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Effective Field Theory (8.851) Spring 2013
 
Homework 5
 

NOTE: In thinking of good SCET problems for the last problem set I encounter the issue 
that either the solutions can be found in the literature, or the solution of the problem is 
on the difficult side and can not be found readily in the literature. Therefore I will give 
you the following choice. Either do TWO out of three of the problems 1, 2, 3. Or do 
ONE OF the problems 4, 5, or 6. If you pick one of the last 3 problems then you will 
be graded on having shown progress towards a solution, rather than having the complete 
answer. (Problem 6 is something that is publishable if pushed to the end. If after the term 
is over there is interest by several students in carrying through on this problem I will be 
happy to facilitate forming a collaboration of the relevant subset of people.) 

Problem 1) Decoupling of Ultrasoft gluons in SCETI 

Consider a Wilson line built from usoft gluons 

 0 

Yn(x) =  P exp ig ds n·Aus(sn μ + x μ) . (1) 
−∞ 

It satisfies Yn 
†Yn = 1 and has the equation of motion n·Dus Yn = 0. Start with the leading 

order Lagrangian, L(0) for a collinear quark in SCETI. This action gives eikonal couplings 
(0) (0)

to ultrasoft gluons. Make the field redefinitions ξn = Ynξn and An = YnAn Yn 
† to obtain 

(0) (0)
a Lagrangian L(0)(ξn , An ). Show explicitly that this new Lagrangian has no coupling to 
n·Aus gluons. 

Problem 2) Pion Light-Cone Distribution Function 

Factorization of degrees of freedom allows us to describe processes in terms of simpler 
(universal) objects. One such object is the pion light-cone distribution function. In QCD 
we can define 

 /
πa(p)  ψ̄(y)γμγ5 τ

b   0) −ifπδab μ
1 

√ Y (y, x) ψ(x) = p dz ei[zp·y+(1−z)p·x] φπ(z)
2 0 

+ . . . ,  (2) 

Here fπ r 131 MeV and the field ψ denotes the isospin doublet (u, d). Consider the path 
μ μ μ μ μ μfrom y to x to be light-like, (y − x)2 = 0, with y = yn̄ , x = xn̄ . Y (y, x) is a Wilson 
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line along this path. For the leading order collinear operator in SCET
 

/ τ b )
πa ¯ W n̄/γ5 √ δ(ω−P̄+) W †ξn,p2 0n,p ξn,p1 

2 
1 

(3) 
0

= −ifπ n̄·p δab
0

dz δ[ω−(2z−1)n̄·p] φπ(z) ,

¯ ¯where P+ = P† + P̄. Eq. (3) can be obtained from Eq. (2) by projecting onto the LO term 
with collinear quarks and taking a Fourier transform with x = −y. 
a) Using the power counting for the collinear fields in λ = ΛQCD/Q, together with mass 
dimensions, count the powers of ΛQCD and Q on the LHS and RHS of Eq. (3) and verify 
that φπ(z) is  O(λ0) and is dimensionless. 

b) Under charge conjugation, C−1ξn,p(x)C = −[ξ̄n,−p(x)C]T where C is the usual charge 
conjugation matrix. For a π0 state use charge conjugation together with Eq. (3) to prove 
that φπ0 (z) =  φπ0 (1 − z). Physically what does this mean? What do you have to assume 
to prove that this is true for the π+ and π−? 

c) Carry out the steps to go from Eq. (2) to Eq. (3) ignoring the ellipses. 

Problem 3) One-Loop Jet Function 

The jet function is defined by the following vacuum matrix element of a purely collinear 
operator 

(4)

where it suffices to take kμ = k+n̄μ/2. Compute all the one-loop diagrams to derive an 
expression for J(k+ω) at one-loop order.  

Problem 4) General Covariant Gauge 

Carry out the 1-loop matching calculation for the Wilson coefficient C(P̄) appearing in 
the leading order b → sγ calculation, but do it in a general covariant gauge rather than 
Feynman gauge (where the results were quoted in lecture). Continue your exploration of 
the gauge dependence and independence of various intermediate results by also carrying 
out the one-loop matching computation for the lowest order operator for e+e− → dijets, 

γμnamely χ̄n ⊥χn̄ (again it is in the literature for Feynman gauge). Many of the diagrams in 
these two computations are the same. 
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∫ 1

J(k+ω) = − 1

π ω
Im

∫
d4x eik·x i 0 T χ̄n,ω,0⊥(0)

n̄/

4Nc

χn(x) 0 ,
〈 ∣∣ ∣∣ 〉
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Problem 5) RGE for nonforward collinear partons 

Use Feynman gauge and carry out the renormalization of the operator 

n̄/
O(ω, ωi) =  ̄χn,ω χn,ωl . (5)

2 

For simplicity take the quarks to be non-diagonal in flavor to avoid operator mixing with  
a Bn

μ 
⊥Bn⊥ μ type operator. For the case ωl O(ω, ωi) we carried out this computation in 

Lecture, and showed that the renormalization is given by the standard Alterelli-Parisi RGE 
with the splitting function as the anomalous dimension. The analogous computation for 
the above operator will yield a renormalization group equation for the so-called general­
ized parton distribution functions (non-forward). Besides containing the standard splitting 
function, as another special case of your answer you can take a limit to find the Brodsky-
Lepage anomalous dimension equation for φπ(z) in problem  2 above.  

Problem 6) Power Suppressed Operators for Dijets 

Construct a complete basis of power suppressed operators for the process e+e− → dijets, 
and carry out the one-loop matching computation to determine their Wilson coefficients. 
(Use RPI to fix some of the coefficients without computation, if possible. Some information 
on the complete basis is available in the literature.) The lowest order current operator is 
γμ αχ̄n ⊥χn̄, and the leading power suppressed operators will include an extra P⊥ or an extra 

B⊥ 
α which can be either n-collinear or n̄-collinear. 

Also enumerate all time ordered products of SCETI Lagrangians and current operators 
that are the same order in the power counting as your power suppressed current operator. 
(To make this problem publishable at the level where it would have a non-trivial impact on 
the literature one should carry out the analysis to O(λ2) since the O(λ) terms will vanish 
for the simplest observables.) 
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