wilson line is 

Here P is the path ordering operator which is required for nonabelian fields and which puts fields with 
larger arguments to the left e.g. n̄ · An(n̄s) n̄ · An(n̄s ' ) for s > s ' . 

In summary, we see that we have traded the field n̄ · An for the Wilson line Wn[n̄ · An]. Also, including 
this Wilson line in our current operator makes our current gauge invariant, as we will show below in the 

' Gauge Symmetry section. For a situation with n and n collinear fields the same type of Wilson lines 
Wn[n̄ · An] are also generated in a manner that yields gauge invariant operators for each collinear sector. 

4 SCETI Lagrangian 

In this section, we derive the SCET quark Lagrangian by analyzing and separating the collinear and usoft 
gluons, and momentum degrees of freedom. On the way to our final result we introduce the label operator 
which provide a simple method to separate large (label) momenta from small (residual) momenta. 

4.1 SCET Quark Lagrangian 

Lets construct the leading order SCET collinear quark Lagrangian. This desired properties that this 
Lagrangian must satisfy include 

• Yielding the proper spin structure of the collinear propagator 

• Contain both collinear quarks and collinear antiquarks 

• Have interactions with both collinear gluons and ultrasoft gluons 

• Yield the correct LO propagator for different situations without requiring additional expansions 

• Should be setup so we do not have to revisit the LO result when formulating power corrections 

To explain what is meant by the fourth point consider the propagator obtained when a collinear quark 
interacts with a collinear gluon 

q

p+q p
n̄ · (p + q)∝ . 

n · (p + q) n̄ · (p + q) + (p⊥ + q⊥)2 + i0 

Here both the momentum p and q appear on equal footing, and no momenta are dropped in the denomi­
nator. This can be contrasted with the leading propagator obtained when a collinear quark interacts with 
an ultrasoft gluon 
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(
Wn =

∑
k p

∑ −g)k

erm

n̄

k!

(
·An(q1) · · · n̄ ·An(qk)

.
k[n̄ · q1][n̄ · (q1 + q2)] · · · [n̄ ·

∑
i=1 qi]

)

W (0,−∞) = P exp

(
ig

∫ 0

ds n̄ ·An(ns¯ )
−∞

)
(3.35)
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k

p+k p
n̄ · p∝ .2n · (p + k) n̄ · p + p⊥ + i0 

Here the ultrasoft kµ momentum is dropped for all components except n · k where it is the same size as 
the collinear momentum n · p. The dropping of k⊥ « p⊥ and n̄ · k « n̄ · p corresponds to carrying out a 
multipole expansion for the interaction of the ultrasoft gluon with the collinear quark. The LO collinear 
quark propagator must be smart enough to give the correct leading order result without further expansions, 
irrespective of whether it later emits a collinear gluon or ultrasoft gluon. 

We will achieve the desired collinear Lagrangian in several steps. 

4.1.1 Step 1: Lagrangian for the larger spinor components 

In this section we construct a Lagrangian for the field ξ̂n. It will satisfy the first two requirements in our 
bullet list. 

We begin with the standard QCD lagrangian for massless quarks. 

LQCD = ψi / (4.1)Dψ 

Expanding ψ and D in our collinear basis gives us 

(4.2)

We can simplify this result by using the projection matrix identities for the collinear spinor found in 
section 3.1. In particular, various terms vanish such as 

n/ n/̄
in̄ · Dξ̂n = 0 , ϕ¯ in · D = 0 (4.3)n2 2 

by virtue of the analog of (3.19) for ϕ¯ . Lastly, terms like n

ˆ ˆ ˆ ˆ ˆ ˆξ i / ξn = ξ iD/⊥Pnξn = ξ Pni / ξn = 0 , iD/⊥ϕn = 0 , (4.4)n D⊥ n n D⊥ ϕn̄

¯since ξnPn = 0 and ϕ̄n̄Pn̄ = 0. These simiplifications leave us with the Lagrangian 

n/ n/L = ξ̂n in · D ξ̂n + ϕ¯iD/⊥ ξ̂n + ξ̂n iD/⊥ϕn̄ + ϕn̄ in̄ · Dϕn̄ . (4.5)n2 2 

So far this is just QCD written in terms of the ξ̂n and ϕn̄ fields. However, the field ϕn̄ corresponds to the 
spinor components which were subleading in the collinear limit. These spinor components will not show 
up in operators that mediate hard interactions at leading order. Therefore we will not need to consider a 
source term for ϕn̄ in the path integral.3 This means that we can simply perform the quadratic fermionic 

3At subleading order the coupling to the subleading components is introduced in operators via the combination involving 
ξn shown in the last line of Eq.(4.6), so there is still no reason to have a source term for ϕn̄. 
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L = (ϕn̄ + ξ̂n)

(
/̄n

2
in ·D +

/n

2
in̄ ·D + i /D⊥

)
(ϕn̄ + ξ̂n) . (4.2)
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path integral over ϕn̄. At tree level doing so is simply equivalent to imposing the full equation of motion 
for ϕn̄. We find 

δL n/
0 = : in̄ · Dϕn̄ + iD/⊥ξn = 0 (4.6)

δϕn̄ 2 
n/̄ ˆin̄ · Dϕn̄ + iD/⊥ξn = 0 
2 

1 n/̄ ˆϕn̄ = iD/⊥ ξn ,
in̄ · D 2 

where the second line is obtained by multiplying the first by /̄n/2 on the left, and the plus sign in the last 
line comes from using /̄ = −i / ¯ Plugging this result back into our Lagrangian, two terms cancel, niD/⊥ D⊥n/. 
and the other two terms give the Lagrangian for the ξ̂n field 

The inverse derivative operator may look a little funny, but we can understand it in the same way we do for 
the operator 1/r̂ in quantum mechanics, namely by defining it through its eigenvalues, which in this case 
are in momentum space. Say we have the operator 1 acting on a field φ(x). Expressing this operation in̄·∂ 
in momentum space gives 

and the eigenvalues 1/n̄ · p define the inverse derivative operator. 
Although we have a Lagrangian for ξ̂n we are not yet done. In particular we have not yet separated 

the collinear and ultrasoft gauge fields, nor the corresponding momentum components. These remaining 
steps will be to 

2. Separate the collinear and ultrasoft gauge fields. 

3. Separate the collinear and usoft momentum components with a multipole expansion. 

We then can expand in the fields and momenta and keep the leading pieces. 

4.1.2 Step 2: Separate collinear and ultrasoft gauge fields 

µ 2Recall that Aµ
n ∼ (λ2 , 1, λ) ∼ pn n us. « pand Aµ ∼ (λ2, λ2, λ2) ∼ kµ Since k2 the ultrasoft gluons encode us n 

much longer wavelength fluctuations, so from the perspective of the collinear fields we can think of Aµ 
us 

like a classical background field. In background field gauge we would write Aµ = Qµ + Aµ where Qµ iscl 
the quantum gauge field and Aµ is the classical background field that only appears on external lines. In cl 
general there is no need for a relationship between the full QCD gluon field Aµ and the SCET fields Aµ 

us 
and Aµ

n, but if one exists then it does make matching computations much simpler. Based on the analogy 
with a background gauge field you might not be too surprised to learn that a relation exists which encodes 
basic tree level matching 

Aµ = Aµ + Aµ + · · · . (4.9)n us 

Here the ellipsis stand for additional terms involving Wilson lines which only will become relevant when 
we formulate power corrections, and hence will be ignorded for our leading order analysis here (they are 
given below in Eq.()). The interpretation of Aµ

us as a background field to ξn and Aµ
n will also prove useful 
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L =
1

ξ̂n

(
in ·D + iD/⊥

n/
iD/

in̄ ·D ⊥

)
¯
ξ̂n . (4.7)

2

1 1
φ(x) =

in̄ · ∂
1

d
in̄ · ∂

∫
4pe−ipxϕ(p) =

∫
d4pe−ipx ϕ(p) , (4.8)

n̄ · p
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when we derive the collinear gluon lagrangian and when we later consider gauge transformations in the 
theory. 

Now, comparing the power counting between components of Aµ
n and Aµ 

us, we find 

n̄ · An ∼ λ0 » n̄ · Aus ∼ λ2 (4.10) 
Aµ ∼ λ » Aµ ∼ λ2 

⊥ n ⊥ us 

n · An ∼ λ2 ∼ n · Aus. 

So we see that Aµ and n̄ · can be droped from our leading order analysis because in the combination ⊥ us Aus 
Aµ
n + Aµ they are always dominated by the collinear gluon term. Conversely, n · Aus cannot be dropped us 

because it is of the same order as n · An. 

4.1.3 Step 3: The Multipole Expansion for Separating momenta 

We want to find a way to isolate momenta that have different scaling with λ. Such a procedure is useful 
because it will allow us to formulate power corrections in a manner where operators give homogeneous 
contributions in λ order by order. For example, consider the denominator of the propagator of a quark 
with momentum pn + kus expanded to keep the leading and first subleading terms 

1 1 
= − + ⊥(pn + kus)2 (pn us)(pn + k− + k⊥ )2+ k− 

us) + (pn us
⊥1 2k⊥ · pus n = − + . . . . (4.11)− + + k+ ⊥ 2 − + + k+ ⊥ 2]2pn (pn us) + p [pn (pn us) + pn n 

By power counting, we see that the first term scales as λ−2 and the second term scales as λ−1 . Although 
the first term dominates the second, we need to be able to reproduce the second term at the level of the 
Lagrangian when higher order corrections are needed. Expressed more formally, we would like a systematic 
multipole expansion. Our desired expansion is similar to the one found in E&M which gives corrections 
to the electrostatic potential for a given charge distribution. 

In position space the multipole expansion corresponds to expanding the long wavelength field, Aus(x) = 
Aus(0) + x · i∂Aus(0) + . . .. To see what is going on here we can Fourier transform the operators (taking 
one-dimensional fields and ignoring indices for simplicity) 

We see immediately that this corresponds to a 3-point Feynman rule where the small momentum k is 
ignored relative to the large momenta p1 and p2, and that total momentum is not conserved at the vertex. 
For the next order term we get 

Here the Feynman rule involves a kδ ' (p1 − p2) and we must integrate by parts to obtain the multipole 
momentum conservation expressed by δ(p1 − p2). This integration by parts differentiates other parts of a 
diagram that carry this momentum, in particular the neighbouring propagators, which then would produce 
terms like the 2nd term in Eq. (4.11). 
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∫
¯dx ψ(x)A ip1x ik(0) ip2x ¯

us(0)ψ(x) =

∫
dx

∫
dp1 dp2 dk e e− e− ψ(p1)Aus(k)ψ(p2)

=

∫
¯dp1 dp2 dk δ(p1 − p2) ψ(p1)Aus(k)ψ(p2). (4.12)

∫
¯dx ψ(x)x(i∂Aus)(0)ψ(x) =

∫
¯dp1 dp2 dk δ

′(p1 − p2) k ψ(p1)Aus(k)ψ(p2). (4.13)
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Figure 5: Grid to picture the separation of momenta into label and residual components. 

Since Feynman diagrams are almost always evaluated in momentum space it would be more convenient 
to have a multipole expansion formalism that avoids the step of going through position space. In the 
remainder of this section we will set up a formalism to achieve this. It will allow us to 1) simply derive 
the corresponding momentum space Feynman rules, 2) simplify the formulation of gauge transformations 
in the effective theory, and 3) incorporate the multipole expansion into propagators rather than vertices. 

For the moment we only consider the quark part of the field ξ̂n(x). We will add the anti-quark part 
later on. Computing the Fourier transform ξ̃n(p) of the quark part of our field we have 

Now to separate momentum scales, we define our momentum pµ to be a sum of a large momentum 
components pµ called the label momentum and a small momentum pµr called the residual momentum. c 

µ µ µp = p + p (4.15)r 

pµ ∼ Q(0, 1, λ) 
c 

c 
µp ∼ Q(λ2, λ2, λ2)r 

This decomposition is similar to the one found in HQET where the quark momentum is pµ = mvµ + kµ. 
Although at the end of the day all momenta will be continuous, it turns out that it is quite convenient 
for understanding the multipole expansion to interpret the pc as defining a grid of points, and the pr as 

⊥defining locations in the surrounding boxes. This expansion is only necessary for the p− and p momenta 
+since there are no label p momenta, so we have a grid as shown in Fig. 5 (for convenience we show 

µonly one of the pµ components). Note that any momentum p has a unique decomposition in terms of ⊥ 
label and residual components. Since pc » pr the spacing between grid points is always much larger than 
the spacing between points in a box. This setup has the advantage of allowing us to cleaning separate 
momentum scales in integrands, arranging things so every loop integrand is homogeneous in λ. 

In practice the grid picture is a bit misleading, since actually the boxes are infinite and with momentum 
components (pc, pr) we are really dealing with a product of continuous spaces R3 × R4/I where I are a 
group of relations that remove redundancy order by order in λ. (I includes the set of RPI transformations 
that we will discuss later on.) Nevertheless it is very convenient to derive the rules for integrals on the 
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ξ̃n(p) =

∫
d4x eip·x ξ̂n(x). (4.14)
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label-residual space by working with a more familiar discrete label and continuous residual momentum 
picture, and then taking the continuum limit. 

Thus if we are integrating the collinear momentum p over a certain region, we will write 

 

where we do not include pc = 0 in the sum over all pc values, because pc = 0 does not define a collinear 
momentum. Indeed the pc = 0 bin corresponds to the ultrasoft modes. For an ultrasoft momentum p we 
simply have 

 

With this momentum separation we can also label our fields by both components 

We also have separate conservation laws for label and residual momenta 

Every collinear field carries both label and residual momenta, they are both conserved at all vertices, 
but Feynman rules may depend on only one or the other of these components. For example, what was 
previously a nonconservation of momenta for an interaction between collinear and ultrasoft particles now 
becomes two separate conservations of momenta. 

k

,

us

p pl r)( ,p pl r )( +kus

An example is shown in the figure above. 
Finally, since all fields carry residual momenta the conservation law just corresponds to locality of the 

field theory with respect to the Fourier transformed variable pr → x. Therefore we transform the residual 
momenta back to position space to obtain our final collinear quark field 

We will build operators using these fields. Altogether, the above steps allow us to rewrite our hatted 
collinear field ξ̂n(x) as 

 

 

We can identify several facts about label conservation for the field ξn,p£ (x) 
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∫
d4p→

p

∑
` 6=0

∫
d4pr (4.16)

∫
d4p→

∫
d4pr . (4.17)

ξ̃n(p)→ ξ̃n, p`(pr) . (4.18)

∫
d4x ei(p`−q`)·x ei(pr−qr)·x = δp`,q` δ

4(pr − qr)(2π)4. (4.19)

d
ξn,p`(x) =

∫ 4pr ˜e
(2π)4

−iprx ξn, p`(pr) . (4.20)

ξ̂n(x) =

∫
d4p −ip·x ˜ 4 −ip`·x −ipr·x ˜e ξn(p) = d pr e e ξn, p (pr)

(2π)4
p

∑
`

` 6=0

∫
=

p

∑
e−ip`·x ξn, p`(x) . (4.21)

l=06
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•	 Interactions with ultrasoft gluons or quarks leave the label momenta of collinear fields conserved. 

•	 Interactions with collinear gluons or quarks will change label momenta. 

•	 The label n for the collinear direction is preserved by both ultrasoft and collinear interactions. Only 
a hard (external) interaction can couple fields with different collinear directions. 

Now that we have separated momentum scales in our fields we would like to do the same with derivatives 
that act on these fields. Since ξn, p£ (x) contains only residual momenta, we know that 

i∂µξn, p£ (x) ∼ λ2ξn, p£ (x).	 (4.22) 

We also define a label momentum operator such that 
µPµξn, p£ (x) ≡ p ξn, p£ (x).	 (4.23)c 

µ	 − ⊥µRecall that Pµ and p only contains the components P ≡ n̄ · P ∼ p ∼ λ0 and Pµ ∼ p ∼ λ. Therefore c	 c ⊥ c 
we have n · P = 0. Also 

in̄ · ∂ « P ,	 i∂µ « P⊥ 
µ . (4.24)⊥ 

The main advantage of the label operator is that it provides a definite power counting for derivatives. It 
is also notationally friendly in that it removes the necessity of a label sum. We can see this by rewriting 
our field ξ̂n(x) in terms of label momenta 

(4.25) p
In the last line we defined ξn(x) = . Since the label operator allows us to encode the phase pl=0 ξn, pl 
factor involving label momenta as an operator, we can suppress the momentum labels on our collinear 
fields if there is no reason to make them explicit. For field products we have 

ξ̂n(x)ξ̂n(x) = e −iP·xξn(x)ξn(x)	 (4.26) 

where the label operator acts on both fields. Consequently, conservation of label momenta is simply 
encoded by this phase factor and is manifest at the level of operators. 

Lastly, we must deal with anti-particles and gluons. For the anti-particles, we expand our Dirac field 
into two parts 

we then associate each part with a collinear field and expand as a sum over label momenta. 
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ξ̂n(x) =
p

∑
e−ip`·x ξn,p`(x)

`=06

= e−iP·x ξn,p`(x)
p` 6=0

≡ e−i x

∑
P ξn(x) .

6

ψ(x) =

∫
d4p δ(p2)θ(p0)

[
u(p)a(p)e−ip·x + v(p)b†(p)eip·x (4.27)

= ψ+(x) + ψ−(x)

]

ψ+ −→ ξ̂+(x) =
∑

e−ip`n
·xξ+

n, p (x) , (4.28)
`

pl 6=0

ψ− −→ ξ̂n
−(x) =

p

∑
eip`·xξn,

−
p (x) ,
`

` 6=0



 

 

 

 

4.1 SCET Quark Lagrangian 4 SCETI LAGRANGIAN 

where both have a θ(p0) = θ(n̄ · pc). Because of charge conjugation symmetry it is convenient to combine c 
the particle and anti-particle fields back into a single field. In order to do this we have to deal with the 
opposite signs for their phase. To do this we define 

(x) ≡ ξ+ (x) + ξ− (x) (4.29)ξn, p£ n, p£ n, −p£ 

where pc has either sign, but one picks out particles and one picks out antiparticles. Thus the action of 
¯the fields ξn,p£ and ξn,p£ is that for 

n̄ · pc > 0 : a particle is destroyed or created 
n̄ · pc < 0 : an antiparticle is created or destroyed 

The sign convention for the label momentum is easy to remember since it is in the same direction as the 
fermion number flow. With this definition, we may write 

ξ̂n(x) = e −iP·xξn, p£ (x) , (4.30) 

and all the manipulations we were making with particle fields carry through for the fields that have both 
particles and antiparticles. For collinear gluons, we proceed analogously to find 

µA µASince the gluon field Aµ
n = An T A where An (x) is real we also have 

[AµA µA 
n,q£ 

(x)] ∗ = An,−q£ 
(x) . (4.33) 

− −Once again for q > 0 the field An,q£ destroys a gluon, while for q < 0 it creates a gluon. c c 

With our conventions the action of the label operator on a bunch of labelled fields is 

µ µ µ µPµ(φ† φ† · · · · · · ) = (p · · − q − q − · · · )(φ† φ† · · · · · · ). (4.34)q1 q2 φp1 φp2 1 + p2 + · 1 2 q1 q2 φp1 φp2 

Thus it gives a minus sign when acting on daggered fields. It is also useful to note that if we differentiate 
an arbitrary collinear field φ̂n(x) that it yields 

(4.35) 

In the last line, we can suppress the exponent if we assume that label momenta are always conserved. 
Effectively, by introducing the label operator we have replaced the ordinary derivative operation by 

i∂µφ̂n(x) → (Pµ + i∂µ)φn(x). (4.36) 
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Âµn =
∑

e−iq`·xAµ xAµn,q = e−iP· n(x) (4.31)
`

q` 6=0

where
Aµn(x) =

q

∑
Aµn, q . (4.32)

`

`=06

i∂µφ̂n(x) = i∂µ
∑

e−ip·xφn, p(x)
p=06

=
∑

e−ip·x(Pµ + i∂µ)φn, p(x)
p=06

= e−iP·x(Pµ + i∂µ)φn(x). (4.35)
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4.1.4 Final Result: Expand and put pieces together 

At last, we may construct our final leading order Lagrangian. We begin with the previously derived result: 

Changing i∂µ → (Pµ + i∂µ) and ξ̂  
n → ξn and expanding our derivative operators, we have 

 

where the ellipses again denote additional ∼ λ2 terms that can be dropped in our leading order analysis 
(but later on we will see are required by gauge symmetry when considering power suppressed operators). 
Keeping only the lowest order terms, we have the following lagrangian 

(4.39)

where the collinear covariant derivatives are 

iDµ = Pµ + gAµ	 (4.40)n⊥ ⊥ n⊥ , 
in̄ · Dn = P + gn̄ · An. 

Remarks: 

(0)•	 Both terms with covariant derivatives in the (· · · ) in L are of order λ2 so the leading order La­nξ 
grangian is order λ4 (recalling that the fields scale as ξn ∼ λ). Since for a Lagrangian with collinear t 
fields d4x ∼ λ−4 this gives us an action that is ∼ λ0 as desired. The superscript (0) on the 
Lagrangian denotes this power counting for the action. 

•	 All fields are defined at x, and derivatives for this coordinate scale as i∂µ ∼ λ2 so the action is 
explicitly local at the scale Qλ2 . 

•	 The action is also local at the scale of Pµ ∼ Qλ since these derivatives occur in the numerator. It⊥ 
only has non-locality at the hard scale through the inverse P ∼ λ0 . The fact that there is locality 
except at the hard scale is a key feature of SCETI. Some attempts to tweak the formalism described 
here, in order to simplify SCET, lead to actions that are non-local at the small scale ∼ λ2 because 
they integrate out some onshell particles, while leaving other onshell particles to be described by an 
action. We will avoid doing this, taking the attitude that low energy locality is a desired property 
for the effective field theory. 

•	 If we are considering a situation without ultrasoft particles, and without hard interactions that do 
not couple to a particular component, then the interaction of collinear fermions alone could equally 
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L =
1

ξ̂n

(
in ·D + iD/⊥

n/
iD/

in̄ ·D ⊥

)
¯
ξ̂n. (4.37)

2

in ·D = in · ∂ + gn ·An + gn ·An (4.38)

iD = (⊥ Pµ µ︸ + gA )⊥ n⊥︷︷ ︸
∼λ

+ (i∂µ⊥ + gAµ⊥, us)︸ ︷︷ ︸
∼λ2

+ · · ·

in̄ ·D = (P + gn̄ ·An)︸ ︷︷ +

∼λ0

︸ ︸(in̄ · ∂ + gn̄ ·Aus)︷︷ ︸
∼λ2

+ · · ·

ix 1L(0)
= e− ·P ξ̄n

(
in ·D + iD/n iD/n

)n/̄
ξn ,nξ ⊥ in̄ ·Dn

⊥ 2
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well be described by the QCD Lagrangian. Indeed, even in the presence of ultrasoft fields we can 
write a Dirac type Lagrangian that is equivalent to Eq. (4.39) by 

Integrating out ϕn̄ exactly reproduces Eq.(4.39). This Lagrangian is not equivalent to QCD due to 
the coupling to the ultrasoft gluon field, and the zero-bin subtractions related to pc  = 0 that will be 
discussed later on. But this form does make it more clear why the collinear particles share many of 
the properties of the full QCD Lagrangian (for example, we have the same renormalization properties 
for the gauge coupling). 

(0)
The computation of the propagator from L is also greatly simplified without the need for any additional nξ 
power counting. Specifically, Eq. (4.39) gives the collinear quark propagator 

in/ n̄ · pc 
. (4.42)

2 (n̄ · pc)(n · pr) + (pc⊥)2 + i0 

The leading order Lagragian is smart enough that it gives the correct propagator in different situations 
without having to make further expansions. This is important to ensure that the leading order Lagrangian 
strictly give O(λ0) terms, while subleading Lagrangians (and operators) will be responsible for power 
corrections. For example, if we have an interaction with an ultrasoft gluon then 

k

,

us

p pl r)( ,p pl r )( +kus

in/ n̄·pj= 2 (n̄·pj)(n·pr+n·kus)+(pj⊥)2+i0 , 
(4.43) 

while if we have an interaction with a collinear gluon then 

,p pl r)( ,p pl r )( +

,q ql r)(

qr+ ql

in/ (n̄·pj+n̄·qj)= .2 (n̄·pj+n̄·qj)(n·pr+n·qr)+(pj⊥+qj⊥)2+i0 
(4.44) 

4.2 Wilson Line Identities 

With the label operator formalism there are several neat identities that we can derive for Wilson lines. In 
particular we can show that all occurences of the field n̄ · An can always be entirely replaced by the Wilson 

(0)
line Wn. As an example we will show how this is done for the Lagrangian L In position space the nξ . 
defining equations for a Wilson line are W (x, x) = 1 and its equation of motion, which we can transform 
to momentum space 

in̄ · DxW (x, −∞) = 0 (position space) 
⇓ Fourier Transform 

in̄ · DnWn = (P + gn̄ · An)Wn = 0 . (4.45) 
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L(0)
= enξ
−ix·P ξ

ΞniD/ Ξn , Ξn ≡
(

n

ϕn̄

)
n̄/

, iD/ =
n/

in
2
·D +

n̄/
in̄

2
·Dn + iD/n = iD/⊥ n+ gn

2
·Aus .

(4.41)
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With this definition, the action of in̄ · Dn on a product of Wn and some arbitrary operator is 

So we have the operator equation 
in̄ · DnWn = WnP (4.47) 

and with Wn
†Wn = 1 we have 

in̄ · Dn = WnPW † , P = W †in̄ · DnWn , (4.48)n n

as operator identities. Since by collinear gauge invariance we can always group n̄ ·An with P to give in̄ ·Dn, 
the first identity implies that we can always swap n̄ · An for the Wilson line Wn. Inverting these results 
also gives useful operator identities 

1 1 1 1 
= W † Wn , = Wn W † . (4.49)n nin̄ · Dn P P in̄ · Dn 

(0)
The first relation allows us to rewrite L asnξ 

It is also useful to note that we can use the label operator to write a tidy expression for the Wilson line 
which is built from fields that carry both label and residual momenta: 

4.3 Collinear Gluon and Ultrasoft Lagrangians 

To derive the collinear gluon Lagrangian, we treat usoft and collinear degrees of freedom separately by 
letting Aµ represent a background field with respect to Aµ We begin with the gluon Lagrangian from us n. 
QCD: 

1     
L = − Tr Gµν Gµν } + τ Tr{(i∂µAµ)2 +2 Tr c i∂µiDµc (4.52) 

2 ' -n " ' -n " ' -n " 
Gauge Fixing Term Ghost Term Gauge Kinetic Term 

iwhere Gµν = [Dµ, Dν ]. Expanding the covariant derivative as we did in the quark sector we keep only g 
the leading order terms. For a covariant derivative acting on collinear fields the leading order terms are 

µ 
iDµ → iDµ = 

n
(P + gn̄ · An) + (Pµ + gAµ ) + 

n̄
(in · ∂ + gn · An + gn · Aus). (4.53)⊥ ⊥, n2 2 

Recall that the field Aµ varys much more slowly than Aµ
n, so we can think of Aµ as a background field us us 

from the perspective of the collinear fields (even though it is a quantum field in its own right). The gauge 
fixing and ghost terms for the collinear Lagrangian should break the collinear gauge symmetry, but we do 
not want them to gauge fix the ultrasoft gluons, and hence they should be covariant with respect to the 
Aµ 
us connection. Since by power counting only the n · Aus gluon can appear along with the collinear gluons 

31  

in̄ ·Dn(WnO) = ([P + gn̄ ·An)WnO
= (P + gn̄ ·An)Wn

]
O +WnPO

= WnPO (4.46)

as operator identities. Since by collinear gauge invariance we can always group n̄ ·An with P to give in̄ ·Dn,
the first identity implies that we can always swap n̄ · An for the Wilson line Wn. Inverting these results
also gives useful operator identities

1

in̄ ·Dn
= W †n

1

P
Wn ,

1

P
= Wn

1
W †

in̄ ·D n . (4.49)
n

L(0)
= enξ
−ix·P ξ̄n

(
in ·D + i /Dn⊥W

†
n

1

P
Wni /Dn⊥

) /̄n
ξn . (4.50)

2

Wn(x) =

[
p

∑
exp

erms

(−g
P
n̄ ·An(x)

)]
. (4.51)
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(p, pr) n/ n̄·p
i 22 n·pr n̄·p + p +i0⊥

¯ n/ 

= 

 μ , A

p pɂ

μ , A

p pɂ

μ , A ν , B

q

= ig T A nµ 2 

Figure 6: Order λ0 Feynman rules: collinear quark propagator with label p and residual momentum pr, and 
collinear quark interactions with one soft gluon, one collinear gluon, and two collinear gluons respectively. 

Aµ
n, only this component is needed. Therefore we replace i∂µ → iDµ for all the ordinary derivatives in us 

Eq. (4.52) where 
µ µn n̄ n̄

iDµ ≡ P + Pµ + in · ∂ + gn · Aus. (4.54)us ⊥2 2 2 
The resulting leading order collinear gluon Lagrangian is then  

For the Langrangian with only ultrasoft quarks and ultrasoft gluons, at lowest order we simply have 
the QCD actions. Using a general covariant gauge for the ultrasoft gluon field we therefore can write 

where iDµ = i∂µ + Aµ All the terms in L(0) have a power counting of O(λ8), but we subtract 8 for the us us. 
ultrasoft measure d4x which is why we label the Lagrangian as (0). Note that the choice of gauge fixing 
parameters τ and τus for the collinear and ultrasoft gluons are independent, which is related to the fact 
that there are independent gauge symmetries that define these connections. 

All together this allows us to write down the full leading order SCETI Lagrangian with a single set of 
quark and gluon collinear modes in the n direction, and quark and gluon ultrasoft modes, 

L(0) (0) 
+ L(0) + L(0)= L . (4.57)nξ ng us 
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γ
= ig TA

[
⊥

nµ + µ p/⊥ p/′ γ⊥
+ ⊥ µ

n̄·p
p

n̄·p ′ − /′ p/⊥ ⊥ ¯
n̄n̄·p n̄·p ′ µ

]
n/
2

= ig2 TA TB γ
γ

n̄·(p−q)

[
µ
⊥γν
⊥ − µ

⊥p/⊥
n̄·p n̄ν −

p ′/⊥γ
⊥
ν

n̄·p ′ n̄µ + p ′/⊥p/⊥ ¯
n̄

n̄·p n̄·p ′ µn̄ν

]
n/
2

+ ig2 TB TA ν
⊥

γ
n̄·(q+p′)

[
ν
⊥γµ
⊥ − γ p/⊥

n̄·p n̄µ −
p ′/⊥γ

⊥
µ

n̄·p ′ n̄ν + p ′/⊥p/⊥
n̄·p n̄·p ′ n̄µn̄ν

]
n̄/
2

1L(0)
ng = Tr ([i µ, i ])2

µ + τTr ([i µ , Anµ])2 + 2Tr cn[i us, [i µ, cn]] .
2g2

D D Dus Dµ D
{ } { } { }

(4.55)

L(0)
us = ψusi /Dusψus −

1

2
Tr
{
GµνusG

us
µν

}
+ τusTr{(i∂µAµus)2

}
+ 2Tr

{
cus i∂µiD

µ
uscus

}
, (4.56)
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a, μ b, ν

(q, k)

b, ν c, λ

a, μ

q2q1

a, μ b, ν

c, λd, ρ

a, μ b, ν

c, λ d, ρ

Figure 7: Collinear gluon propagator with label momentum q and residual momentum k, and the order λ0 

interactions of collinear gluons with the usoft gluon field. Here usoft gluons are springs, collinear gluons 
are springs with a line, and τ is the covariant gauge fixing parameter in Eq. (4.55). 

4.4 Feynman Rules for Collinear Quarks and Gluons 

For convenience we summarize some of the Feynman rules that follow from the collinear quark and gluon 
Lagrangians. We do not show the purely ultrasoft interactions which are identical to those of QCD, nor 
do we show the purely collinear gluon interactions which are also identical to those of QCD. 

The Feynman rules that follow from the leading order collinear quark Lagrangian are shown in Fig. 6 
where each collinear line carries momenta (p, pr) with label momenta pµ = n̄ ·p nµ/2 + pµ and residual ⊥ 
momentum prµ . Only one momentum p or p ' is indicated for lines where the Feynman rule depends only 
on the label momentum. For the collinear quark propagator we have contributions from both quarks and 
antiquarks which give: 

in/ θ(n̄ · p) in/ θ(−n̄ · p) in/ n̄ · p 
2 + 2 = 2 (4.58)

2 p⊥ 2 p⊥ 2 n̄ · p n · pr + p + i0n · pr + + i0 n · pr + − i0 ⊥ 
n̄·p n̄·p 

The Feynman rules between collinear gluons and ultrasoft gluons are shown in Fig. 7 with a collinear gluon 
in background field gauge that is ultrasoft covariant and specified by the parameter τ . 

4.5 Rules for Combining Label and Residual Momenta in Amplitudes 

In practical calculations the grid picture in Fig. 5 is not to be taken literally. Doing so would correspond to 
using a Wilsonian EFT with finite cutoff’s (edges for the grid boxes) that distinguish the size of momenta. 

33  

i= − q
g

n̄·q n·k + q2 + i0⊥

(
µν − (1− τ) µqν δ

n̄·q n·k + q2
⊥

)
a,b

= gfabcnµ
{
n̄ · q1 gνλ − 1(12 − 1 )[n̄τ λq1ν + n̄νq2λ]

}

= −1 ig2nµ

{
fabef cde(n̄λgνρ2 − n̄ρgνλ)

+fadef bce(n̄νgλρ − n̄λgνρ) + facef bde(n̄νgλρ − n̄ρgνλ)

}

= 1 ig2nµnν n̄ρn̄4 λ(1− 1 )α
{
facef bde + fadef bce

}
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Instead of this, we need to use a Continuum EFT picture where the EFT modes have propagators that 
extend over all momenta, but integrands which obtain their key contribution from the momentum region 
these modes are built to describe. The terms needed to correct the (otherwise incorrect) ultraviolet 
contributions of the resulting Continuum EFT are included as perturbative Wilson coefficients for low 
energy operators. The Wilsonian and Continuum versions of EFT are really two different pictures of 
the same thing, in much the same way that two different renormalization schemes may represent the 
physics in different ways, but in the end still do encode the same physics. Nevertheless there are many 
practical advantages to the Continuum EFT framework, and it makes setting up SCET much easier. In 
particular it allows us to use regulators like dimensional regularization which naturally preserve spacetime 
and gauge symmetries. To setup up SCET in this continuum framework we need to understand how the 
redundancy I in the label-residual momentum space Rd−1 × Rd/I (for the case with d-dimensions) is 
resolved, given a pair of momenta components (pc, pr) ∈ Rd−1 × Rd . The upshot is that in the simplest 
cases the residual momentum can simply be dropped or absorbed into a label momentum in the same 
direction (making it continuous), while in the most complicated cases the formalism leads to so-called 0­
bin subtractions for collinear integrands. These subtractions ensure that the collinear modes do not double 
count an IR region that is already properly included from an ultrasoft integrand. For future convenience 
we list the rules in this section, but caution the reader that some parts of this section are best understood 
when read together with one of the one-loop examples from section 7, and also after having read the 
discussion of the reparameterization invariance symmetry in section 5.3 that describes the redundancy 

µ µ µ µ(p ) + (pr ) = (p + βµ) + (pr − βµ) which specifies I. c c 

For an arbitrary tree level diagram in SCET we will have some set of external lines that are either 
ultrasoft or collinear (and either in the initial or final state), and also a set of collinear and ultrasoft 
propagators. For the external lines that are ultrasoft we have only residual momenta kµ and the onshellus 

−condition k2 = 0. For the external lines that are collinear it suffices to take label momenta p = n̄ · pcus c 
µ + −and pc⊥, and a single residual momentum p . This amounts to picking βµ above to contain the full prr 

+and pµ components. The onshell condition for the collinear particles is then simply p − p − pp 2 = 0. r⊥ c r c⊥ 
All propagators for intermediate collinear and ultrasoft lines are then simply determined by momentum 
conservation as usual. At leading order in λ this perscription for tree diagrams simply amounts to the same 
thing as dropping any ultrasoft momentum components k− and k⊥ from collinear propagators, though ofus us 
course these momenta can still appear within ultrasoft propagators. At higher orders in λ these ultrasfot 
momentum components can also appear from collinear propagators through Lagrangian insertions, which 
yield terms like the second one in Eq. (4.11). 

For loop diagrams and loop integrations we need several rules for operations on the label-residual 
momentum space. Internal collinear lines should be considered as carrying loop momenta with two parts 
q = (qc, qr), while ultrasoft propagators only carry loop momenta kr. There is a seperate momentum 
conservation for the label and residual momenta. After using momentum conservation we have label 
momenta from either external collinear particles or collinear loops, and residual momenta for external 

+ultrasoft particle, external collinear particles from p , and from collinear and ultrasoft loops.r 

First we note that if we integrate over all label momenta qc and residual momenta qr that this will be 
equal to an integration over all of the qµ momentum space, since it does not depend on how we divide the 
momentum into the two components. For notational convenience we denote the label space integration as 
a sum rather than an integral. In d-dimensions we have 

where we have recombined the label and residual momenta for the minus components, and the (d − 2)  
⊥-components. This is relevant for combining the two collinear loop integrations back into a single d­

34  

∑
q`

∫
ddqr =

∫
ddq , (4.59)
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dimensional integration. In particular at leading order in λ after having used momentum conservation 
µthere will always be one qr for each collinear loop integration, where q− and q⊥ do not appear in any r r 

− ⊥ +collinear or ultrasoft propagator, and hence not in the integrand F (q , q , q ). We can therefore use this c c r 
residual momentum integration in Eq. (4.59) to obtain a full integration 

In the first step we use the fact that F is constant throughout each box in the grid picture of Fig. 5 so its 
the same with the first two arguments shifted by residual momenta. (In the continuum EFT picture its 
the same property, F does not depend on residual momenta in these components.) In the final equality we 
then combined the momenta back into a standard dimensional regularization integration as in Eq. (4.59). 
Essentially at leading order in λ Eq. (4.60) amounts to the same thing that would be achieved by never 
considering the split into label and residual momenta in the first place, and simply writing down the 
integrand without ultrasoft momenta appearing in the − or ⊥ components in collinear propagators, which 
corresponds to the lowest order term in the ultrasoft multipole expansion (and is an easy way to think 
about the outcome of the above formal procedure). We have called this rule 1)naive because there is one 
final complication that we will have to deal with, namely that the integration on qc must avoid producing 
additional divergences when this collinear momentum enters the ultrasoft regime. We denote this fact by 
qc = 0 if q is the momentum of a collinear propagator. These are referred to as 0-bin restrictions.4 We 
will discuss the change needed which handles this complication below. Often the results for collinear loop 
integrals are called “naive” if one uses Eq. (4.60). The result from this naive result will be correct if the 
added terms which properly handle this complication turn out to be zero, which happens in some cases. 

At higher orders in λ there will be dependence on the residual momentum components from higher 
order terms in the multipole expansion of the collinear propagators. If these terms correspond to the 
momentum components q− and q⊥ that do not appear inside any ultrasoft propagators then the resulting r r 
integration is zero 

− ⊥where (qr)j denotes positive powers of the q and q momenta, j > 0. Here Eq. (4.61) is like the dimensional t r r 
regularization rule, ddq(q2)j = 0 for j > 0, which is a consequence of retaining Lorentz invariance with 
this regulator. Eq. (4.61) is the analogous statement in the residual momentum space and ensures that 
we do not obtain nontrivial contributions from higher order terms in the multipole expansion, unless the 
residual loop momentum corresponds to a physical momentum for an ultrasoft loop integration. Both 
ultrasoft loop integrations and ultrasoft external particles introduce residual momenta into propagators 
that can not be absorbed by a rule like that in Eq. (4.59). If we consider a case with an ultrasoft loop 
integration, then there will be dependence on the residual momentum also in an ultrasoft propagator, so 
the integration will give 

which in general is nonzero. This integrand corresponds to a mixed two-loop diagram with one loop 
momentum with collinear scaling and one with ultrasoft scaling. 

4After imposing momentum conservation we get a set of such restrictions, one for each collinear propagator. For example 
q£  if there is a collinear propagator carrying momentum q + p.= −p£ 
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naive1) :
∑∫

ddqr F (q−, q`
⊥, q+

r ) =
∑∫

ddqr F (q− + q− q` + q + d
r ,

⊥ +
r
⊥, qr ) =

∫
d q F (q−, q⊥, q ) . (4.60)` `

q` q`

6

2) :
∑∫

ddq F +
r (qr)

j (q−, q q` `
⊥, r ) = 0 , (4.61)

q`

∑∫
ddqr

∫
ddkr F (q−, q q µ

` `
⊥, + +

r , k
µ d d
r ) = d q

q`

∫ ∫
d k F (q−, q⊥, q , k ) , (4.62)
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Finally let us consider the implications of the zero-bin when combining label and residual momenta. 
Rather than Eq. (4.59) we can have 

(4.63) 

where qc = 0 is simply a label to denote the fact that the label momentum qc must be large in order 
to correspond to a collinear particle carrying total momentum q. If qc = 0 then the particle would 
instead be ultrasoft, and we will often have included another diagram in SCET to account for the different 
integrand that accounts for the proper expansion in this special case. Thus these zero-bin restrictions avoid 
double counting between the SCET fields, which effectively means double counting from the resulting loop 
integrations. It is easy to determine what the set of restrictions are for any diagram, since we have 
one such condition for every collinear propagator. At leading order in λ only the zero-bin subtractions 
corresponding to collinear gluon propagators can give non-zero contributions since operators containing 
an ultrasoft quark together with collinear fields are power suppressed. In a continuum EFT these zerobin 
restrictions are implemented by subtraction terms which can be determined as follows 

Here the integrand F 0 is derived from expanding the integrand for F by taking the label momenta that 
appear in its first two arguments to instead scale as ultrasoft momenta ∼ λ2, expanding, and keeping the 
dominant and any sub-dominant scaling terms up to those that are the same order in λ as the original 
loop integration. If the original integrand F ∼ λ−4, then this corresponds to keeping just the terms up to 
F 0 ∼ λ−8, which is often the leading term. (Together with the standard scaling for the collinear measure, 
ddq ∼ λ4 and for the residual measure ddqr ∼ λ8 these two integrands give contributions that are both 
the same order in λ.) In the last line we combine the subtraction term back together with the original 
integrand, since the integration variables are after all just dummy variables. This set of steps makes it 
clear that zero-bin contributions are encoded by subtractions.5 The scaling for the subtraction is shown 
pictorally in Fig. 8. The F 0 term subtracts singularities from F that come from the region where the 
collinear momentum behaves like an ultrasoft momentum. In general when the subtraction integration is 
non-trivial there will always exist a corresponding ultrasoft diagram where the integration is ultrasoft from 
the start, which precisely corresponds with the contribution that the subtractions is allowing us to avoid 
double counting. 

In general, when one has a continuum EFT with modes that live in a two dimensional space, such as 
those in Fig. 8, one has subtractions induced by the presence of modes at smaller (or equal) p2 . Therefore 

5In fact, an alternate formulation of zero-bin subtractions that avoids the use of notation like q£ = 0 is to note that in 
a theory with both collinear and ultrasoft modes, each collinear propagator is actually a distribution, like a generalized +­
function, that induces these subtraction terms. The fact that we drop higher order terms in the λ expansion when determining 
F 0 implies that we are making the minimal subtraction that avoids double counting IR singularities. Indeed there in principle 
could still be a double counting by a ”constant” contribution, but such constants will be properly taken care of by the matching 
procedure. The minimal subtraction also ensures that the matching result remains independent of the IR regulator as desired. 
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d
q

∑
` 6=0

∫
dqr , (4.63)
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1):
∑
q` 6=0

∫
ddqr F (q−` , q

⊥
` , q

+
r ) =

∑
q` 6=0

∫
ddqr F (q−` + q−r , q

⊥
` + q⊥r , q

+
r )

=
∑
q`

∫
ddqr F (q−` + q−r , q

⊥
` + q⊥r , q

+
r )−

∫
ddqr F

0(q−r , q
⊥
r , q

+
r )

=

∫
ddq F (q−, q⊥, q+)−

∫
ddqr F

0(q−r , q
⊥
r , q

+
r )

=

∫
ddq

[
F (q−, q⊥, q+)− F 0(q−, q⊥, q+)

]
. (4.64)
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