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1 INTRODUCTION  

Introduction 

These notes provide reading material on the Soft-Collinear Effective Theory (SCET). They are intended 
to cover the material studied in the second half of my effective field theory graduate course at MIT.  

These latex notes will also appear as part of TASI lecture notes and a review article with Christian Bauer. 
Familiarity will be assumed with various basic effective field theory (EFT) concepts, including power 

counting with operator dimensions, the use of field redefinitions, and top-down effective theories. Also 
the use of dimensional regularization for scale separation, the equivalences and differences with Wilsonian 
effective field theory, and the steps required to carry out matching computations for Wilson coefficients. A 
basic familiarity with heavy quark effective theory (HQET), the theory of static sources, is also assumed. 
In particular, familiarity with HQET as an example of a top-down EFT where we simultaneously study per­
turbative corrections and power corrections, and for understanding reparameterization invariance. These 
topics were covered in the first half of the EFT course. 

A basic familiarity with QCD as a gauge theory will also be assumed. Given that SCET is a top-down 
EFT, we can derive it directly from expanding QCD and integrating out offshell degrees of freedom. This 
familiarity should include concepts like the fact that energetic quarks and gluons form jets, renormalization 
and renormalization group evolution for nonabelian gauge theory, and color algebra. Also some basic 
familiarity with the role of infrared divergences is assumed, namely how they cancel between virtual and 
real emission diagrams, and how they otherwise signal the presence of nonperturbative physics and the 
scale ΛQCD as they do for parton distribution functions. 

Finally it should be remarked that later parts of the notes are still a work in progress (particularly 
sections marked at the start as ROUGH which being around chapter 8). This file will be updated as more 
parts become available. Please let me know if you spot typos in any of chapters 1-7. The notes also do not 
yet contain a complete set of references. Some of the most frequent references I used for preparing various 
topics include: 

1. Degrees of freedom, scales, spinors and propagators, power counting: [1, 2, 3] 

2. Construction of LSCET, currents, multipole expansion, label operators, zero-bin, infrared divergences: 
[2, 4, 5] 

3. SCETI, Gauge symmetry, reparameterization invariance: [4, 6, 7] 

4. Ultrasoft-Collinear factorization, Hard-Collinear factorization, matching & running for hard func­
tions: [1, 2, 4, 6] 

5. DIS, SCET power counting reduces to twist, renormalization with convolutions: [8, 9] 

6. SCETII, Soft-Collinear interactions, use of auxillary Lagrangians, power counting formula, rapidity 
divergences: [6, 3, 10, 5, 11] 

7. Power corrections, deriving SCETII from SCETI: [12, 13, 10] 
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2 INTRODUCTION TO SCET  

2 Introduction to SCET 

2.1 What is SCET? 

The Soft-Collinear Effective Theory is an effective theory describing the interactions of soft and collinear 
degrees of freedom in the presence of a hard interaction. We will refer to the momentum scale of the hard 
interaction as Q. For QCD another important scale is ΛQCD, the scale of hadronization and nonperturbative 
physics, and we will always take Q » ΛQCD. 

Soft degrees of freedom will have momenta psoft, where Q » psoft. They have no preferred direction, 
so each component of pµ for µ = 0, 1, 2, 3 has an identical scaling. Sometimes we will have psoft ∼ ΛQCDsoft 
so that the soft modes are nonperturbative (as in HQET for B or D meson bound states) and sometimes 
we will have psoft » ΛQCD so that the soft modes have components that we can calculate perturbatively. 

Collinear degrees of freedom describe energetic particles moving preferrentially in some direction (here 
motion collinear to a direction means motion near to but not exactly along that direction). In various 
situations the collinear degrees of freedom may be the constituents for one or more of 

•	 energetic hadrons with EH c Q » ΛQCD ∼ mH ,  
2•	 energetic jets with EJ c Q » mJ = p » ΛQCD.J 

Both the soft and collinear particles live in the infrared, and hence are modes that are described by 
fields in SCET. Here we characterize infrared physics in the standard way, by looking at the allowed 
values of invariant mass p2 and noting that all offshell fluctuations described by SCET degrees of freedom 

2have p « Q2 . Thus SCET is an EFT which describes QCD in the infrared, but allows for both soft 
homogeneous and collinear inhomogeneous momenta for the particles, which can have different dominant 
interactions. The main power of SCET comes from the simple language it gives for describing interactions 
between hard ↔ soft ↔ collinear particles. 

Phenomenologically SCET is useful because our main probe of short distance physics at Q is hard 
collisions: e+e− → stuff, e−p → stuff, or pp → stuff. To probe physics at Q we must disentangle the 
physics of QCD that occurs at other scales like ΛQCD, as well as at the intermediate scales like mJ that 
are associated with jet production. This process is made simpler by a separation of scales, and the natural 
language for this purpose is effective field theory. Generically in QCD a separation of scales is important for 
determining what parts of a process are perturbative with αs « 1, and what parts are nonperturbative with 
αs ∼ 1. For some examples this is fairly straightforward, there are only two relevant momentum regions, 
one which is perturbative and the other nonperturbative, and we can separate them with a fairly standard 
operator expansion. But many of the most interesting hard scattering processes are not so simple, they 
involve either multiple perturbative momentum regions, or multiple nonperturbative momentum regions, 
or both. In most cases where we apply SCET we will be interested in two or more modes in the effective 
theory, such as soft and collinear, and often even more modes, such as soft modes together with two distinct 
types of collinear modes. 

Part of the power of SCET is the plethora of processes that it can be used to describe. Indeed, it is 
not really feasible to generate a complete list. New processes are continuously being analyzed on a regular 
basis. Some example processes where SCET simplifies the physics include 

−•	 inclusive hard scattering processes: e p → e−X (DIS), pp → Xl+l− (Drell-Yan), pp → HX, . . . 
(either for the full inclusive process or for threshold resummation in the same process) 
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2.2 Light-Cone Coordinates	 2 INTRODUCTION TO SCET  

•	 exclusive jet processes: dijet event shapes in e+e− → jets, pp → H + 0-jets, pp → W + 1-jet, 
−e	 p → e− + 1-jet, pp →dijets, . . . 

•	 exclusive hard scattering processes: γ∗γ → π0 , γ∗ p → γ(∗)p' (Deeply Virtual Compton), . . . 

•	 inclusive B-decays: B → Xsγ, B → Xujν̄, B → Xsj
+j− 

•	 exclusive B-decays: B → Dπ, B → πjν̄c, B → K∗γ, B → ππ, B → K∗K, B → J/ψK, . . . 
+•	 Charmonium production: e e− → J/ψ X, . . . 

•	 Jets in a Medium in heavy-ion collisions 

Some of these examples combine SCET with other effective theories, such as HQET for the B-meson, or 
NRQCD for the J/ψ. 

Before we dig in, it is useful to stop and ask What makes SCET different from other EFT’s? 
Put another way, what are some of the things that make it more complicated than more traditional EFTs? 
Or another way, for the field theory afficionato, what are some of the interesting new techniques I can learn 
by studying this EFT? A brief list includes: 

•	 We will integrate off-shell modes, but not entire degrees of freedom. (This is analogous to HQET 
where low energy fluctuations of the heavy quark remain in the EFT.) 

•	 Having multiple fields that are defined for the same particle 

ξn = collinear quark field,	 qs = soft quark field 

which are required by power counting and to cleanly separate momentum scales. 

•	 In traditional EFT we sum over operators with the same power counting and quantum numbers. In p t 
SCET some of these sums are replaced by convolutions, i CiOi → dωC(ω)O(ω). 

•	 λ, the power counting parameter of SCET, is not related to the mass dimensions of fields t 
•	 Various Wilson Lines, which are path-ordered line integrals of gauge fields, P exp[ig dsn · A(ns)], 
play an important role in SCET. Some appear from integrating out offshell modes, others from 
dynamics in the EFT, and all are related to the interesting gauge symmetry structure of the effective 
theory. 

•	 There are 1/E2 divergences at 1-loop which require UV counterterms. This leads to explicit ln(µ) 
dependence in anomalous dimensions related to the so-called cusp anomalous dimensions, and to 
renormalization group equations whose solutions sum up infinite series of Sudakov double logarithms,p 

k ak[αs ln
2(p/Q)]k . 

2.2 Light-Cone Coordinates 

Before we get into concepts, which should decide on convenient coordinates. To motivate our choice, 
consider the decay process B → Dπ in the rest frame of the B meson. This decay occurs through the 
exchange of a W boson mediating b → cūd, along with a valence spectator quark that starts in the B and 
ends up in the D meson. We are concerned here with the kinematics. Aligning the π with the −ẑ axis it 
is easy to work out the pion’s four momentum for this two-body decay, 

µpπ = (2.310 GeV, 0, 0, −2.306 GeV) c Qnµ ,	 (2.1) 
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2.2 Light-Cone Coordinates 2 INTRODUCTION TO SCET  

µ 2where n = (1, 0, 0, −1) in a 0, 1, 2, 3 basis for the four vector. Here n = 0 is a light-like vector and 
Q » ΛQCD. This pion has large energy and has a four-momentum that is close to the light-cone. With a 
slight abuse of language we will often say that the pion is moving in the direction n (even though we really 
mean the direction specified by the 1, 2, 3 components of nµ). The natural coordinates for particles whose 
energy is much larger than their mass are light-cone coordinates. 

We would like to be able to decompose any four vector pµ using nµ as a basis vector. But unlike 
cartesian coordinates the component along n will not be n · p, since n2 = 0. If we want to describe the 
components (we do) then we will need another auxillary light-like vector n̄. The vector n has a physical 
interpretation, we want to describe particles moving in the n direction, whereas n̄ is simply a devise we 
introduce to have a simple notation for components. 

Thus we start with light-cone basis vectors n and n̄ which satisfy the properties 

n 2 = 0, n̄2 = 0, n · n̄ = 2 , (2.2) 

where the last equation is our normalization convention. A standard choice, and the one we will most often 
use, is to simply take n̄ in the opposite direction to n. So for example we might have 

nµ = (1, 0, 0, 1) , n̄µ = (1, 0, 0, −1) (2.3) 

Other choices for the auxillary vector work just as well, e.g. nµ = (1, 0, 0, 1) with n̄µ = (3, 2, 2, 1), and 
later on this freedom in defining n̄ will be codified in a reparameterization invariance symmetry. For now 
we stick with the choice in Eq. (2.3). 

It is now simple to represent standard 4-vectors in the light-cone basis 
µ µn n̄

pµ = n̄ · p + n · p + pµ (2.4)⊥2 2  
µ 1 2where the ⊥ components are orthogonal to both n and n̄. With the choice in Eq. (2.3), p = (0, p , 0). , p ⊥

It is customary to represent a momentum in these coordinates by  

p +µ = (p , p  − , pp⊥) (2.5) 

2 2where the last entry is two-dimensional, and the minkowski p is the negative of the euclidean pp  (ie. in ⊥ ⊥
2 2= −pp our notation p ). Here we have also defined ⊥ ⊥

− p  + = p+ ≡ n · p , = p− ≡ n̄ · p. (2.6)p  

As indicated the upper or lower ± indices mean the same thing.  
Using the standard (+ −−−) metric, the four-momentum squared is  

− − − pp 2 + 2 2+ (2.7) + p p = p p  = p p  . ⊥ ⊥

We can also decompose the metric in this basis 
µ ̄ ν µ νn n n̄ nµν µν= + + g ⊥ .  (2.8) g 
2 2  

µν 
⊥ = Eµναβ ̄nαnβ/2.Finally we can define an antisymmetric tensor in the ⊥ space by E 
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2.3 Momentum Regions: SCET I and SCET II 

Lets continue with our exploration of the B → Dπ decay with the goal of identifying the relevant quark 
and gluon degrees of freedom (d.o.f.) for designing an EFT to describe this process. We’ll then do the 
same for a process with jets. 

There are different ways of finding the relevant infrared degrees of freedom. We could characterize all 
possible regions giving rise to infrared singularities at any order in perturbation theory using techniques 
like the Landau equations, and then determine the corresponding momentum regions. We could carry out 
QCD loop calculations using a technique known as the method of regions, where the full result is obtained 
by a sum of terms that enter from different momentum regions. Then by examining these regions we could 
hypothesize that there should be corresponding EFT degrees of freedom for those regions that appear to 
correspond to infrared modes that should be in the EFT. (Either of these approaches may be useful, but 
note that when using them we must be careful that the degrees of freedom are appropriate to our true 
physical situation, and do not contain artifacts related to our choice of perturbative infrared regulators 
that are not present in the true nonperturbative QCD situation.) Instead, our approach in this section will 
be based solely on physical insight of what the relevant d.o.f. are, from thinking through what is happening 
in the hard scattering process we want to study. More mathematical checks that one has the right d.o.f. 
are also desirable, and we will talk about some examples of how to do this later on. This falls under the 
ruberic of not fully trusting a physics argument without the math that backs it up, and visa versa. 

For B → Dπ in the rest frame of the B, the constituents of the B meson are the nearly static heavy 
b quark, and the soft quarks and gluons with momenta ∼ ΛQCD, ie. just the standard degrees of freedom 
of HQET. Since |ppD| = 2.31 GeV ∼ mD = 1.87 GeV the constituents of the D meson are also soft and 
described by HQET. The pion on the other hand is highly boosted. We can derive the momentum scaling 
of the pion constituents by starting with the (+, −, ⊥) scaling of 

pµ ∼ (ΛQCD, ΛQCD, ΛQCD) for constituents in the pion rest frame, 

and then by boosting along −ẑ by an amount κ = Q/ΛQCD. The boost is very simple with light cone 
coordinates, taking p− → κp− and p+ → p+/κ. Thus 

 Λ2  
∼ QCD 

, Q, ΛQCD (2.9)µ
cp 

Q  

for the energetic pions constituents in the B rest frame. This scaling describes the typical momenta of the  
µ
π = (0, Q, 0) + O(m 2 

πquarks and gluons that bind into the pion moving with large momentum p /Q), as in  

n
µ

π

The important fact about Eq. (2.9) is that 

− ⊥ + (2.10) p c » p c » p c .  

Whenever the components of p µc obey this hierarchy we say it has a collinear scaling. Its convenient to  
describe this collinear scaling with a dimensionless parameter by writing  

p µc ∼ Q(λ2 , 1, λ) (2.11) 

8  



2.3 Momentum Regions: SCET I and SCET II 2 INTRODUCTION TO SCET  
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Figure 1: SCETII example. Relevant degrees of freedom for B → Dπ with an energetic pion in the B rest 
frame. 

1where λ « 1 is a small parameter. This result is generic. For our B → Dπ example we have λ = ΛQCD/Q. 
This λ will be the power counting parameter of SCET. With this notation we can also say how the soft 
momenta of constituents in the B and D meson scale, 

pµ ∼ Q(λ, λ, λ) . (2.12)s 

Thus we see that we need both soft and collinear degrees of freedom for the B → Dπ decay. 
It is convenient to represent the degrees of freedom with a picture, as in Fig. 1. This picture has some 

interesting features. Unlike simpler effective theories SCET requires at least two variables to describe 
− + 2 + −the d.o.f. The choice of p and p as the axis here suffices since the ⊥-momentum satisfies p⊥ ∼ p p

and hence does not provide additional information. The hyperbolas in the figures are lines of constant 
p2 = p+p− . The labelled spots indicate the relevant momentum regions. We have included a hyperbola 
and a spot for the hard region where p2 ∼ Q2, but these are the modes that are actually integrated out 
when constructing SCET. (For B → Dπ they are fluctuations of order the heavy quark masses.) On the 
p2 ∼ ΛQCD

2 hyperbola in Fig. 1 we have two types of nonperturbative modes, collinear modes cn for the 
pion constituents, and soft modes s for the B and D meson constituents. Since these modes live at the 
same typical invariant mass p2 we need another variable, namely p−/p+, to distinguish them. This variable 

2Y +is related to the rapidity, Y , since e = p−/p+ . Put another way, we need both of the variables p and 
p− to define the modes for the EFT. 

The example in Fig. 1 is what is known as an SCETII type theory. Its defining characteristic is that 
the soft and collinear modes in the theory have the same scaling for p2, they live on the same hyperbola. 
This type of theory turns out to be appropriate for a wide variety of different processes and hence we give 
it the generic name SCETII. Essentially this version of SCET is the appropriate one for hard processes 
which produce energetic identified hadrons, what we earlier called exclusive hard scattering and exclusive 
B-decays. 

1Please do not be confused into thinking that you need to assign a precise definition to λ. It is only used as a scaling 
parameter to decide what operators we keep and what terms we drop in the effective field theory, so any definition which is 
equivalent by scaling is equally good. In the end any predictions we make for observables do not depend on the numerical 
value of λ. The only time we need a number for λ is when making a numerical estimate for the size of the terms that are 
higher order in the power expansion which we’ve dropped. 
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When looking at Fig. 1 we should interpret the collinear degrees of freedom as living mostly in a region 
about the cn spot and the soft degrees of freedom as living mostly in a region about the s spot. An obvious 
question is what determines the boundary between these degrees of freedom. In a Wilsonian EFT the 
answer would be easy, there would be hard cutoffs that carve out the regions defined by these modes. But 
hard cutoffs break symmetries. For SCET the cutoffs must be “softer regulators” so as to not to break 
symmetries like Lorentz invariance and gauge invariance. Dimensional regularization is one regulator that 
can be used for this purpose. If we were only trying to distinguish modes with the invariant mass p2 then 
the dim.reg. scale parameter µ would suffice for the cutoff between UV and IR modes, and we would be set 
to go. But in SCET we also need to distinguish modes in another dimension, µ does not suffice to separate 
or distinguish the s and cn modes of Fig. 1. We will see how to do this later on without spoiling any 
symmetries. In general it will require a combination of subtractions that localize the modes in the regions 
shown in the figure, as well as additional cutoff parameters. The bottom line is that the physical picture 
in Fig. 1 for where the modes live is the correct one to think about for the purpose of power counting. But 
when integrating over loop momenta in a virtual diagram involving one of these modes we integrate over 
all values with a soft regulator to avoid breaking symmetries. 

Lets consider a second example involving QCD jets. Jets are collimated sprays of hadrons produced 
by the showering process of an energetic quark or gluon as it undergoes multiple splittings. The splitting 
is enhanced in the forward direction by the presence of collinear singularities. The simplest process is 
+ +e e− → dijets, which at lowest order is the process e e− → γ∗ → qq̄ with each of the light quarks q and 
q̄ forming a jet. Let qµ be the momentum of the γ∗, then in the center-of-momentum frame (CM frame) 
q µ =  (Q, 0, 0, 0) and sets the hard scale. If there are only two jets in the final state then by momentum  
conservation they will be back-to-back along the horizontal ẑ axis:  

ultrasoft particles

n-collinear 

       jet

n-collinear 

       jet

nμnμ
21

p

a b

The x − y plane defines two hemispheres a and b, and we consider a process with one jet in each of them.  
The energy in each hemisphere is Q/2 and is predominantly carried by the collimated particles in the jets.  
To describe the degrees of freedom we need two collinear directions. We align n µ 

1 with the direction of the  
first jet and n µ 

2 with the second. (These directions can be defined by using a jet algorithm to determine  
the particles inside a jet, or indirectly from the process of calculating a jet event shape like thrust.) 

Lets first consider the energetic constituents of the n1-jet. Since these constituents are collimated they 
have a ⊥-momentum that is parametrically smaller than their large minus momentum, p⊥ ∼ Δ « p− ∼ Q. 
In order that we have a jet of hadrons and not a single hadron or small number of hadrons we must have 
Δ » ΛQCD. Thus the jets constituents have (+, −, ⊥) momenta with respect to the axes n1 = (1, −ẑ) and 
n̄1 = (1, ẑ) that have a collinear scaling 

Δ2  
∼ , Q, Δ = Q(λ2 , 1, λ) . (2.13) p µn1 Q 

As usual the scaling of the +-momentum is determined by noting that we are considering fluctuations 
2 + 2about p = 0, so p ∼ p /p− . Here the power counting parameter is λ = Δ/Q « 1. Note that the jet ⊥
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2.3 Momentum Regions: SCET I and SCET II 2 INTRODUCTION TO SCET  

constituents have the same scaling as the constituents of a collinear pion, but carry larger offshellness p2 . 
If we make Δ so large that Δ ∼ Q then we no longer have a dijet configuration, and if we make Δ so small 
that Δ ∼ ΛQCD then the constituents will bind into one (or more) individual hadrons rather than the large 
collection of hadrons that make up the jet. Another way to characterize the presence of the jet is through 

2 2the jet-mass m , since a jet will have Q2 » m » Λ2 For our example here we can make use of the J J QCD. 
a-hemisphere jet-mass,  2 

2 µ + − m ≡ p ∼ p p ∼ Δ2 « Q2 . (2.14)Ja i n1 n1 
i∈a 

For the constituents of the n2-jet we simply repeat the discussion above, but with particles collimated 
about the direction, n2 = n̄1 = (1, ẑ). A choice that makes this simple is n̄2 = n1 = (1, −ẑ), since then we 
can simply take the n1-jet analysis results with + ↔ −. Using the same (+, −, ⊥) components as for the 
n1-jet we then have 

Δ2 
µp ∼ Q, , Δ = Q(1, λ2, λ) . (2.15)n2 Q 

Again a measurement of the b-hemisphere jet-mass can be used to ensure that there is only one jet in that 
region jet-mass,  2 

2 µ + − m ≡ p ∼ p p ∼ Δ2 « Q2 . (2.16)Jb i n2 n2 
i∈b 

Finally in jet processes there are also soft homogeneous modes that account for soft hadrons that 
appear between the collimated jet radiation (as well as within it). The precise momentum of these degrees 
of freedom depends on the observable being studied, and the restrictions it imposes on this radiation. In 

+ 2 2our e e− → dijets example we can consider measuring that m and m are both ∼ Δ2 . In this case the Ja Jb 
homogeneous modes are “ultrasoft” with momentum scaling as 

Δ2 Δ2 Δ2 
µp ∼ , , = Q(λ2, λ2, λ2) . (2.17)us Q Q Q 

2To derive this we consider the restrictions that mJa 
∼ Δ2 imposes on the observed particles, noting in 

particular that with a collinear and ultrasoft particle in the a-hemisphere we have 

2 2(pn1 + pus)2 = p + 2pn1 · pus + p ∼ Δ2 . (2.18)n1 us 

− − + +The term 2pn1 · pus = pn1 pus plus higher order terms, so pus ∼ Δ2/p− 
n1 ∼ Δ2/Q, which is the ultrasoft 

+momentum scale given in Eq. (2.17). Any larger momentum for p is forbidden by the hemisphere mass us 
measurement. The scaling of the other ultrasoft momentum components then follows from homogeneity. 

If we draw the degrees of freedom, then for the double hemisphere mass distribution measurement 
+ + −of e e− → dijets in the p -p plane we find Fig. 2. Again we have labelled hard modes with momenta 

p2 ∼ Q2 that are integrated out in constructing the EFT (here they correspond to virtual corrections at 
the jet production scale). In the low energy effective theory we have two types of collinear modes cn and 
cn̄, one for each jet, which live on the p2 ∼ Δ2 hyperbola. Finally the ultrasoft modes live on a different 

2 2hyperbola with p ∼ Δ4/Q2 . The collinear and ultrasoft modes all have p � Q2λ2 and are degrees of 
freedom in SCET, while modes with p2 » Q2λ2 are integrated out. When we are in a situation like this 
one, where the collinear and homogeneous modes live on hyperbolas with parametrically different scaling 
for p2, then the resulting SCET is known as an SCETI type theory. Note that the cn and us modes have 
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+Figure 2: SCETI example. Relevant degrees of freedom for dijet production e e− → dijets with measured 
hemisphere invariant masses m2 and m2 .Ja Jb 

p+ momenta of the same size, whereas the cn̄ and us modes have p− momenta of the same size. The names 
collinear and ultrasoft denote the fact that these modes live on different hyperbolas.2 Once again these 
degrees of freedom capture regions of momentum space, which are centered around the spots indicated and 
each of them extend into the infrared. 

It is important to note in this dijet example that Δ4/Q2 � Λ2 , so in general the nonperturbative QCD

ultrasoft modes can live on an even smaller hyperbola p2 ∼ ΛQCD
2 than the perturbative contributions from 

ultrasoft modes that have p2 ∼ Δ4/Q2 . An additional p2 ∼ Λ2
QCD hyperbola is shown in green in Fig. 2. 

If Δ4/Q2 ∼ Λ2 then the yellow and green hyperbolas are not distinguishable by power counting, and QCD 
hence are equivalent. If on the other hand we are in a situation where Δ4/Q2 » Λ2 then when we QCD 
setup the SCETI theory both the perturbative ultrasoft modes with p2 ∼ Δ4/Q2 and the nonperturbative 
ultrasoft modes with p2 ∼ Λ2 will be part of our single ultrasoft degree of freedom. This is convenient QCD 
because we can first formulate the Δ/Q « 1 expansion with the cn, cn̄ and us d.o.f., and only later worry 
about making another expansion in QΛQCD/Δ

2 « 1 to separate the two types of ultrasoft modes that 
would live on the yellow and green hyperbolas. 

If we compare Fig. 1 and Fig. 2 we see that it is the relative behaviour of the collinear and soft/ultrasoft 
modes that determine whether we are in an SCETI or SCETII type situation. (There are also SCETII 
examples which involve jets with ⊥ measurements rather than jet masses, and we will meet these later on 
in Section 11.3 and 11.4.) Much of our discussion will be devoted to studying these two examples of SCET, 
since they are already quire rich and cover a wide variety of processes. In general however one should 
be aware that a more complicated process or set of measurements may well require a more sophisticated 
pattern of degrees of freedom. For example, we could have soft or collinear modes on more than one 
hyperbola, or might require modes with a new type of scaling. Indeed, this is not even uncommon, the 
collider physics example of pp → dijets in the CM frame requires both SCETII type collinear modes for the 
incoming protons, and SCETI type collinear modes for the jets. Nevertheless, after having studied both 
SCETI and SCETII we will see that often these more complicated processes do not really require additional 
formalism, but rather simply require careful use of the tools we have already developed in studying SCETI 

2In certain situations in the literature to use the names hard-collinear and soft to denote the same thing, and we will find 
occasion to explain why when discussing how SCETI can be used to construct SCETII. 
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Figure 3: Another SCETI example. Relevant degrees of freedom for B → Xsγ in the endpoint region. 

and SCETII. 
A comment is also in order about the frame dependence of our degrees of freedom. In both of our 

examples we found it convenient to discuss the degrees of freedom in a particular frame (the B rest frame, 
+or e e− CM frame). Typically there is a natural reference frame to think about the analysis of a process, 

but of course the final result describing the dynamics of a process will actually not be frame dependent. 
Thus it is natural to ask what the d.o.f. and corresponding momentum regions would look like in a different 
frame. A simple example to discuss is a boost of the entire process along the ẑ axis. All the modes then slide 
along their hyperbolas (since p2 is unchanged). The important point is that the relative size of momenta of 
different d.o.f. is unchanged by this procedure: the p+ momenta of collinear and ultrasoft modes in SCETI 

+will be the same size even after the boost, and the p momentum of a soft particle will always be larger 
+than the p momentum of a collinear particle in SCETII. In B → Dπ such a boost can take us to the 

pion rest frame, where its constituents are now soft, and the constituents of the B and D are now boosted. 
Some components of the SCET analysis may look a bit different if we use different frames, but the final 
EFT results for decay rates and cross sections will obey the expected overall boost relations. In general it 
is only the relative scaling of the momenta of various degrees of freedom that enter into expansions and 
the final physical result. The relative placement of the spots for our d.o.f. in SCETI and SCETII is not 
affected by the ẑ boost. 

Before finishing our discussion of d.o.f. we consider one final example. For the purpose of studying 
SCETI it is useful to have an example with one jet rather than two, so the d.o.f. become simply cn and us. 
This can occurs for the process B → Xsγ or for B → Xueν̄. The underlying processes here are the flavor 
changing neutral current proess b → sγ or the semileptonic decay b → ueν̄. For these inclusive decays 
we sum over any collection of hadronic s tates Xs or Xu that can be produced from the s or u quark. 

2 2In the B rest frame, the total energy of the γ or (eν̄) is E = (m − m )/(2mB ) and ranges from 0 to B X 
2 2(m − m )/(2mB ) where mHmin is the smallest appropriate hadron mass, either mHmin = mK∗ or mπB Hmin 

for Xs or Xu respectively. An interesting region to consider for the application of SCET is 
2 2Λ2 
X « Q2 = m (2.19)QCD « m B 

where the photon or (eν̄) recoils against a jet of hadrons which are the constituents of X. For B → Xsγ 
the picture is (double line being the b-quark, yellow lines are soft particles, and red lines are collinear 
particles): 

13  



3 INGREDIENTS FOR SCET  

Here the jet mass is also the mass of the hadronic final state, and the situation which dominates the 
2 2phenomenology has m We have collinear modes for the jet, and ultrasoft modes with p ∼X ∼ QΛQCD. us 

2Λ2 which are the constituents of the B meson for this inclusive decay. Often the region where mX « Q2 
QCD 

is known at the endpoint region since E ∼ mB /2 − ΛQCD and hence is close to the physical endpoint 
2E = mB /2. (The case mX ∼ Q2 is then known as the local OPE region where the traditional HQET 

operator product expansion analysis suffices.) The picture of the modes for this case are shown in Fig. 3, 
and indeed yield an example of an SCETI theory with only one collinear mode. 

3 Ingredients for SCET 

Our objective in this section is to expand QCD and formulate collinear and ultrasoft degrees of freedom. In 
doing so, we will derive power counting expressions for operators and see what form the quark Lagrangian 
takes in a SCET theory. 

3.1 Collinear Spinors 

We begin our exploration by considering the decomposition in the collinear limit of Dirac spinors u(p) for 
particles and v(p) for antiparticles. We will derive the collinear spinors by considering the expansion in 
momentum components, but then will convert this result into a decomposition into two types of terms 
rather than an infinite expansion. 

0 1 2 − 0 3 1,2 + 3For a collinear momentum pµ = (p , p , p , p3) we have p = p + p » p » p = p0 − p so⊥ 

pσ · pp 
0 = σ3 + . . . , (3.1) 
p

where the terms in the + . . . are smaller. Keeping only the leading term gives us the spinors      
0)1/2 −(2p U p U 

u(p) = √  σ·p =⇒ un = (3.2)
2 0 U 2 σ3U p     

0)1/2  σ·p −(2p 0 V p σ3V 
v(p) = √ p =⇒ vn =

2 V 2 V
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1 0
where here U and V are each either or . From this analysis we see that in the collinear limit

0 1
both quark and antiquarks remain as

(
rele

)
van

(
t degrees

)
of freedom (and indeed, there is no suppression

for pair creation from splitting). We also see that both spin components remain in each of the spinors.
Recalling our default definitions of nµ and n̄µ, we can calculate their contractions with the gamma matrix,

1 σ3
1 σ3

n/ = γ0 − γ3 =

(
σ3
−
−1

)
, n/̄ = γ0 + γ3 =

(
−σ3 −1

)
. (3.3)
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Multiplying the first matrix by un or vn from (3.2) gives the following relations 

/ = 0 , nvn = 0 . (3.4)nun /

These can be recognized as the leading term in the equations of motion / pv(p) = 0 when expandedpu(p) = /
in the collinear limit. We can also define projection operators 

and then we have the relations 

n/n̄/ n/n̄/
Pnun = un = un, Pnvn = vn = vn. (3.6)

4 4 
The bottom line of this expansion is that when a hard interaction produces a collinear fermion or an­
tifermion it will be the components obeying the spin relations in Eqs. (3.4) and (3.6) that appear at 
leading order. 

For later purposes it will be useful to decompose the QCD Dirac field ψ into a field ξn that obeys these 
spin relations. From {γµ, γν } = 2gµν we note that 

n/n/̄ n̄/n/
+ = J, (3.7)

4 4 
which allows us to write ψ in terms of two fields, 

ˆψ = Pnψ + Pn̄ψ = ξn + ϕn̄ (3.8) 

where we defined 

n/n̄/ n/̄n/
ξ̂n = Pnψ = ψ , ϕn̄ = Pn̄ψ = ψ. (3.9)

4 4 
These fields satisfy the desired spin relations 

/ Pnξn = ξn , nϕn̄ Pn̄ϕn̄ = ϕn̄ .nξn = 0 , /̄ = 0 , (3.10) 

ˆThe label n on ξn reminds us that it obeys these relations and that we will eventually be expanding about 
the n-collinear direction. Note that here we denote the collinear field components with a hat, as in ξ̂n(x), 
since there are still further manipulations that are required before we arrive at our final SCET collinear 
field ξn(x). Nevertheless both ξ̂n and ξn satisfy these spinor relations. 

Having defined ξ̂n = Pnψ, the corresponding result for the spinors is un = Pnu(p) and vn = Pnv(p), 
which do not precisely reproduce the lowest order expanded results in Eq. (3.2). Instead we find 

Pn =
/n/̄n

4
=

1

2

(
1 σ3

σ3
1

)
, Pn̄ =

/̄n/n

4
=

1

2

(
1 −σ3

−σ3
1

)
, (3.5)

un =
1

2

(
1 σ3

σ3 1

)√
p0

(
U

~σ·~p
p0
U

)
=

√
p0

2

 (
1 + p3

p0
− (i~σ×~p⊥)3

p0

)
U

σ3

(
1 + p3

p0
− (i~σ×~p⊥)3

p0

)
U


=

√
p− Ũ
2

(
˜σ3 U

)
(3.11)

where the two component spinor is

Ũ =

√
p0

2p−

(
1 +

p3

p0
− (i~σ × ~p⊥)3

p0

)
U . (3.12)
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The same derivation gives  

where Ṽ is defined in terms of V by a formula analogous to Eq. (3.12). Since the spin relations in Eqs. (3.4) 
and (3.6) do not depend on the form of the two component spinors ( Ũ versus U etc), they remain true. We 
will see later that the results for the un and vn spinors involving Ũ and Ṽ rather than U and V are required 
to avoid breaking a reparameterization symmetry in SCET. The extra terms appearing in the definition of 
Ũ ensure the proper structure under reparameterizations of the lightcone basis. Finally we note that 

Thus if we take the product of un spinors 

and sum over spins, we have 

For later convenience we write down a set of projection operator identities easily derived from n2 = 0, 
n̄ · n = 2, and/or hermitian conjugation γµ† = γ0γµγ0: 

PnP¯ = 0 , Pn = Pn , Pnn̄ = Pn̄/ Pn / n , n /̄ n , / P † = γ0P¯γ0 .n Pn / n = 0 , n = / P¯n = ¯ n (3.17)n 

None of these results depends on making the canonical back-to-back choice for n̄. The last result is useful 
for the computation of ξ̂n from ξ̂n = Pnψ, i.e. 

ξ̂ = ξ̂† γ0 = ψ†P †γ0 = ψ Pn̄ . (3.18)n n n

¯
Thus just like the relations for ξ̂n or ξn we have the following relations for ξ̂n or ξ̄n: 

n/̄n/¯ ¯ ¯ ¯ ¯ξnn/ = 0 , ξnPn = 0 , ξnPn̄ = ξn = ξn . (3.19)
4 

In addition to our collinear decomposition of the Dirac spinors and field, we will also need spinors and 
quark fields for the ultrasoft degrees of freedom. However, since all ultrasoft momenta are homogeneous of 
order λ2 and the scaling of momenta does not affect the corresponding components of the ultrasoft spinors, 
which are the same as those in QCD. 

3.2 Collinear Fermion Propagator and ξn Power Counting 

Having considered the decomposition of spinors in the collinear limit, we now turn to the fermion propagator 
2 2in the collinear limit. Here p + i0 = n̄ · p n · p + p , and since both of these terms are ∼ λ2 there is no ⊥
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vn =

√
p−

(3.13)
2

(
˜σ3

˜
V
V

)

∑
ŨsŨ† s = 12 2 (3.14)×

s

Thus if we take the product of un spinors

p−
unūn = ,Ũ2

(
Ũ Ũ† −ŨŨ†σ3 (3.15)˜σ3 U† − ˜σ3UŨ†σ3

)
and sum over spins, we have ∑

us
n

ūs
/

n n =
s

2
n̄ · p . (3.16)
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expansion of the denominator of the propagator. We can however expand the numerator by keeping only 
the large n̄ · p momentum, as 

ip/ in/ n̄ · p in/ 1 
= + . . . = 2 + . . . (3.20) 

p2 + i0 2 p2 + i0 2 p⊥n · p + + i0 sign(n̄ · p)n̄·p 

The fermion-gluon coupling will be proportional to /̄n/2 and hence will form a projector Pn when combined 
with the /n/2 from the propagator. Therefore the displayed term in the propagator has overlap with our 
spinors un and vn, just giving Pnun = un etc. The fact that both +i0 and −i0 occur in the expanded 
propagator is a reflection of the fact that the lowest order SCET Lagrangian will contains both propagating 
particles (n̄ · p > 0) and propagating antiparticles (n̄ · p < 0). 

The leading collinear propagator displayed in Eq. (3.20) should be obtained from a time-ordered product 
¯̂

of the effective theory field, (0|T ξ̂n(x)ξn(0)|0). At this point we can already identify the λ power counting 
for the field ξ̂n by noting that if its propagator has the form in Eq. (3.20) then its action must be of the 
form   

L(0) d4 x L(0) d4 ¯̂ n/̄   
ˆ ∼ λ2a−2 = = x ξn in · ∂ + . . . ξn . (3.21)n n '-n" '-n" 2 ' -n " '-n" 

O(λ−4) O(λa) O(λ2) O(λa) 

1Here we used the fact that d4x = (dx+)(dx−)(d2x⊥) ∼ (λ0)(λ−2)(λ−1)2 ∼ λ−4 where the scaling for the 2 
+ − − + ⊥coordinates xµ follows from those for the collinear momenta by writing x · pc = x p + x p + 2x⊥ · pc c c 

and demanding that the terms in this sum are all O(1). In (3.21) we assigned ξ̂n ∼ λa with the goal of 
determining the value of a. To do this we take the standard approach of assigning a power counting to the 

(0)
leading order kinetic term in the action so that Ln ∼ λ0, which gives 

ξ̂n ∼ ξn ∼ λ . (3.22) 

Even though we have not fully considered all the issues needed to define the SCET collinear field ξn, the 
further manipulations we will make in section 4 below will not effect its power counting, so we have also 
recorded here the fact that the SCET field ξn ∼ λ. Note that this scaling dimension does not agree with 
the collinear quark fields mass dimension since [ξ̂n] = [ξn] = 3/2. This is simply a reflection of the fact 
that the SCET power counting for operators is not a power counting in mass dimensions. The observant 
reader will notice that the λ scaling of the collinear field is the same as its twist, and indeed the SCET 
power counting reduces to a (dynamic) twist expansion when the latter exists. 

3.3 Power Counting for Collinear Gluons and Ultrasoft Fields 

Similar to our procedure for the collinear fermion field, we can analyze the collinear gluon field Aµ
n in our n­

collinear basis to determine the λ scaling of its components. This information is necessary to formulate the 
importance of operators in SCET. We begin by writing the full theory covariant gauge gluon propagator, 
but we label the fields as Aµ

n(x) to denote the fact that we will be considering a n-collinear momenta:

where τ is our covariant gauge fixing parameter. From our standard power counting result from the light-
cone coordinate section, we know that k2 = k+k− + k2 = Q2λ2 . So the 1/k4 on the RHS matches up with ⊥ 
the scaling of the collinear integration measure 

d4 x ∼ λ−4 ∼ 
1 

(3.24)
(k2)2 
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∫
d4x eik·x 〈0|TAµn(x)Aν

i
n(0) |0〉 = −

k2

(
gµν − τ k

µkν

k2

)
= − i

k4

(
k2gµν − τ kµkν

)
, (3.23)
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Thus the quantity in the final parentheses in (3.23) must be the same order as the product of Aµ
n(x)Aν (0)n

fields. If both of the µν indices are ⊥ then both of the terms in these parantheses are ∼ λ2, so therefore 
we must have Aµ ∼ λ. If one index is + and the other − then again both terms are the same size and n⊥ 
we find A+A− ∼ λ2 . To break the degeneracy we take both indices to be +, then g++ = 0, (n · k)2 ∼ λ4 ,n n 
so A+ ∼ λ2 and A− ∼ λ0 . Other combinations also lead to this result, namely that the components of then n 
collinear gluon field scales in the same way as the components of the collinear momentum 

Aµ ∼ kµ ∼ (λ2 , 1, λ). (3.25)n 

This result is not so surprising considering that if we are going to formulate a collinear covariant derivative 
Dµ = ∂µ + igAµ with collinear momenta ∂µ and gauge fields, then for each component both terms must 
have the same λ scaling. Indeed imposing this property of the covariant derivative is another way to derive 
Eq. (3.25). 

The same logic can be used to derive the power counting for ultrasoft quark and gluon fields. Since 
the momentum kµ ∼ (λ2, λ2, λ2) the measure on ultrasoft fields scales as d4x ∼ λ−8 . Also the result isus 
now uniform for the components of Aµ Once again we find that the gluon field scales like its momentum.us. 

¯ ∼ λ2For the ultrasoft quark we have the Lagrangian L = i / with iDµ = i∂µ + gAµ . Thereforeψus Dusψus us us 

hus husFor a heavy quark field that is ultrasoft the Lagrangian is LHQET iv · Dus which is again linear in 

ψ̄usψus ∼ λ6 . All together we have 

Aµ ∼ (λ2, λ2, λ2) ,us ψus ∼ λ3 . (3.26) 

¯= v v 
the derivative, so hus ∼ λ3 as well.v 

For completeness we also remark that the power counting for momenta determines the power counting 
for states. For one-particle states of collinear particles (with a standard relativistic normalization): 

(p ' |p) = 2p 0δ3(pp − pp ' ) = p −δ(p − − p '−)δ2(pp ⊥ − pp ' ) ∼ λ−2 (3.27) 

Thus the single particle collinear state has |p) ∼ λ−1 for both quarks and gluons. Given the scaling of 
the collinear quark and gluon fields, this implies power counting results for the polarization objects. The 
collinear spinors un ∼ ξn|p) ∼ λ0 which is consistent with our earlier Eq. (3.11). For the physical ⊥ 
components of polarization vectors for collinear gluons we also find Eµ ∼ λ0 .⊥ 

Of particular importance in the result in Eq.(3.25) is the fact that n̄ · An = A− ∼ λ0, indicating thatn 
there is no λ supression to adding A− fields in SCET operators. To understand the relevance of this resultn 
we consider in the next section an example of matching for an external current from QCD onto SCET. 

3.4 Collinear Wilson Line, a first look 

To see what impact there is to having a set of gauge fields n̄ · An ∼ λ0 lets consider as an example the 
process b → ueν, where the b quark is heavy and decays to an energetic collinear u quark. This process 
has the advantage of only invoving a single collinear direction. This decay has the following weak current 
with QCD fields 

JQCD = u Γb (3.28) 

where Γ = γµ(1 − γ5). Without gluons we can match this QCD current onto a leading order current in 
SCET by considering the heavy b field to be the HQET field hv and the lighter u field by the SCET field 
ξn. This is shown in Fig. 4 part (a), where we use a dashed line for collinear quarks. The resulting SCET 
operator is 

ξ Γhv. (3.29)n
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Figure 4: Tree level graphs for matching the heavy-to-light current. 

Next we consider the case where an extra A− gluon is attached to the heavy quark. This process is n 
shown in Fig.4 part (b) and leads to an offshell propagator, shown by the pink line, that must be integrated 
out when constructing the EFT. The full theory amplitude for this process is (replacing external spinors 
and polarization vectors by SCET fields): 

In the first equality we have used the fact that the incoming b quark carries momentum mbv
µ, that 

2k = mbv + q so that k2 − m = 2mbv · q + q2, and that b 

µ µn n̄
Aµ + Aµ 
n = n̄ · An + n · An ⊥ (3.31)

2 ' -n " 2 ' -n " '-n" 
O(λ0) O(λ2) O(λ) 

where we can keep only the ∼ λ0 term. In the second equality in Eq. (3.30) we have expanded the numerator 
and denominator of the propagator in λ and kept only the lowest order terms. Since mbv · n n̄ · q ∼ Q2λ0 

we see that the propagator is offshell by an amount of ∼ Q2, and hence is a hard propagator that we must 
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Aµ An
i(k/ +mb)

ξnΓ
n

igTAγ
k2 − µhv =

m2
b

−g
( µ

n̄
2
·AAn

) [mb(1 + v/) + /q]
ξnΓ TAγ

2mbv ·
µhv

q + q2

= −gn̄ ·AAn ξnΓ

[
mb(1 + /v) + /n

2 n̄ · q n/
+ . . .

mbv · n n̄ · q

]
TA hv

2

= −gn̄ ·AAn ξnΓ

[ /n
2 (1− /v) + v · n

+ . . .
v · n n̄ · q

]
TAhv

= ξn

(−g n̄ ·An
Γ

n̄ · q

)
hv (3.30)
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2integrate out when constructing the corresponding SCET operator. In the third equality we use n/ = 0 
and pushed the n/ through to the left. Noting that (1 − v/)hv = 0, the fourth equality gives the final leading 
order result from this calculation. Thus we we see that in SCET integrating out offshell hard propagators 
that are induced by n̄ · An gluons leads to an operator for the leading order current with one collinear 
gluon coming out of the vertex, pictured on the RHS of Fig. 4 part (b). 

Inspecting the final result in Eq. (3.30) we see that, in addition to being a great simplification of the 
original QCD amplitude for this gluon attachments, it is indeed of the same order in λ as the result in 
Eq. (3.29). Indeed it straightforward to prove that the same (−gn̄ · An/n̄ · q) result will be obtained if 
we replace the heavy quark by a particle that is not n-collinear, such as a collinear quark in a different 

' ' ' direction n where n ·n » λ2 . The sum of collinear momenta in the n and n directions will also be offshell, 
for example when we add two back-to-back collinear momenta (pn + pn̄)2 ∼ λ0 . In all these situations we 
find operators with additional n̄ · An ∼ λ0 fields. 

In summary, the off-shell quark has been integrated out and its effects have been parameterized by an 
effective operator. This was necessary because the virtual quark resulting from the interaction of a heavy 

' quark or a n collinear particle with a n-collinear gluon yields an off-shell momentum. 
This result can be contrasted with what happens if we attach a single n̄ · An collinear gluon field to the 

light collinear u quark, as shown below: 

q

k

q

k

Calling the final u quarks momentum p we have kµ = pµ − qµ. However here since both p and q are 
n-collinear the propagator momentum kµ also has n-collinear scaling. In particular k2 ∼ λ2 and is not 
offshell, it instead represents a propagating mode within the effective theory. Thus this interaction is 
reproduced in SCET by a collinear propagator followed by a leading order Feynman rule that couples the 
n̄ · An field to the collinear quark. Thus this diagram corresponds to a time ordered product of the leading 

(0)
order SCET current J (0) with the leading order Lagrangian Ln . If we attach more collinear gluons to the 
light u quark, the same remains true. We never get an offshell propagator that we have to integrate out 
when we have an interaction between n-collinear particles. Indeed we will also find that the components 
n · An and A⊥ couple at leading order in T-products like the one shown above, so there is nothing special n 
about the n̄ · An components for these diagrams. 

Lets now consider the situation of multiple gluon emission from the heavy quark. In this case we again 
have offshell propagators, which are represented by the pink line in Fig. 4 part (c). By inspection, it is 
clear that the generalization from one gluon emission to k gluon emissions with momenta q1, . . . , qk and pkpropagators with momenta q1, q1 + q2, . . . , i=1 qi yields 

Here the sum of permutations (perms) of the {q1, . . . , qk} momenta accounts for the fact that we must 
consider diagrams with crossed gluon lines on the LHS of Fig. 4 part (c). We also include the factor of k! 
as a symmetry factor to account for the fact that all k gluon fields are localized and identical and may be 
contracted with any external gluon state. Finally, by summing over the number of possible gluon emissions, 
we can write the complete tree level matching of the QCD current to the SCET current, 

JSCET = ξnWnΓ hv , (3.33) 
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ξ̄n
∑
perm

(−g)k

k!

(
n̄ ·Aq1 · · · n̄ ·Aqk

[n̄ · q1][n̄ · (q1 + q2)] · · · [n̄ ·
∑k

i=1 qi]

)
Γhv (3.32)
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where 

(3.34)

Here Wn is the momentum space version of a Wilson line built from collinear An gluon fields. In position 
space the corresponding Wilson line is 

Here P is the path ordering operator which is required for nonabelian fields and which puts fields with 
larger arguments to the left e.g. n̄ · An(n̄s) n̄ · An(n̄s ' ) for s > s ' . 

In summary, we see that we have traded the field n̄ · An for the Wilson line Wn[n̄ · An]. Also, including 
this Wilson line in our current operator makes our current gauge invariant, as we will show below in the 

' Gauge Symmetry section. For a situation with n and n collinear fields the same type of Wilson lines 
Wn[n̄ · An] are also generated in a manner that yields gauge invariant operators for each collinear sector. 

4 SCETI Lagrangian 

In this section, we derive the SCET quark Lagrangian by analyzing and separating the collinear and usoft 
gluons, and momentum degrees of freedom. On the way to our final result we introduce the label operator 
which provide a simple method to separate large (label) momenta from small (residual) momenta. 

4.1 SCET Quark Lagrangian 

Lets construct the leading order SCET collinear quark Lagrangian. This desired properties that this 
Lagrangian must satisfy include 

• Yielding the proper spin structure of the collinear propagator 

• Contain both collinear quarks and collinear antiquarks 

• Have interactions with both collinear gluons and ultrasoft gluons 

• Yield the correct LO propagator for different situations without requiring additional expansions 

• Should be setup so we do not have to revisit the LO result when formulating power corrections 

To explain what is meant by the fourth point consider the propagator obtained when a collinear quark 
interacts with a collinear gluon 

q

p+q p
n̄ · (p + q)∝ . 

n · (p + q) n̄ · (p + q) + (p⊥ + q⊥)2 + i0 

Here both the momentum p and q appear on equal footing, and no momenta are dropped in the denomi­
nator. This can be contrasted with the leading propagator obtained when a collinear quark interacts with 
an ultrasoft gluon 
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(
Wn =

∑
k p

∑ −g)k

erm

n̄

k!

(
·An(q1) · · · n̄ ·An(qk)

.
k[n̄ · q1][n̄ · (q1 + q2)] · · · [n̄ ·

∑
i=1 qi]

)

W (0,−∞) = P exp

(
ig

∫ 0

ds n̄ ·An(ns¯ )
−∞

)
(3.35)
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k

p+k p
n̄ · p∝ .2n · (p + k) n̄ · p + p⊥ + i0 

Here the ultrasoft kµ momentum is dropped for all components except n · k where it is the same size as 
the collinear momentum n · p. The dropping of k⊥ « p⊥ and n̄ · k « n̄ · p corresponds to carrying out a 
multipole expansion for the interaction of the ultrasoft gluon with the collinear quark. The LO collinear 
quark propagator must be smart enough to give the correct leading order result without further expansions, 
irrespective of whether it later emits a collinear gluon or ultrasoft gluon. 

We will achieve the desired collinear Lagrangian in several steps. 

4.1.1 Step 1: Lagrangian for the larger spinor components 

In this section we construct a Lagrangian for the field ξ̂n. It will satisfy the first two requirements in our 
bullet list. 

We begin with the standard QCD lagrangian for massless quarks. 

LQCD = ψi / (4.1)Dψ 

Expanding ψ and D in our collinear basis gives us 

(4.2)

We can simplify this result by using the projection matrix identities for the collinear spinor found in 
section 3.1. In particular, various terms vanish such as 

n/ n/̄
in̄ · Dξ̂n = 0 , ϕ¯ in · D = 0 (4.3)n2 2 

by virtue of the analog of (3.19) for ϕ¯ . Lastly, terms like n

ˆ ˆ ˆ ˆ ˆ ˆξ i / ξn = ξ iD/⊥Pnξn = ξ Pni / ξn = 0 , iD/⊥ϕn = 0 , (4.4)n D⊥ n n D⊥ ϕn̄

¯since ξnPn = 0 and ϕ̄n̄Pn̄ = 0. These simiplifications leave us with the Lagrangian 

n/ n/L = ξ̂n in · D ξ̂n + ϕ¯iD/⊥ ξ̂n + ξ̂n iD/⊥ϕn̄ + ϕn̄ in̄ · Dϕn̄ . (4.5)n2 2 

So far this is just QCD written in terms of the ξ̂n and ϕn̄ fields. However, the field ϕn̄ corresponds to the 
spinor components which were subleading in the collinear limit. These spinor components will not show 
up in operators that mediate hard interactions at leading order. Therefore we will not need to consider a 
source term for ϕn̄ in the path integral.3 This means that we can simply perform the quadratic fermionic 

3At subleading order the coupling to the subleading components is introduced in operators via the combination involving 
ξn shown in the last line of Eq.(4.6), so there is still no reason to have a source term for ϕn̄. 
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L = (ϕn̄ + ξ̂n)

(
/̄n

2
in ·D +

/n

2
in̄ ·D + i /D⊥

)
(ϕn̄ + ξ̂n) . (4.2)
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path integral over ϕn̄. At tree level doing so is simply equivalent to imposing the full equation of motion 
for ϕn̄. We find 

δL n/
0 = : in̄ · Dϕn̄ + iD/⊥ξn = 0 (4.6)

δϕn̄ 2 
n/̄ ˆin̄ · Dϕn̄ + iD/⊥ξn = 0 
2 

1 n/̄ ˆϕn̄ = iD/⊥ ξn ,
in̄ · D 2 

where the second line is obtained by multiplying the first by /̄n/2 on the left, and the plus sign in the last 
line comes from using /̄ = −i / ¯ Plugging this result back into our Lagrangian, two terms cancel, niD/⊥ D⊥n/. 
and the other two terms give the Lagrangian for the ξ̂n field 

The inverse derivative operator may look a little funny, but we can understand it in the same way we do for 
the operator 1/r̂ in quantum mechanics, namely by defining it through its eigenvalues, which in this case 
are in momentum space. Say we have the operator 1 acting on a field φ(x). Expressing this operation in̄·∂ 
in momentum space gives 

and the eigenvalues 1/n̄ · p define the inverse derivative operator. 
Although we have a Lagrangian for ξ̂n we are not yet done. In particular we have not yet separated 

the collinear and ultrasoft gauge fields, nor the corresponding momentum components. These remaining 
steps will be to 

2. Separate the collinear and ultrasoft gauge fields. 

3. Separate the collinear and usoft momentum components with a multipole expansion. 

We then can expand in the fields and momenta and keep the leading pieces. 

4.1.2 Step 2: Separate collinear and ultrasoft gauge fields 

µ 2Recall that Aµ
n ∼ (λ2 , 1, λ) ∼ pn n us. « pand Aµ ∼ (λ2, λ2, λ2) ∼ kµ Since k2 the ultrasoft gluons encode us n 

much longer wavelength fluctuations, so from the perspective of the collinear fields we can think of Aµ 
us 

like a classical background field. In background field gauge we would write Aµ = Qµ + Aµ where Qµ iscl 
the quantum gauge field and Aµ is the classical background field that only appears on external lines. In cl 
general there is no need for a relationship between the full QCD gluon field Aµ and the SCET fields Aµ 

us 
and Aµ

n, but if one exists then it does make matching computations much simpler. Based on the analogy 
with a background gauge field you might not be too surprised to learn that a relation exists which encodes 
basic tree level matching 

Aµ = Aµ + Aµ + · · · . (4.9)n us 

Here the ellipsis stand for additional terms involving Wilson lines which only will become relevant when 
we formulate power corrections, and hence will be ignorded for our leading order analysis here (they are 
given below in Eq.()). The interpretation of Aµ

us as a background field to ξn and Aµ
n will also prove useful 
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L =
1

ξ̂n

(
in ·D + iD/⊥

n/
iD/

in̄ ·D ⊥

)
¯
ξ̂n . (4.7)

2

1 1
φ(x) =

in̄ · ∂
1

d
in̄ · ∂

∫
4pe−ipxϕ(p) =

∫
d4pe−ipx ϕ(p) , (4.8)

n̄ · p
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when we derive the collinear gluon lagrangian and when we later consider gauge transformations in the 
theory. 

Now, comparing the power counting between components of Aµ
n and Aµ 

us, we find 

n̄ · An ∼ λ0 » n̄ · Aus ∼ λ2 (4.10) 
Aµ ∼ λ » Aµ ∼ λ2 

⊥ n ⊥ us 

n · An ∼ λ2 ∼ n · Aus. 

So we see that Aµ and n̄ · can be droped from our leading order analysis because in the combination ⊥ us Aus 
Aµ
n + Aµ they are always dominated by the collinear gluon term. Conversely, n · Aus cannot be dropped us 

because it is of the same order as n · An. 

4.1.3 Step 3: The Multipole Expansion for Separating momenta 

We want to find a way to isolate momenta that have different scaling with λ. Such a procedure is useful 
because it will allow us to formulate power corrections in a manner where operators give homogeneous 
contributions in λ order by order. For example, consider the denominator of the propagator of a quark 
with momentum pn + kus expanded to keep the leading and first subleading terms 

1 1 
= − + ⊥(pn + kus)2 (pn us)(pn + k− + k⊥ )2+ k− 

us) + (pn us
⊥1 2k⊥ · pus n = − + . . . . (4.11)− + + k+ ⊥ 2 − + + k+ ⊥ 2]2pn (pn us) + p [pn (pn us) + pn n 

By power counting, we see that the first term scales as λ−2 and the second term scales as λ−1 . Although 
the first term dominates the second, we need to be able to reproduce the second term at the level of the 
Lagrangian when higher order corrections are needed. Expressed more formally, we would like a systematic 
multipole expansion. Our desired expansion is similar to the one found in E&M which gives corrections 
to the electrostatic potential for a given charge distribution. 

In position space the multipole expansion corresponds to expanding the long wavelength field, Aus(x) = 
Aus(0) + x · i∂Aus(0) + . . .. To see what is going on here we can Fourier transform the operators (taking 
one-dimensional fields and ignoring indices for simplicity) 

We see immediately that this corresponds to a 3-point Feynman rule where the small momentum k is 
ignored relative to the large momenta p1 and p2, and that total momentum is not conserved at the vertex. 
For the next order term we get 

Here the Feynman rule involves a kδ ' (p1 − p2) and we must integrate by parts to obtain the multipole 
momentum conservation expressed by δ(p1 − p2). This integration by parts differentiates other parts of a 
diagram that carry this momentum, in particular the neighbouring propagators, which then would produce 
terms like the 2nd term in Eq. (4.11). 
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∫
¯dx ψ(x)A ip1x ik(0) ip2x ¯

us(0)ψ(x) =

∫
dx

∫
dp1 dp2 dk e e− e− ψ(p1)Aus(k)ψ(p2)

=

∫
¯dp1 dp2 dk δ(p1 − p2) ψ(p1)Aus(k)ψ(p2). (4.12)

∫
¯dx ψ(x)x(i∂Aus)(0)ψ(x) =

∫
¯dp1 dp2 dk δ

′(p1 − p2) k ψ(p1)Aus(k)ψ(p2). (4.13)
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Figure 5: Grid to picture the separation of momenta into label and residual components. 

Since Feynman diagrams are almost always evaluated in momentum space it would be more convenient 
to have a multipole expansion formalism that avoids the step of going through position space. In the 
remainder of this section we will set up a formalism to achieve this. It will allow us to 1) simply derive 
the corresponding momentum space Feynman rules, 2) simplify the formulation of gauge transformations 
in the effective theory, and 3) incorporate the multipole expansion into propagators rather than vertices. 

For the moment we only consider the quark part of the field ξ̂n(x). We will add the anti-quark part 
later on. Computing the Fourier transform ξ̃n(p) of the quark part of our field we have 

Now to separate momentum scales, we define our momentum pµ to be a sum of a large momentum 
components pµ called the label momentum and a small momentum pµr called the residual momentum. c 

µ µ µp = p + p (4.15)r 

pµ ∼ Q(0, 1, λ) 
c 

c 
µp ∼ Q(λ2, λ2, λ2)r 

This decomposition is similar to the one found in HQET where the quark momentum is pµ = mvµ + kµ. 
Although at the end of the day all momenta will be continuous, it turns out that it is quite convenient 
for understanding the multipole expansion to interpret the pc as defining a grid of points, and the pr as 

⊥defining locations in the surrounding boxes. This expansion is only necessary for the p− and p momenta 
+since there are no label p momenta, so we have a grid as shown in Fig. 5 (for convenience we show 

µonly one of the pµ components). Note that any momentum p has a unique decomposition in terms of ⊥ 
label and residual components. Since pc » pr the spacing between grid points is always much larger than 
the spacing between points in a box. This setup has the advantage of allowing us to cleaning separate 
momentum scales in integrands, arranging things so every loop integrand is homogeneous in λ. 

In practice the grid picture is a bit misleading, since actually the boxes are infinite and with momentum 
components (pc, pr) we are really dealing with a product of continuous spaces R3 × R4/I where I are a 
group of relations that remove redundancy order by order in λ. (I includes the set of RPI transformations 
that we will discuss later on.) Nevertheless it is very convenient to derive the rules for integrals on the 
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ξ̃n(p) =

∫
d4x eip·x ξ̂n(x). (4.14)
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label-residual space by working with a more familiar discrete label and continuous residual momentum 
picture, and then taking the continuum limit. 

Thus if we are integrating the collinear momentum p over a certain region, we will write 

 

where we do not include pc = 0 in the sum over all pc values, because pc = 0 does not define a collinear 
momentum. Indeed the pc = 0 bin corresponds to the ultrasoft modes. For an ultrasoft momentum p we 
simply have 

 

With this momentum separation we can also label our fields by both components 

We also have separate conservation laws for label and residual momenta 

Every collinear field carries both label and residual momenta, they are both conserved at all vertices, 
but Feynman rules may depend on only one or the other of these components. For example, what was 
previously a nonconservation of momenta for an interaction between collinear and ultrasoft particles now 
becomes two separate conservations of momenta. 

k

,

us

p pl r)( ,p pl r )( +kus

An example is shown in the figure above. 
Finally, since all fields carry residual momenta the conservation law just corresponds to locality of the 

field theory with respect to the Fourier transformed variable pr → x. Therefore we transform the residual 
momenta back to position space to obtain our final collinear quark field 

We will build operators using these fields. Altogether, the above steps allow us to rewrite our hatted 
collinear field ξ̂n(x) as 

 

 

We can identify several facts about label conservation for the field ξn,p£ (x) 
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∫
d4p→

p

∑
` 6=0

∫
d4pr (4.16)

∫
d4p→

∫
d4pr . (4.17)

ξ̃n(p)→ ξ̃n, p`(pr) . (4.18)

∫
d4x ei(p`−q`)·x ei(pr−qr)·x = δp`,q` δ

4(pr − qr)(2π)4. (4.19)

d
ξn,p`(x) =

∫ 4pr ˜e
(2π)4

−iprx ξn, p`(pr) . (4.20)

ξ̂n(x) =

∫
d4p −ip·x ˜ 4 −ip`·x −ipr·x ˜e ξn(p) = d pr e e ξn, p (pr)

(2π)4
p

∑
`

` 6=0

∫
=

p

∑
e−ip`·x ξn, p`(x) . (4.21)

l=06
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•	 Interactions with ultrasoft gluons or quarks leave the label momenta of collinear fields conserved. 

•	 Interactions with collinear gluons or quarks will change label momenta. 

•	 The label n for the collinear direction is preserved by both ultrasoft and collinear interactions. Only 
a hard (external) interaction can couple fields with different collinear directions. 

Now that we have separated momentum scales in our fields we would like to do the same with derivatives 
that act on these fields. Since ξn, p£ (x) contains only residual momenta, we know that 

i∂µξn, p£ (x) ∼ λ2ξn, p£ (x).	 (4.22) 

We also define a label momentum operator such that 
µPµξn, p£ (x) ≡ p ξn, p£ (x).	 (4.23)c 

µ	 − ⊥µRecall that Pµ and p only contains the components P ≡ n̄ · P ∼ p ∼ λ0 and Pµ ∼ p ∼ λ. Therefore c	 c ⊥ c 
we have n · P = 0. Also 

in̄ · ∂ « P ,	 i∂µ « P⊥ 
µ . (4.24)⊥ 

The main advantage of the label operator is that it provides a definite power counting for derivatives. It 
is also notationally friendly in that it removes the necessity of a label sum. We can see this by rewriting 
our field ξ̂n(x) in terms of label momenta 

(4.25) p
In the last line we defined ξn(x) = . Since the label operator allows us to encode the phase pl=0 ξn, pl 
factor involving label momenta as an operator, we can suppress the momentum labels on our collinear 
fields if there is no reason to make them explicit. For field products we have 

ξ̂n(x)ξ̂n(x) = e −iP·xξn(x)ξn(x)	 (4.26) 

where the label operator acts on both fields. Consequently, conservation of label momenta is simply 
encoded by this phase factor and is manifest at the level of operators. 

Lastly, we must deal with anti-particles and gluons. For the anti-particles, we expand our Dirac field 
into two parts 

we then associate each part with a collinear field and expand as a sum over label momenta. 
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ξ̂n(x) =
p

∑
e−ip`·x ξn,p`(x)

`=06

= e−iP·x ξn,p`(x)
p` 6=0

≡ e−i x

∑
P ξn(x) .

6

ψ(x) =

∫
d4p δ(p2)θ(p0)

[
u(p)a(p)e−ip·x + v(p)b†(p)eip·x (4.27)

= ψ+(x) + ψ−(x)

]

ψ+ −→ ξ̂+(x) =
∑

e−ip`n
·xξ+

n, p (x) , (4.28)
`

pl 6=0

ψ− −→ ξ̂n
−(x) =

p

∑
eip`·xξn,

−
p (x) ,
`

` 6=0
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where both have a θ(p0) = θ(n̄ · pc). Because of charge conjugation symmetry it is convenient to combine c 
the particle and anti-particle fields back into a single field. In order to do this we have to deal with the 
opposite signs for their phase. To do this we define 

(x) ≡ ξ+ (x) + ξ− (x) (4.29)ξn, p£ n, p£ n, −p£ 

where pc has either sign, but one picks out particles and one picks out antiparticles. Thus the action of 
¯the fields ξn,p£ and ξn,p£ is that for 

n̄ · pc > 0 : a particle is destroyed or created 
n̄ · pc < 0 : an antiparticle is created or destroyed 

The sign convention for the label momentum is easy to remember since it is in the same direction as the 
fermion number flow. With this definition, we may write 

ξ̂n(x) = e −iP·xξn, p£ (x) , (4.30) 

and all the manipulations we were making with particle fields carry through for the fields that have both 
particles and antiparticles. For collinear gluons, we proceed analogously to find 

µA µASince the gluon field Aµ
n = An T A where An (x) is real we also have 

[AµA µA 
n,q£ 

(x)] ∗ = An,−q£ 
(x) . (4.33) 

− −Once again for q > 0 the field An,q£ destroys a gluon, while for q < 0 it creates a gluon. c c 

With our conventions the action of the label operator on a bunch of labelled fields is 

µ µ µ µPµ(φ† φ† · · · · · · ) = (p · · − q − q − · · · )(φ† φ† · · · · · · ). (4.34)q1 q2 φp1 φp2 1 + p2 + · 1 2 q1 q2 φp1 φp2 

Thus it gives a minus sign when acting on daggered fields. It is also useful to note that if we differentiate 
an arbitrary collinear field φ̂n(x) that it yields 

(4.35) 

In the last line, we can suppress the exponent if we assume that label momenta are always conserved. 
Effectively, by introducing the label operator we have replaced the ordinary derivative operation by 

i∂µφ̂n(x) → (Pµ + i∂µ)φn(x). (4.36) 
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Âµn =
∑

e−iq`·xAµ xAµn,q = e−iP· n(x) (4.31)
`

q` 6=0

where
Aµn(x) =

q

∑
Aµn, q . (4.32)

`

`=06

i∂µφ̂n(x) = i∂µ
∑

e−ip·xφn, p(x)
p=06

=
∑

e−ip·x(Pµ + i∂µ)φn, p(x)
p=06

= e−iP·x(Pµ + i∂µ)φn(x). (4.35)
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4.1.4 Final Result: Expand and put pieces together 

At last, we may construct our final leading order Lagrangian. We begin with the previously derived result: 

Changing i∂µ → (Pµ + i∂µ) and ξ̂  
n → ξn and expanding our derivative operators, we have 

 

where the ellipses again denote additional ∼ λ2 terms that can be dropped in our leading order analysis 
(but later on we will see are required by gauge symmetry when considering power suppressed operators). 
Keeping only the lowest order terms, we have the following lagrangian 

(4.39)

where the collinear covariant derivatives are 

iDµ = Pµ + gAµ	 (4.40)n⊥ ⊥ n⊥ , 
in̄ · Dn = P + gn̄ · An. 

Remarks: 

(0)•	 Both terms with covariant derivatives in the (· · · ) in L are of order λ2 so the leading order La­nξ 
grangian is order λ4 (recalling that the fields scale as ξn ∼ λ). Since for a Lagrangian with collinear t 
fields d4x ∼ λ−4 this gives us an action that is ∼ λ0 as desired. The superscript (0) on the 
Lagrangian denotes this power counting for the action. 

•	 All fields are defined at x, and derivatives for this coordinate scale as i∂µ ∼ λ2 so the action is 
explicitly local at the scale Qλ2 . 

•	 The action is also local at the scale of Pµ ∼ Qλ since these derivatives occur in the numerator. It⊥ 
only has non-locality at the hard scale through the inverse P ∼ λ0 . The fact that there is locality 
except at the hard scale is a key feature of SCETI. Some attempts to tweak the formalism described 
here, in order to simplify SCET, lead to actions that are non-local at the small scale ∼ λ2 because 
they integrate out some onshell particles, while leaving other onshell particles to be described by an 
action. We will avoid doing this, taking the attitude that low energy locality is a desired property 
for the effective field theory. 

•	 If we are considering a situation without ultrasoft particles, and without hard interactions that do 
not couple to a particular component, then the interaction of collinear fermions alone could equally 
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L =
1

ξ̂n

(
in ·D + iD/⊥

n/
iD/

in̄ ·D ⊥

)
¯
ξ̂n. (4.37)

2

in ·D = in · ∂ + gn ·An + gn ·An (4.38)

iD = (⊥ Pµ µ︸ + gA )⊥ n⊥︷︷ ︸
∼λ

+ (i∂µ⊥ + gAµ⊥, us)︸ ︷︷ ︸
∼λ2

+ · · ·

in̄ ·D = (P + gn̄ ·An)︸ ︷︷ +

∼λ0

︸ ︸(in̄ · ∂ + gn̄ ·Aus)︷︷ ︸
∼λ2

+ · · ·

ix 1L(0)
= e− ·P ξ̄n

(
in ·D + iD/n iD/n

)n/̄
ξn ,nξ ⊥ in̄ ·Dn

⊥ 2
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well be described by the QCD Lagrangian. Indeed, even in the presence of ultrasoft fields we can 
write a Dirac type Lagrangian that is equivalent to Eq. (4.39) by 

Integrating out ϕn̄ exactly reproduces Eq.(4.39). This Lagrangian is not equivalent to QCD due to 
the coupling to the ultrasoft gluon field, and the zero-bin subtractions related to pc  = 0 that will be 
discussed later on. But this form does make it more clear why the collinear particles share many of 
the properties of the full QCD Lagrangian (for example, we have the same renormalization properties 
for the gauge coupling). 

(0)
The computation of the propagator from L is also greatly simplified without the need for any additional nξ 
power counting. Specifically, Eq. (4.39) gives the collinear quark propagator 

in/ n̄ · pc 
. (4.42)

2 (n̄ · pc)(n · pr) + (pc⊥)2 + i0 

The leading order Lagragian is smart enough that it gives the correct propagator in different situations 
without having to make further expansions. This is important to ensure that the leading order Lagrangian 
strictly give O(λ0) terms, while subleading Lagrangians (and operators) will be responsible for power 
corrections. For example, if we have an interaction with an ultrasoft gluon then 

k

,

us

p pl r)( ,p pl r )( +kus

in/ n̄·pj= 2 (n̄·pj)(n·pr+n·kus)+(pj⊥)2+i0 , 
(4.43) 

while if we have an interaction with a collinear gluon then 

,p pl r)( ,p pl r )( +

,q ql r)(

qr+ ql

in/ (n̄·pj+n̄·qj)= .2 (n̄·pj+n̄·qj)(n·pr+n·qr)+(pj⊥+qj⊥)2+i0 
(4.44) 

4.2 Wilson Line Identities 

With the label operator formalism there are several neat identities that we can derive for Wilson lines. In 
particular we can show that all occurences of the field n̄ · An can always be entirely replaced by the Wilson 

(0)
line Wn. As an example we will show how this is done for the Lagrangian L In position space the nξ . 
defining equations for a Wilson line are W (x, x) = 1 and its equation of motion, which we can transform 
to momentum space 

in̄ · DxW (x, −∞) = 0 (position space) 
⇓ Fourier Transform 

in̄ · DnWn = (P + gn̄ · An)Wn = 0 . (4.45) 
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L(0)
= enξ
−ix·P ξ

ΞniD/ Ξn , Ξn ≡
(

n

ϕn̄

)
n̄/

, iD/ =
n/

in
2
·D +

n̄/
in̄

2
·Dn + iD/n = iD/⊥ n+ gn

2
·Aus .

(4.41)
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With this definition, the action of in̄ · Dn on a product of Wn and some arbitrary operator is 

So we have the operator equation 
in̄ · DnWn = WnP (4.47) 

and with Wn
†Wn = 1 we have 

in̄ · Dn = WnPW † , P = W †in̄ · DnWn , (4.48)n n

as operator identities. Since by collinear gauge invariance we can always group n̄ ·An with P to give in̄ ·Dn, 
the first identity implies that we can always swap n̄ · An for the Wilson line Wn. Inverting these results 
also gives useful operator identities 

1 1 1 1 
= W † Wn , = Wn W † . (4.49)n nin̄ · Dn P P in̄ · Dn 

(0)
The first relation allows us to rewrite L asnξ 

It is also useful to note that we can use the label operator to write a tidy expression for the Wilson line 
which is built from fields that carry both label and residual momenta: 

4.3 Collinear Gluon and Ultrasoft Lagrangians 

To derive the collinear gluon Lagrangian, we treat usoft and collinear degrees of freedom separately by 
letting Aµ represent a background field with respect to Aµ We begin with the gluon Lagrangian from us n. 
QCD: 

1     
L = − Tr Gµν Gµν } + τ Tr{(i∂µAµ)2 +2 Tr c i∂µiDµc (4.52) 

2 ' -n " ' -n " ' -n " 
Gauge Fixing Term Ghost Term Gauge Kinetic Term 

iwhere Gµν = [Dµ, Dν ]. Expanding the covariant derivative as we did in the quark sector we keep only g 
the leading order terms. For a covariant derivative acting on collinear fields the leading order terms are 

µ 
iDµ → iDµ = 

n
(P + gn̄ · An) + (Pµ + gAµ ) + 

n̄
(in · ∂ + gn · An + gn · Aus). (4.53)⊥ ⊥, n2 2 

Recall that the field Aµ varys much more slowly than Aµ
n, so we can think of Aµ as a background field us us 

from the perspective of the collinear fields (even though it is a quantum field in its own right). The gauge 
fixing and ghost terms for the collinear Lagrangian should break the collinear gauge symmetry, but we do 
not want them to gauge fix the ultrasoft gluons, and hence they should be covariant with respect to the 
Aµ 
us connection. Since by power counting only the n · Aus gluon can appear along with the collinear gluons 
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in̄ ·Dn(WnO) = ([P + gn̄ ·An)WnO
= (P + gn̄ ·An)Wn

]
O +WnPO

= WnPO (4.46)

as operator identities. Since by collinear gauge invariance we can always group n̄ ·An with P to give in̄ ·Dn,
the first identity implies that we can always swap n̄ · An for the Wilson line Wn. Inverting these results
also gives useful operator identities

1

in̄ ·Dn
= W †n

1

P
Wn ,

1

P
= Wn

1
W †

in̄ ·D n . (4.49)
n

L(0)
= enξ
−ix·P ξ̄n

(
in ·D + i /Dn⊥W

†
n

1

P
Wni /Dn⊥

) /̄n
ξn . (4.50)

2

Wn(x) =

[
p

∑
exp

erms

(−g
P
n̄ ·An(x)

)]
. (4.51)
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(p, pr) n/ n̄·p
i 22 n·pr n̄·p + p +i0⊥

¯ n/ 

= 

 μ , A

p pɂ

μ , A

p pɂ

μ , A ν , B

q

= ig T A nµ 2 

Figure 6: Order λ0 Feynman rules: collinear quark propagator with label p and residual momentum pr, and 
collinear quark interactions with one soft gluon, one collinear gluon, and two collinear gluons respectively. 

Aµ
n, only this component is needed. Therefore we replace i∂µ → iDµ for all the ordinary derivatives in us 

Eq. (4.52) where 
µ µn n̄ n̄

iDµ ≡ P + Pµ + in · ∂ + gn · Aus. (4.54)us ⊥2 2 2 
The resulting leading order collinear gluon Lagrangian is then  

For the Langrangian with only ultrasoft quarks and ultrasoft gluons, at lowest order we simply have 
the QCD actions. Using a general covariant gauge for the ultrasoft gluon field we therefore can write 

where iDµ = i∂µ + Aµ All the terms in L(0) have a power counting of O(λ8), but we subtract 8 for the us us. 
ultrasoft measure d4x which is why we label the Lagrangian as (0). Note that the choice of gauge fixing 
parameters τ and τus for the collinear and ultrasoft gluons are independent, which is related to the fact 
that there are independent gauge symmetries that define these connections. 

All together this allows us to write down the full leading order SCETI Lagrangian with a single set of 
quark and gluon collinear modes in the n direction, and quark and gluon ultrasoft modes, 

L(0) (0) 
+ L(0) + L(0)= L . (4.57)nξ ng us 
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γ
= ig TA

[
⊥

nµ + µ p/⊥ p/′ γ⊥
+ ⊥ µ

n̄·p
p

n̄·p ′ − /′ p/⊥ ⊥ ¯
n̄n̄·p n̄·p ′ µ

]
n/
2

= ig2 TA TB γ
γ

n̄·(p−q)

[
µ
⊥γν
⊥ − µ

⊥p/⊥
n̄·p n̄ν −

p ′/⊥γ
⊥
ν

n̄·p ′ n̄µ + p ′/⊥p/⊥ ¯
n̄

n̄·p n̄·p ′ µn̄ν

]
n/
2

+ ig2 TB TA ν
⊥

γ
n̄·(q+p′)

[
ν
⊥γµ
⊥ − γ p/⊥

n̄·p n̄µ −
p ′/⊥γ

⊥
µ

n̄·p ′ n̄ν + p ′/⊥p/⊥
n̄·p n̄·p ′ n̄µn̄ν

]
n̄/
2

1L(0)
ng = Tr ([i µ, i ])2

µ + τTr ([i µ , Anµ])2 + 2Tr cn[i us, [i µ, cn]] .
2g2

D D Dus Dµ D
{ } { } { }

(4.55)

L(0)
us = ψusi /Dusψus −

1

2
Tr
{
GµνusG

us
µν

}
+ τusTr{(i∂µAµus)2

}
+ 2Tr

{
cus i∂µiD

µ
uscus

}
, (4.56)
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a, μ b, ν

(q, k)

b, ν c, λ

a, μ

q2q1

a, μ b, ν

c, λd, ρ

a, μ b, ν

c, λ d, ρ

Figure 7: Collinear gluon propagator with label momentum q and residual momentum k, and the order λ0 

interactions of collinear gluons with the usoft gluon field. Here usoft gluons are springs, collinear gluons 
are springs with a line, and τ is the covariant gauge fixing parameter in Eq. (4.55). 

4.4 Feynman Rules for Collinear Quarks and Gluons 

For convenience we summarize some of the Feynman rules that follow from the collinear quark and gluon 
Lagrangians. We do not show the purely ultrasoft interactions which are identical to those of QCD, nor 
do we show the purely collinear gluon interactions which are also identical to those of QCD. 

The Feynman rules that follow from the leading order collinear quark Lagrangian are shown in Fig. 6 
where each collinear line carries momenta (p, pr) with label momenta pµ = n̄ ·p nµ/2 + pµ and residual ⊥ 
momentum prµ . Only one momentum p or p ' is indicated for lines where the Feynman rule depends only 
on the label momentum. For the collinear quark propagator we have contributions from both quarks and 
antiquarks which give: 

in/ θ(n̄ · p) in/ θ(−n̄ · p) in/ n̄ · p 
2 + 2 = 2 (4.58)

2 p⊥ 2 p⊥ 2 n̄ · p n · pr + p + i0n · pr + + i0 n · pr + − i0 ⊥ 
n̄·p n̄·p 

The Feynman rules between collinear gluons and ultrasoft gluons are shown in Fig. 7 with a collinear gluon 
in background field gauge that is ultrasoft covariant and specified by the parameter τ . 

4.5 Rules for Combining Label and Residual Momenta in Amplitudes 

In practical calculations the grid picture in Fig. 5 is not to be taken literally. Doing so would correspond to 
using a Wilsonian EFT with finite cutoff’s (edges for the grid boxes) that distinguish the size of momenta. 
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i= − q
g

n̄·q n·k + q2 + i0⊥

(
µν − (1− τ) µqν δ

n̄·q n·k + q2
⊥

)
a,b

= gfabcnµ
{
n̄ · q1 gνλ − 1(12 − 1 )[n̄τ λq1ν + n̄νq2λ]

}

= −1 ig2nµ

{
fabef cde(n̄λgνρ2 − n̄ρgνλ)

+fadef bce(n̄νgλρ − n̄λgνρ) + facef bde(n̄νgλρ − n̄ρgνλ)

}

= 1 ig2nµnν n̄ρn̄4 λ(1− 1 )α
{
facef bde + fadef bce

}
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Instead of this, we need to use a Continuum EFT picture where the EFT modes have propagators that 
extend over all momenta, but integrands which obtain their key contribution from the momentum region 
these modes are built to describe. The terms needed to correct the (otherwise incorrect) ultraviolet 
contributions of the resulting Continuum EFT are included as perturbative Wilson coefficients for low 
energy operators. The Wilsonian and Continuum versions of EFT are really two different pictures of 
the same thing, in much the same way that two different renormalization schemes may represent the 
physics in different ways, but in the end still do encode the same physics. Nevertheless there are many 
practical advantages to the Continuum EFT framework, and it makes setting up SCET much easier. In 
particular it allows us to use regulators like dimensional regularization which naturally preserve spacetime 
and gauge symmetries. To setup up SCET in this continuum framework we need to understand how the 
redundancy I in the label-residual momentum space Rd−1 × Rd/I (for the case with d-dimensions) is 
resolved, given a pair of momenta components (pc, pr) ∈ Rd−1 × Rd . The upshot is that in the simplest 
cases the residual momentum can simply be dropped or absorbed into a label momentum in the same 
direction (making it continuous), while in the most complicated cases the formalism leads to so-called 0­
bin subtractions for collinear integrands. These subtractions ensure that the collinear modes do not double 
count an IR region that is already properly included from an ultrasoft integrand. For future convenience 
we list the rules in this section, but caution the reader that some parts of this section are best understood 
when read together with one of the one-loop examples from section 7, and also after having read the 
discussion of the reparameterization invariance symmetry in section 5.3 that describes the redundancy 

µ µ µ µ(p ) + (pr ) = (p + βµ) + (pr − βµ) which specifies I. c c 

For an arbitrary tree level diagram in SCET we will have some set of external lines that are either 
ultrasoft or collinear (and either in the initial or final state), and also a set of collinear and ultrasoft 
propagators. For the external lines that are ultrasoft we have only residual momenta kµ and the onshellus 

−condition k2 = 0. For the external lines that are collinear it suffices to take label momenta p = n̄ · pcus c 
µ + −and pc⊥, and a single residual momentum p . This amounts to picking βµ above to contain the full prr 

+and pµ components. The onshell condition for the collinear particles is then simply p − p − pp 2 = 0. r⊥ c r c⊥ 
All propagators for intermediate collinear and ultrasoft lines are then simply determined by momentum 
conservation as usual. At leading order in λ this perscription for tree diagrams simply amounts to the same 
thing as dropping any ultrasoft momentum components k− and k⊥ from collinear propagators, though ofus us 
course these momenta can still appear within ultrasoft propagators. At higher orders in λ these ultrasfot 
momentum components can also appear from collinear propagators through Lagrangian insertions, which 
yield terms like the second one in Eq. (4.11). 

For loop diagrams and loop integrations we need several rules for operations on the label-residual 
momentum space. Internal collinear lines should be considered as carrying loop momenta with two parts 
q = (qc, qr), while ultrasoft propagators only carry loop momenta kr. There is a seperate momentum 
conservation for the label and residual momenta. After using momentum conservation we have label 
momenta from either external collinear particles or collinear loops, and residual momenta for external 

+ultrasoft particle, external collinear particles from p , and from collinear and ultrasoft loops.r 

First we note that if we integrate over all label momenta qc and residual momenta qr that this will be 
equal to an integration over all of the qµ momentum space, since it does not depend on how we divide the 
momentum into the two components. For notational convenience we denote the label space integration as 
a sum rather than an integral. In d-dimensions we have 

where we have recombined the label and residual momenta for the minus components, and the (d − 2)  
⊥-components. This is relevant for combining the two collinear loop integrations back into a single d­
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∑
q`

∫
ddqr =

∫
ddq , (4.59)
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dimensional integration. In particular at leading order in λ after having used momentum conservation 
µthere will always be one qr for each collinear loop integration, where q− and q⊥ do not appear in any r r 

− ⊥ +collinear or ultrasoft propagator, and hence not in the integrand F (q , q , q ). We can therefore use this c c r 
residual momentum integration in Eq. (4.59) to obtain a full integration 

In the first step we use the fact that F is constant throughout each box in the grid picture of Fig. 5 so its 
the same with the first two arguments shifted by residual momenta. (In the continuum EFT picture its 
the same property, F does not depend on residual momenta in these components.) In the final equality we 
then combined the momenta back into a standard dimensional regularization integration as in Eq. (4.59). 
Essentially at leading order in λ Eq. (4.60) amounts to the same thing that would be achieved by never 
considering the split into label and residual momenta in the first place, and simply writing down the 
integrand without ultrasoft momenta appearing in the − or ⊥ components in collinear propagators, which 
corresponds to the lowest order term in the ultrasoft multipole expansion (and is an easy way to think 
about the outcome of the above formal procedure). We have called this rule 1)naive because there is one 
final complication that we will have to deal with, namely that the integration on qc must avoid producing 
additional divergences when this collinear momentum enters the ultrasoft regime. We denote this fact by 
qc = 0 if q is the momentum of a collinear propagator. These are referred to as 0-bin restrictions.4 We 
will discuss the change needed which handles this complication below. Often the results for collinear loop 
integrals are called “naive” if one uses Eq. (4.60). The result from this naive result will be correct if the 
added terms which properly handle this complication turn out to be zero, which happens in some cases. 

At higher orders in λ there will be dependence on the residual momentum components from higher 
order terms in the multipole expansion of the collinear propagators. If these terms correspond to the 
momentum components q− and q⊥ that do not appear inside any ultrasoft propagators then the resulting r r 
integration is zero 

− ⊥where (qr)j denotes positive powers of the q and q momenta, j > 0. Here Eq. (4.61) is like the dimensional t r r 
regularization rule, ddq(q2)j = 0 for j > 0, which is a consequence of retaining Lorentz invariance with 
this regulator. Eq. (4.61) is the analogous statement in the residual momentum space and ensures that 
we do not obtain nontrivial contributions from higher order terms in the multipole expansion, unless the 
residual loop momentum corresponds to a physical momentum for an ultrasoft loop integration. Both 
ultrasoft loop integrations and ultrasoft external particles introduce residual momenta into propagators 
that can not be absorbed by a rule like that in Eq. (4.59). If we consider a case with an ultrasoft loop 
integration, then there will be dependence on the residual momentum also in an ultrasoft propagator, so 
the integration will give 

which in general is nonzero. This integrand corresponds to a mixed two-loop diagram with one loop 
momentum with collinear scaling and one with ultrasoft scaling. 

4After imposing momentum conservation we get a set of such restrictions, one for each collinear propagator. For example 
q£  if there is a collinear propagator carrying momentum q + p.= −p£ 
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naive1) :
∑∫

ddqr F (q−, q`
⊥, q+

r ) =
∑∫

ddqr F (q− + q− q` + q + d
r ,

⊥ +
r
⊥, qr ) =

∫
d q F (q−, q⊥, q ) . (4.60)` `

q` q`

6

2) :
∑∫

ddq F +
r (qr)

j (q−, q q` `
⊥, r ) = 0 , (4.61)

q`

∑∫
ddqr

∫
ddkr F (q−, q q µ

` `
⊥, + +

r , k
µ d d
r ) = d q

q`

∫ ∫
d k F (q−, q⊥, q , k ) , (4.62)
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Finally let us consider the implications of the zero-bin when combining label and residual momenta. 
Rather than Eq. (4.59) we can have 

(4.63) 

where qc = 0 is simply a label to denote the fact that the label momentum qc must be large in order 
to correspond to a collinear particle carrying total momentum q. If qc = 0 then the particle would 
instead be ultrasoft, and we will often have included another diagram in SCET to account for the different 
integrand that accounts for the proper expansion in this special case. Thus these zero-bin restrictions avoid 
double counting between the SCET fields, which effectively means double counting from the resulting loop 
integrations. It is easy to determine what the set of restrictions are for any diagram, since we have 
one such condition for every collinear propagator. At leading order in λ only the zero-bin subtractions 
corresponding to collinear gluon propagators can give non-zero contributions since operators containing 
an ultrasoft quark together with collinear fields are power suppressed. In a continuum EFT these zerobin 
restrictions are implemented by subtraction terms which can be determined as follows 

Here the integrand F 0 is derived from expanding the integrand for F by taking the label momenta that 
appear in its first two arguments to instead scale as ultrasoft momenta ∼ λ2, expanding, and keeping the 
dominant and any sub-dominant scaling terms up to those that are the same order in λ as the original 
loop integration. If the original integrand F ∼ λ−4, then this corresponds to keeping just the terms up to 
F 0 ∼ λ−8, which is often the leading term. (Together with the standard scaling for the collinear measure, 
ddq ∼ λ4 and for the residual measure ddqr ∼ λ8 these two integrands give contributions that are both 
the same order in λ.) In the last line we combine the subtraction term back together with the original 
integrand, since the integration variables are after all just dummy variables. This set of steps makes it 
clear that zero-bin contributions are encoded by subtractions.5 The scaling for the subtraction is shown 
pictorally in Fig. 8. The F 0 term subtracts singularities from F that come from the region where the 
collinear momentum behaves like an ultrasoft momentum. In general when the subtraction integration is 
non-trivial there will always exist a corresponding ultrasoft diagram where the integration is ultrasoft from 
the start, which precisely corresponds with the contribution that the subtractions is allowing us to avoid 
double counting. 

In general, when one has a continuum EFT with modes that live in a two dimensional space, such as 
those in Fig. 8, one has subtractions induced by the presence of modes at smaller (or equal) p2 . Therefore 

5In fact, an alternate formulation of zero-bin subtractions that avoids the use of notation like q£ = 0 is to note that in 
a theory with both collinear and ultrasoft modes, each collinear propagator is actually a distribution, like a generalized +­
function, that induces these subtraction terms. The fact that we drop higher order terms in the λ expansion when determining 
F 0 implies that we are making the minimal subtraction that avoids double counting IR singularities. Indeed there in principle 
could still be a double counting by a ”constant” contribution, but such constants will be properly taken care of by the matching 
procedure. The minimal subtraction also ensures that the matching result remains independent of the IR regulator as desired. 
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d
q

∑
` 6=0

∫
dqr , (4.63)
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∫
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. (4.64)
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Figure 8: SCETI zero-bin from one collinear direction scaling into the ultrasoft region. 

there are ultrasoft subtractions for the collinear modes, but no collinear subtractions for the ultrasoft 
modes. 

It also should be remarked that depending on the choice of infrared regulators, the subtraction terms 
very often give scaleless integrations of combined dimension d − 4 in dimensional regularization. These 

j jthen just yield terms proportional to (1/E − 1/E ), which are only important to properly interpret UV IR

whether factors of 1/E from the naive collinear loop integration that used Eq. (4.60) are UV poles that 
require a counterterm, or are IR poles that correspond with physical IR singularities in QCD. In particular 
this is often the case for the simplest measurements with an offshellness IR regulator for collinear external 
lines. More complicated measurements (such as those depending on a jet algorithm) or other choices of IR 
regulators (like a gluon mass or a cutoff) will lead to zero-bin subtractions that are not scaleless. 

We will return to this discussion when carrying out explicit examples of collinear loops in section 7. 

Symmetries of SCET 

In quantum field theory Lagrangians are often built up from symmetries and dimensional analysis. So far 
our leading order SCET Lagrangians were derived directly from QCD at tree level. To go further, and 
determine whether loops can change the form of the Lagrangians (through Wilson coefficients or additional 
operators) we need to exploit symmetries and power counting. In this section, we will introduce the SCET 
gauge symmetries and reparameterization invariance (RPI) as a way to constrain SCET operators. We will 
find that the gauge symmetry formalism is a simple restatement of the standard QCD picture except with 
two separate gauge fields. RPI is a manifestation of the Lorentz symmetry which was broken by the choice 
of light-cone coordinates, and which acts independently in each collinear sector. We will also examine the 
spin symmetries of the SCET Lagrangian, although here we will find that there are no surprises beyond 
what we know from QCD. 
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5.1 Spin Symmetry 

(0)
To examine the spin symmetry of L it is convenient to write the Lagrangian in a two component form. nξ 
From Eq. (3.11) we can write 

 

where ϕn is a two-component field, dim ϕn = dim ξn = 3/2, and ϕn ∼ λ. With this two-component field 
the SCET Lagrangian is 

Due to the σ3 the spin symmetry is not an SU(2), but rather just the U(1) helicity symmetry corresponding 
to spin along the direction of motion n of the collinear fields. The relevant generator is 

Sz = iEµν [γµ, γν ] → h = σ3. (5.3)⊥ 

We can relate this symmetry to the chiral symmetry by noting that under chiral symmetry ξn transforms 
as 

This U(1)A axial-symmetry is broken by fermion masses and non-perturbative instanton effects. Just like 
in QCD it is a useful symmetry for determining the structure of perturbation theory results. This implies 
that in SCET it is useful for determining the basis of operators we obtain when integrating out hard 
particles, and for relating Wilson coefficients. 

5.2 Gauge Symmetry 

The standard gauge transformation in QCD is 

U(x) = exp[iαA(x)T A] . (5.5) 

When we go to SCET we need to have gauge transformations which do not inject large momenta into our 
EFT fields, that is, the transformations must leave us withing our effective field theory. For example, if we 
used a gauge transformation where αA satisfied 

i∂µα
A ∼ QαA (5.6) 

then ξ ' = U(x)ξn would no longer have p2 ≤ Q2λ2 and would not be described by SCET. There are two n 
acceptable SCET gauge transformations which are defined by their momentum scale. They are 

collinear Un(x) : i∂µUn(x) ∼ Q(λ2 , 1, λ)Un(x) (5.7) 
ultrasoft Uu(x) : i∂µUu(x) ∼ Q(λ2, λ2, λ2)Uu(x). (5.8) 

There is also a global color transformation which for convenience we group together with the Uu. To 
avoid double counting, in the collinear transformation we fix Un(n · x = −∞) = 1. We can implement a 
collinear gauge transformation on the collinear fields ξn, pl via a Fourier transform. Since ψ(x) → U(x)ψ(x)t 
is equivalent to ψ̃(p) → dq Ũ(p − q)ψ̃(q), the transformation involves a convolution in label momenta. To 
understand how the collinear gauge field transforms under a collinear gauge transformation, we need to 
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ξn =
1√ ϕ

2

(
n

σ3ϕn

)
, (5.1)

L = ϕ†n

[
in · µ 1

D + iDn⊥ iDν

in̄ ·D n (g⊥⊥ µν + iε⊥µνσ3)

]
ϕn . (5.2)

ξn → γ5ξn =

(
0 1
1 0

)
1√
2

(
σ3φn
φn

)
so ϕn → σ3ϕn . (5.4)
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recall that there is a background usoft gauge field Aµ
us. Consequently we must take ∂µ → Dus so that Aµ

nµ 
transforms as a quantum field in an Aµ background. Therefore the collinear gauge transformations are us 

where we sum over repeated momentum label indices. It is convenient to setup a matrix notation for these 
convolutions by defining 

(Ûn)p£,q£ ≡ (Un)p£−q£ ,	 (5.10) 

where the LHS is the (pc, qc) element of a matrix in momentum space, and the RHS is a number (both 
are of course also matrices in color). Then Eq. (5.9) with a sum over repeated indices becomes ξn, p£ → 
(Ûn)p£,q£ ξn,q£ . And if we suppress indices then we have ξn → (Ûn)ξn. 

Finally the ultrasoft fields do not transform under a collinear gauge transformation, since the resulting 
field would have a large momentum and hence no longer be ultrasoft. Essentially this means that by 
definition our collinear gauge transformations do not turn ultrasoft gluons into collinear gluons. 
Collinear Gauge Transformations : Un(x) 

Therefore our set of Collinear Gauge Transformations with the matrix notation for momentum space labels 
are 

•	 ξn(x) → Ûn(x)ξn(x)  

Dµ † • Aµ
n(x) → Ûn(x)(An

µ(x) + i us)Ûn(x)g 

• qus(x) → qus(x) 

• Aµ 
us(x) → Aµ 

us(x) 

When using the momentum label notation the condition Un(n · x = −∞) = 1 becomes (Un)p£→0 = δp£,0 
for the zero-bin pc = 0 (the ultrasoft transformations do not modify large momenta, but the collinear 
transformations do). 

For usoft gauge transformations, the field ξn and Aµ
n transform as quantum fields under a background 

gauge transformation, which is to say they transform as matter fields with the appropriate representation. 
The usoft fields have their usual gauge transformations from QCD. 
Usoft Gauge Transformations : Uu(x) 

Therefore for the Ultrasoft Gauge Transformations we have 

• ξn(x) → Uus(x)ξn(x) 

• Aµ	 † 
n(x) → Uus(x)A

µ
n(x)Uus(x) 

• qus(x) → Uus(x)qus(x) 

†• Aµ (x)(Aµ ∂µ)Uus(x) → Uus us(x) + i us(x)g 

Since all of the fields transform, these ultrasoft gauge transformations connect fields in operators that are 
mixtures of collinear and ultrasoft fields. This differs from Un(x) which only connects collinear fields to 
each other. 
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ξn, p(x)→ (Un)p q(x) ξ (− n,q x) ,

Aµn,p(x)→ µU µ
n,p−q(x)

(
gA (x) + δn,q−q′ q,q′iDus

)
Un,q
† (x) , (5.9)′
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It is important to note that the Un and Uu gauge transformations are homogeneous in the power 
counting, so they do not change the order in λ for transformed operators. They are exact, there are no 
corrections to these transformations at higher orders in λ, and thus the power expansion will have gauge 
invariant operators at each order in λ. 

The transformation of the fields yield transformations for objects that are built from the fields. An 
important case is the Wilson line Wn which is like the Fourier transform of W (x, −∞). In QCD a general 
Wilson line with the gauge field along a path will transform on each end as W (x, y) → U(x)W (x, y)U †(x). 
For the collinear gauge transformation we have fields in momentum space for labels, and position space 
representing residual momenta, and Un

†(−∞) = 1, so the Wilson line transforms only on one side for 
collinear transformations. For ultrasoft transformations Wn(x) is actually a local operator with all fields 

† † at x, and the product of multiple n̄ · An(x) → Uus(x)n̄ · An(x)Uus(x) leads to one Uus and Uus on the left 
and right. Thus with the matrix notation 

collinear : Wn(x) → Ûn(x)Wn(x) , 

ultrasoft : Wn(x) → Uus(x)Wn(x)U
† 
us(x) . (5.11) 

It is useful to consider the correspondence between the appearance of the Wilson line Wn in operators, 
and the collinear gauge symmetry. If we consider our example of the heavy-to-light current then without the 

Γhus 
n
†ΓhusWilson line the operator ξ̄n is not gauge invariant, transforming to ξ̄nU . Here the ξn transformsv v 

because collinear gluons couple to ξn without taking it offshell, but hus does not transform because this v 
ultrasoft field can not interact with the collinear gluons while remaining near its mass shell. But recall 
that when the offshell collinear gluons are accounted for in matching onto the SCET operator that the 
n̄ · An ∼ λ0 gluons generate a Wilson line Wn, so the complete result from tree level matching is 

¯ ΓhusJSCET = ξnWn v . (5.12) 

¯ ˆ † ˆ Γhus ¯ ΓhusNow under a collinear gauge transformation JSCET → ξnUnUnWn = ξnWn , so the current is v v 
¯ † † huscollinear gauge invariant. Under an ultrasoft gauge transformation JSCET → ξnU WnU = usUus usΓUus v 

¯ ΓhusξnWn , so the current is also ultrasoft gauge invariant. Thus the leading order attachments of n̄ · Anv 
gluons that lead to the Wilson line Wn are necessary to obtain a gauge invariant result. Furthermore, 

¯by gauge symmetry the fact that the product ξnWn appears in the operator will not be modified by loop 
corrections. We will take up what modifications can be generated by loop corrections in section 6.2 below. 

Gauge symmetry forces gauge fields and derivatives to occur in the following combinations 

in · D = in · ∂ + gn · An + gn · Aus , (5.13) 
iDµ = Pµ + gAµ 

n ⊥ ⊥ n ⊥ , 
in̄ · Dn = P + gn̄ · An , 
iDµ = i∂µ + gAµ .us us 

We see that gauge symmetry is a powerful tool in determining the structure of operators. It is reasonable 
(0)

to ask, is power counting and gauge invariance enough to fix the leading order Lagrangian L for ξn?nξ 
Only the operators in · D and (1/P)Dn⊥Dn⊥ are O(λ2) and have the correct mass dimension. The latter 
will have the correct gauge transformation properties once we include Wns. Nevertheless, nothing so far 
rules out the operator 

1 n̄/
ξ iDµ Wn W †iD⊥ ξn (5.14)n n⊥ n nµ P 2 

which is gauge invariant and has the correct λ scaling. To exclude this term we need to consider another 
symmetry prinicple, namely reparameterization invariance. 

40  



5.3 Reparamterization Invariance 5 SYMMETRIES OF SCET  

5.3 Reparamterization Invariance 

Our choice of the n and n̄ reference vectors explicitly breaks Lorentz symmetry in SCET, much like v does 
in HQET. Part of this breaking is natural, SCETI is describing a collimated jet which explicitly picks out 
a corresponding n-collinear direction about which the field theory is describing fluctuations. There is also 
a part of the symmetry that is restored by the freedom we have in choosing our n and n̄ vectors, which 
is a reparameterization invariance (RPI). A second attribute of the reparameterization symmetry is the 
freedom we have in splitting momenta between label and residual components. We will explore these two 
in turn. 

The only required property of a set of n, n̄ basis vectors is that they satisfy 

n 2 = n̄ 2 = 0, n · n̄ = 2. (5.15) 

Consequently a different choice for n and n̄ can yield a valid set of light-cone coordinates as long as our 
result still obeys (5.15). Specifically, there are three sets of transformations which can be made on a set of 
light-cone coordinates to obtain another, equally valid, set. 

I II III 
+Δ⊥ → e nnµ → nµ µ nµ → nµ nµ 

α µ (5.16) 
−α ̄n̄µ → n̄µ n̄µ → n̄µ + ε⊥ n̄µ → e nµµ 

where n̄ · ε⊥ = n · ε⊥ = n̄ · Δ⊥ = n · Δ⊥ = 0. The first two transformations are inifinitesimal. The third is a 
finite transformation (where the form is simple), but can be made infinitesimal by expansion in α. These 
transformations must leave a collinear momentum collinear in the same directions, so we can obtain the 
λ-scaling of these parameters by noting that: 

λ2 ∼ n · p → n · p +Δ⊥ · p⊥ =⇒ Δ⊥ ∼ λ1 (5.17) 

λ0 ∼ n̄ · p → n̄ · p + ε⊥ · p⊥ =⇒ ε⊥ ∼ λ0 

α ∼ λ0 

Thus only Δ⊥ is constrained by the power counting, while large changes are allowed for α and E⊥ . These 
RPI transformations are a manifestation of the Lorentz symmetry which was broken by introducing the 
vectors n and n̄. The five infinitesimal parameters Δ⊥ , ε⊥, and α correpsond to the five generators of the µ µ 
Lorentz group which were broken by introducing the vectors n and n̄. These generators are defined by 

Mµν{nµ , n̄µM
µν } or in terms of our standard light-cone coordinates Q± = J1 ± K2, Q± = J2 ± K1, and 1 2 

K3. Here Mµν are the usual 6 antisymmetric SO(3,1) generators. 
If we start with our canonical basis choice n = (1, 0, 0, 1) and n̄ = (1, 0, 0, −1) then we can visualize 

the Type I and Type II transformations as changes in the directions orthogonal to the ẑ direction 

I 
=⇒ 

II 
=⇒ 
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and we can visualize Type III transformations as boosts in the ẑ direction. For Type I we can transform n 
by an O(λ) amount, into another vector within this collinear sector, without changing any of the physics. 
For Type II we recall that the auxillary vector n̄ was chosen simply to enable us to decompose momenta, 
so their is a considerable freedom in its definition, and this corresponds to the freedom to make large 
transformations. (If we start with a more general choice for n and n̄ that satisfies Eq. (5.15) then the 
picture for the Type-III transformation is more complicated than a simple boost.) 

The implications of the Type III transformation for SCET operators are very simple, n and n̄ must 
appear in operators either together, or with one factor of n̄/n in both the numerator and denominator. 
That is, in one of the combinations 

A · n A · n̄
(A · n)(B · n̄), , (5.18)

B · n B · n̄

where Aµ and Bµ are arbitrary 4-vectors. 
In order to derive the complete set of transformation relations we must also determine how pµ trans­⊥ 

forms. Recall that the definition of p⊥ depends on n and n̄, since it is orthogonal to n and n̄, satisfying 
n · p⊥ = 0 = n̄ · p⊥. We can work out its transformation by noting that the four vector pµ does not depend 
on the basis for coordinates. Using the Type-I transformation as an example 

µ µ µ µ Δµ µn n̄ n n̄ n̄µ µ µ ⊥ µ µp = n̄ · p + n · p + p =⇒ n̄ · p + n · p + p + n̄ · p + Δ⊥ · p⊥ + δI(p ) = p . (5.19)⊥ ⊥ ⊥2 2 2 2 2 2 

Thus pµ must transform as ⊥ 
µ Δµ
n̄µ I µ ⊥p⊥ =⇒ p⊥ − Δ⊥ · p⊥ − n̄ · p . (5.20)
2 2 

⊥
The projection relation (n/n̄//4)ξn = ξn also implies that ξn → [1 + ( Δ/ n̄/)/4]ξn. Similar relations can also 
be worked out for type-II transformations, for example 

nµ εµ 
µ II µp =⇒ p − ε⊥ · p⊥ − ⊥ n · p . (5.21)⊥ ⊥ 2 2 

Summarizing all the type-I and type-II transformations on vectors and fields (using Dµ as a typical vector) 
we have 

  

For type-III transformations p⊥ 
µ does not transform, and neither does Wn. 

We can show that our leading order SCET Lagrangian 

n̄/ 1 n̄/L(0) 
= ξnin · D ξn + ξ iD/ iD/ ξn (5.23)nξ n n, ⊥ n ⊥2 in̄ · D 2 
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I II

n→ n+ ∆⊥ n→ n
n̄→ n̄ n̄→ n̄+ ε⊥

n ·D → n ·D + ∆⊥ ·D⊥ n ·D → n ·D
Dµ
⊥ → Dµ

⊥ − ∆⊥µ
2 n̄ ·D − n̄µ

2 ∆⊥ ·D D⊥µ → D⊥µ −
ε⊥µ
2 n ·D −

nµ ε2
⊥ ·D

n̄ ·D → n̄ ·D( n̄ ·D → n̄ ·D + ε⊥ ·D⊥

ξn → 1 + 1
4
/∆
⊥
/̄n
)
ξn ξn →

(
1 + 1

2/ε
⊥ 1 iD/in̄·D ⊥

)
ξn

Wn →Wn Wn →
(
1− 1

in̄·D ε
⊥ · iD⊥

)
Wn

(5.22)
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is invariant under these transformations. Under a type-I transformation we have 

where to obtain the second line we used n̄/2 = 0, the orthogonal properties of the 4-vectors, and ignored 
quadratic combinations of the Δ⊥ infinitesimal. Hence the SCET quark Lagrangian obtained from tree 
level matching is indeed invaraiant under δI. However, this Lagrangian is not completely determined by 
invariance under δI. For example, the term we encountered at the end of the gauge symmetry section 
transforms as 

which is the same transformation as for the second term in (5.24). Consequently, we may replace the 
second term with this new term with no violation of power counting, gauge symmetry, or RPI type-I. 
This ambiguity is only resolved by using invariance under RPI of type-II. The detailed calculation is given 

(0)
in [7] with the final result that our Lagrangian L remains invariant under δII while the term given in nξ 
(5.14) does transforms in a way that can not be compensated by any other leading order term in the 

(0)
Lagrangian. Therefore our SCETI Lagrangian L is unique by power counting, gauge invariance, and nξ 
reparameterization invariance. This also implies that its form is not modifed by loop corrections. In general 
type-III RPI will restrict operators at the same order in λ, type-I restricts operators at different orders in 
λ, and type-II will restrict operators at both the same and different orders in λ. 

Reparameterization invariance also manifests itself in the ambiguity of label and residual momenta 
decomposition. We can separate the total momenta 

µ µ µn̄ · p = n̄ · (pc + pr) p = p + p (5.26)⊥ l ⊥ r ⊥ 

into pc and pr in different ways as long as we maintain the power counting. Specifically, a transformation 
that takes 

Pµ → Pµ + βµ i∂µ → i∂µ − βµ (5.27) 
implements this freedom. The transformation on i∂µ is induced by the β-transformation of the fields, for 
example 

ξn,p(x) → e iβ(x)ξn,p+β(x) . (5.28) 
The set of these β transformations also determines the space of equivalent decompositions I that we mod 
out by when constructing pairs of label and residual momenta components (pc, pr) in R3 ×R4/I. Invariance 
under this RPI requires the combination 

Pµ + i∂µ (5.29) 
to be grouped together for collinear fields. Since P and in̄ · ∂ (and Pµ and i∂µ ) appear at different orders ⊥ ⊥
in the power counting, this RPI connects the Wilson coefficients of operators at different orders in λ. 

A natural question is how to gauge the connection between label and residual derivatives in (5.29). 
Recall that the gauge transformations for derivatives are 

collinear ultrasoft 
† †iDn ⊥ → UciDn ⊥Uc UusiDn ⊥Uus 

in̄ · Dn → Ucin̄ · DnU
† in̄ · DnU

† 
c Uus usm 
† †in · D → Ucin · DUc Uusin · DUus 

†iDµ → us iDµ 
usus iDµ Uus usU
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(0)
δIL = δnξ I

(
n/̄

ξnin ·D ξn
2

)
+ δI

(
1

ξniD/n,⊥
n/̄

iD/
in̄ · nD ⊥ ξn

2

)
(5.24)

= ξni∆
⊥ ·D⊥

/̄n

2
ξn − ξni∆⊥ ·D⊥

/̄n
ξn

2
= 0

δ(I)

(
ξniD

⊥
µ

1

in̄ ·D
iD⊥µ

/̄n

2
ξn

)
= −ξni∆⊥ ·D

/̄n

2
ξn (5.25)
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The most natural guess for the gauging of (5.29) would be 

iDµ + iDµ in̄ · Dn + i¯ (5.30)n ⊥ us ⊥ , n · Dus . 

However, with the above transformations these combinations do not have uniform transformations under 
the gauge symmetries, since Dus does not transform under Un. We can rectify this problem by introducing 
our Wilson line Wn into the combination of these derivatives. The unique result which preserves the SCET 
gauge symmetries without changing the power counting of the terms is 

iDus, µ iDµ ≡ iDµ + Wn W † (5.31)⊥ n⊥ n⊥ n 

in̄ · D ≡ in̄ · Dn + Wnin̄ · DusWn 
† , (5.32) 

where Wn transforms as Wn → UnWn. Stripping off the regular derivative terms, the extra multi-gluon 
terms appearing in the formulae like Aµ = Aµ + Aµ + . . . are the terms we denoted by ellipses in (4.9).⊥ n⊥ us⊥ 
These terms are necessary to form gauge invariant subleading operators. 

Like in HQET, the RPI in SCET connects the Wilson coefficients of leading and λ-suppressed La­
grangians and external currents and operators. As an example, applying the connection to the term 

† (0)¯ iD/ (1/P) WniD/ in L yields the subleading Lagrangian that couples collinear quarks to Ausξn n,⊥Wn n,⊥ξn nξ ⊥ 
gluons, 

(1) us 1 1 usL = (ξ̄nWn)iD/⊥ (Wn
†iD/n,⊥ξn) + (ξ̄niD/n,⊥Wn) iD/⊥ (Wn

†ξn). (5.33)nξ P P 

The complete set of SCETI Lagrangian interactions up to O(λ2) can be found in Ref. [10]. 

5.4 Discrete Symmetries 

After considering the residual form of Lorentz symmetry encoded in reparameterization invariance it is 
natural to consider how our SCET fields transform under C, P, and T transformations. In this case we 
will satisfy ourselves with the transformations of the collinear field ξn,p. We have 

C−1ξn,p(x)C = −[ξ̄n,−p(x)C]T (5.34) 
P −1ξn,p(x)P n,˜(xP )= γ0ξ¯ p

T −1ξn,p(x)T n,˜(xT )= T ξ¯ p

+ − + −where n = (1, 0, 0, 1), n̄ = (1, 0, 0, −1), p ≡ (p , p , p⊥), x ≡ (x , x , x⊥), C is the standard matrix induced 
− + − +by charge conjugation symmetry, and we have defined p̃ = (p , p , −p⊥) as well as xP = (x , x , −x⊥) 

− +and xT = (−x , −x , xT ). 

5.5 Extension to Multiple Collinear Directions 

For processes with more than one energetic hadron, or more than one energetic jet our list of degrees of 
freedom must include more than one type of collinear mode, and hence more than one type of collinear 
quark and collinear gluon. When two collinear modes in different directions interact, the resulting particle 
is offshell, and does not change the formulation of the leading order collinear Lagrangians. Therefore the 
Lagrangian with multiple collinear directions is 
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L(0)
SCET =

I
L(0)
us +

∑
n

[
L(0)

+nξ L(0)
ng

]
. (5.35)



 

6 FACTORIZATION FROM MODE SEPARATION  

for n1, n2, n3, . . . collinear modes in the sum on n. The collinear modes are distinct only if 

ni · nj » λ2 for i = j .	 (5.36) 

We may understand this result by a counter argument: If a momentum p2 = Qn2, then n1·p2 = Qn1·n2 ∼ λ2 

iff n1 · n2 ∼ λ2 . Hence p2 is n1-collinear, and n2 is not a distinct collinear direction from n1. If ni · n1 ∼ λ2 

then we say that ni is within the RPI equivalence class [n1] defined by the member n1. Distinct collinear 
directions correspond to the different equivalence classes, and we only sum over distinct directions in 
Eq. (5.35). 

Essentially all of the things we derived with one collinear direction get repeated when we have more 
than one collinear direction. 

•	 For each light-like ni we define an auxillary light-like n̄i where ni ·n̄i = 2. Collinear momenta in the ni 
direction are decomposed with the {ni, n̄i} basis vectors since the components have a definite power 
counting: (ni · p, n̄i · p, pni⊥) ∼ (λ2 , 1, λ). Note that the meaning of ⊥ depends on which ni-collinear 
sector we are discussing. 

•	 There is a separate RPI for each ni-collinear sector that only acts on the ni-collinear fields, and on 
objects decomposed with the {ni, n̄i} basis vectors. Here there is no simple connection to an overall 
Lorentz transformation because the fields in other sectors do not transform. 

•	 There is a collinear gauge transformation Uni for each type of collinear field. Only the fields in the 
ni-collinear direction transform (fields in other collinear sectors do not transform with Uni since such 
transformations would yield offshell momenta that are outside the effective theory). 

•	 Matching calculations generate multiple collinear Wilson lines Wni = Wni [n̄i · Ani ]. The definitions 
are identical to Eq. (4.51) with n → ni, n̄ → n̄i, including P → n̄i · P. They are again always 
built only out of the O(λ0) gluon fields, and correspond to straight Wilson lines. These matching 
calculations lead to operators in SCET that are gauge invariant under Uni transformations. 

+	 −As an example of the last point consider the process e e → γ∗ → two-jets. The QCD current is 
Jµ ¯= ψγµψ. By integrating out offshell fields to match onto SCETI we obtain the leading order current 

Jµ = (ξ̄n1 Wn1 )γ
µ(W † ξn2 ) .	 (5.37)SCET	 n2 

Here n1 and n2 are the directions of the two jets. The Wilson line Wn1 = Wn1 [n̄1 · An1 ] is generated by 
integrating out the attachment of n̄1 · An1 gluons to n2-collinear quarks and gluons, and analogously for 
Wn2 . The resulting operator in Eq. (7.29) is invariant under n1-collinear, n2-collinear, and ultrasoft gauge 
transformations. In general one can carry out all orders tree level matching computations to derive the 
presence of these Wilson lines. For situations with multiple lines in different directions these calculations 
are greatly facilitated by using the auxillary field method (see the appendices of [6, 8]). 

Factorization from Mode Separation 

One of the benefits of the SCET formalism is the clear separation of scales at the level of the Lagrangian 
and of operators that mediate hard interatctions. We will explore the factorization between various types 
of modes in this section. 
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Figure 9: The attachments of ultrasoft gluons to a collinear quark line which are summed up into a 
path-ordered exponential. 
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Figure 10: Eikonal i0 prescriptions for incoming/outgoing quarks and antiquarks and the result that 
reproduces this with an ultrasoft Wilson line and sterile quark field. 

6.1 Ultrasoft-Collinear Factorization 

Recall that only the n · Aus component couples to n-collinear quarks and gluons at leading order in λ. 
This is explicit in the Feynman rules in Figs. 6 and 7 where only nµ appears for the ultrasoft gluon with 
index µ. Furthermore due to the multipole expansion the collinear particles only see the n · k ultrasoft 
momentum of the n · Aus gluons. For example, if we consider Fig. 9 with only one ultrasoft gluon then the 
collinear quark propagator is 

n̄ · p n̄ · p n̄ · p 
2 = = , (6.1) 

n̄ · p n · (pr + k) + p + i0 n̄ · p n · k + p2 + i0 n̄ · p n · k + i0⊥ 

where in the last equality we used the onshell condition p2 = 0 for the external collinear quark. Together 
with the nµ from the vertex this result corresponds to the eikonal propagator for the coupling of soft gluons 
to an energetic particle. The appropriate sign for the i0 is determined by dividing through by n̄ · p and 
noting the sign of this momentum, which differs for quark and antiquarks. Accounting for attachments to 
incoming or outgoing particles this leads to the four eikonal propagator results summarized in Fig. 10. 

Now, we consider the case of multiple usoft gluon emission. Calculating within SCET the graphs in 
Fig. 9 gives Γ Ỹnun where Γ is the structure at the ⊗ vertex, and un is a collinear quark spinor. Here 

where all propagators are +i0. These eikonal propagators come from collinear quarks with offshellness 
∼ λ2, which is near their mass shell, and hence are a property of fields in the EFT itself (as opposed to the 
Wilson lines Wn which were generated by matching onto the EFT). This corresponds to the momentum 
space formula for an ultrasoft Wilson line Yn. In position space this formula becomes 

It satisfies a defining equation and unitarity condition: 

in · DYn = 0, Y † = 1. (6.4)n Yn 
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∑∞ ∑ (−g)mn ·Aa1(k ) · · ·n ·Aam(k )T am T˜ 1 m
Yn =

· · · a1

m=0 perms

(6.2)
n · k1n · (k1 + k2) · · ·n · (

∑
i ki)

0

Yn(x) = Pexp

[
ig

∫
ds n ·Aaus(x+ ns)T a

−∞

]
. (6.3)
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When we wish to be specific in the notation for our Wilson lines to show whether they extend from −∞ 
or out to +∞, and whether they are path-ordered or antipath-ordered, we will use the following notations 

† † †Here (Yn±)† = Yn', and the subscript on Yn± should be read as (Yn )± rather than (Y±)† . The + denotes 
Wilson lines obtained from attachments to quarks, and the − denotes Wilson lines from attachments to 
antiquarks. The Wilson lines obtained for various situations are shown in Fig. 10. 

The generation of the Wilson line Yn from the example above motivates us to consider whether all the 
leading order usoft-collinear interactions within SCETI (to all orders in αs and with loop corrections) can 
be encoded through the non-local interactions contained in the Wilson line Yn(x). To show that this is 
indeed the case we consider the BPS field redefinitions [6] 

(x)ξ(0) (x) A(0)µξn,p(x) = Yn (x), Aµ (x) = Yn (x)Y †(x) . (6.6)n,p n,p n,p n 

(0) †They include in addition cn,p(x) = Yn(x) cn,pYn (x) for the ghost field in any general covariant gauge. 
The defining equation for Yn implies the operator equation 

Y †in · DusYn = in · ∂. (6.7)n 

Also because the label operator P commutes with Yn the redefinition on n̄ · An in (6.6) implies that 

W (0)Y † , (6.8)Wn → Yn n n 

(0) (0)
where Wn is built from n̄ ·An fields. Implementing these transformations into our leading collinear quark 
Lagrangian we find 

where the last line is completely independent of the usoft gluon field. With similar steps we can easily 
(0)

show that the collinear gluon Lagrangian Lng in (4.55) also completely decouples from the n · Aus usoft 
gluon field. In summary, we see that the usoft gluons have completely decoupled from collinear particles 

(0) (0) (0)
in the leading order collinear Lagrangian Ln = Lnξ + Lng via 

(6.10) 

However, it is important to note that the usoft interactions for our collinear field have not disappeared, 
but have simply moved out of the Lagrangian and into the currents. We must make the field redefinition 
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0

Yn+ = P exp
(
ig

∫
ds n·Aus(x+ sn)
−∞

)
, Yn =−

∞
P exp

(
−ig
∫
ds n

0
·Aus(x+ sn)

)
, (6.5)

Yn
† =− P exp

(
−ig
∫ 0

−∞
ds n·Aus(x+ sn)

)
, Y †n+ = P exp

(
ig

∫ ∞
0
ds n·Aus(x+ sn)

)
.

L(0)
=nξ

1
ξn,p′

(
in ·D + iD/n⊥

n/
iD/

in̄ · nDn
⊥

)
¯
ξn,p

2

=
1

ξn,p′

(
in ·Dus + gn ·An,q + (P/ + gA/⊥ n,q )W⊥

n/
W †(P/ + gA/
P ⊥ n,q )⊥

)
¯
ξn,p

2

=
(0)
ξn,p Y′

† in ·Dus + gY n ·A(0)
n,qY

†

(0) 1
+(/

(
P + gY A/ Y †)⊥ n,q YW (0)Y †⊥ P

YW (0)†Y †(/P⊥ + g /A
(0)
n,q⊥)

)
/̄n
Y ξ(0)

2 n,p

=
(0)
ξn,p′

(
in · ∂ + gn ·A(0)

n,q + (P (0)/ + gA/⊥ n,q )W (0) 1
⊥ P

W (0)†(/P⊥ + g /A
(0)
n,q⊥)

)
/̄n
ξ(0)

2 n,p , (6.9)

L(0)
n

[
ξn,p, A

µ
n,q, n ·A (0) (0) (0)µ

us

]
= Ln

[
ξn,p, An,q , 0

]
. (6.10)
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everywhere, including external operators and currents, as well as on interpolating fields for partons and 
hadrons. The field redefinition on the interpolating fields that describe incoming and outgoing states 
will determine whether the final usoft Wilson lines are Y+, Y+

† , Y−, or Y † since these interplolating field − 
operators are localized either at −∞ or +∞. 

Eg.1: Consider our standard heavy-to-light current. Performing the field redefinitions we have 

W (0)Y †Jµ = ξ W Γµhv = ξ(0)Y †Yn Γµhv (6.11)n, n n n 
(0)
W (0)ΓµY † = ξ hv .n n 

¯The last line gives us our first factorization result. Since ξn is an outgoing quark, here Yn 
† = Y+

† . As 
is necessary for effective theories, we will need to include a Wilson coefficient encoding higher energy 
dynamics, but we can already clearly see how different scales have separated into distinct gauge invariant 

(0) †quantities (ξn,pW (0)) and (Yn hv) at the level of operators. We can demonstrate this ultrasoft-collinear 
factorization diagrammatically by considering the time ordered product of two currents TJµ(x)J†ν (0) 
(whose imaginary part is related to the inclusive decay rate). Rather than having diagrams with ultrasoft 
gluons coupling to collinear lines they decouple into distinct parts: 

Eg.2: Consider a current that is a global color singlet within the n-collinear sector 

(0)
W (0))Γµ(W (0)†ξ(0)Jµ = (ξ W )ΓµW †ξn = (ξ ) . (6.12)n n n 

Here all the usoft gluons have cancelled using Yn 
†Yn = 1, so all the usoft gluons decouple at leading order. 

Diagramatically we can imagine this current producing an energetic color singlet state like a collinear pion 
(ignoring the fact that we’re in SCETI for a moment): 

=⇒  

This decoupling is called color transparency, the long wavelength usoft gluons only see the overall color 
charge of the energetic fields in the pion, and hence cancel out for this color singlet object. 

+Eg.3: As a third example, consider our operator for e e− → dijets. Here we have two types of collinear 
fields, n1 and n2, and the BPS field redefinitions give Yn1 and Yn2 ultrasoft Wilson lines: 

This result involves the product of three factored sectors (n1-collinear)(ultrasoft)(n2-collinear). Here the 
† †lines are both outgoing, Yn1 = Yn1+ and Yn2 = Yn2−. 
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¯J = (ξn1Wn1)Γ(Wn
†
2
ξn2) =

(
ξ̄(0)
n1
W (0)
n1

)(
Yn
†
1
Yn2

)
Γ
(
W (0)
n2

†ξ(0)
n2

)
. (6.13)
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(0)
Remark: It is possible to formulate a gauge symmetry for the decoupled collinear fields via Un = 

Yn 
†(x)Un(x)Yn(x), that then acts on the collinear (0) fields without ultrasoft components. However, there 

is not new content to this gauge symmetry beyond the ones we considered earlier. 

6.2 Wilson Coefficients and Hard Factorization 

As is standard in effective field theories, the high energy behavior of the theory is encoded in Wilson 
coefficients C. In SCET the Wilson coefficients can depend on the large momenta of collinear fields that 
are O(λ0). Because of gauge symmetry the momenta appearing in C must be momenta for collinear 
gauge invariant products of fields. We can write C(P, µ) where the large momenta is picked out by the 
label operator P which acts on these products of fields. For example, including this operator with our 
heavy-to-light current yields 

† 
(ξ Wn)Γ

µhvC(P ) = C(−P, µ)(ξnWn)Γ
µhv (6.14)n

† 
(noting that P > 0 so we have picked a convenient sign). We have included parentheses around ξnWn 
because C(−P , µ) must act on this product, since only the momentum of this combination is collinear 
gauge invariant. It is convenient to write this result as a convolution between a real number valued Wilson 
coefficient and an operator depending on a new label ω 

where C(ω, µ) encodes the hard dynamics and O(ω, µ) encodes the collinear and ultrasoft dynamics. Thus 
the hard dynamics is factorized from that of collinear fields, and this in general leads to convolutions since 
they both have n̄ · p momenta that are O(λ0). 

We can show see that this hard-collinear factorization is a general result that can be applied to any 
SCET operator. Recall the following relations for W 

in̄ · DnWn = 0 , Wn
†Wn = 1 , in̄ · Dn = WnPWn 

† , 1/(in̄ · Dn) = Wn(1/P)Wn 
† . (6.16) 

These conditions imply the operator equations (for any integer k) 

(in̄ · Dn)
k = Wn(P)kW † . (6.17)n 

If in general the hard dynamics leads to a function f of a large momentum P, then we have f(P) if it acts 
on a n-collinear gauge invariant product of fields, and this relation shows that we can always represent this 
by a convolution of a Wilson coefficient f(ω) which includes a δ(ω − P) as part of the collinear operator. 
(If we act on fields that transform under a collinear gauge transformation then the same is true but with 

49  

(ξnW )ΓµhvC(P†) =

∫
dω C(ω, µ)

[
(ξnWn)δ(ω − P†)Γµhv

]
=

∫
dω C(ω, µ)O(ω, µ) (6.15)

and we have for a general function f(P) or f(in̄ ·Dn)

f(P) =

∫
dω f(ω) [δ(ω − P)] , (6.18)

f(in̄ ·Dn) = Wnf(P)W † =

∫
dω f(ω) [Wδ(ω − P)W †n] .
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f(in̄ · Dn) and the extra Wilson lines are included in the operator.) For example, with our current for 
+e e− → dijets we have 

Note that since the Yn Wilson lines commute with Pµ we can perform the ultrasoft-collinear factorization 
by field redefinition after having determined the most general possible Wilson coefficient, and the results 
will be the same as we obtained prior to discussing Wilson coefficients. In general the function C(ω1, ω2) 
will be constrained by momentum conservation for the process under consideration, and any nontrivial 
dependence must be determined by matching calculations. 

6.3 Operator Building Blocks 

Our discussion of hard-collinear factorization in SCET in the previous section motivates setting up a more 
convenient notation for building operators out of products that are collinear gauge invariant. For the 
collinear quark field we define a “quark jet field” (SCETI) or “quark parton field” (SCETII) 

χn ≡ Wn
†ξn , (6.20) 

χn,ω ≡ δ(ω − n̄ · P)(Wn
†ξn) , 

+where the last expression has a definite O(λ0) momentum. With this notation our e e− → dijets operator 
becomes 

For the gluon field we define a “gluon jet field” (SCETI) or “gluon parton field” (SCETII) as 

where the label operators and derivatives act only on the fields inside the outer square brackets. We can 
show that a complete basis of objects for building collinear operators at any order in λ is given by the 
three objects [14] 

Bµ Pµχn , n⊥ , n⊥ . (6.23) 

Any other operators can be expressed in terms of these three objects. This basis is nice because the two 
gluon degrees of freedom in Bµ can be taken as the physical polarizations. Indeed the expansion of Bµ 

n⊥ n⊥ 
in terms of gluon fields yields 

µq
Bµ ⊥= Aµ − n̄ · An,q + . . . , (6.24)n⊥ n⊥ n̄ · q 

where the ellipses denote terms with ≥ 2 collinear gluon fields. In addition to the building blocks in (6.23), 
operators will also of course involve functions of P = n̄ · P that appear as Wilson coefficients. 

To see that Eq. (6.23) gives a complete basis we start by noting that the ⊥ covariant derivative is 
redundant. If we consider it sandwiched by Wilson lines, then 

iD⊥µ ≡ W †iDµ Wn = Pµ + gBµ (6.25)n n n⊥ n⊥ n⊥ . 
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∫
dω1 dω2C(ω1, ω2) χ̄n,ω1Γχn,ω2 . (6.21)

Bµn⊥ ≡
1

g

[
1

∫
¯dω1 dω2 C(ω1, ω2) (ξn1Wn1)δ(ω1 − n̄1 · P†)Γδ(ω2 − n̄2 · P)(Wn

†
2
ξn2) . (6.19)

Wn
†[in · µ¯ Dn, iD ]Wn , (6.22)

n̄

Bµ
· P n⊥

P̄

]
= [ †)] ,n⊥, ω Bµ δ(ωn⊥ −
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To show this we manipulate the operator as follows 

The outer square brackets indicate that deriviatives act only on objects inside. In the second line we used 
n̄ ·P = Wn

†in̄ · DnWn, and in the last line we used that fact that within the square brackets [in̄ · DnWn] = 0 
so that we could write the result as a commutator. 

We can also remove in · ∂ derivatives by using the equations of motion for quarks and gluons. For 
instance the collinear quark equations of motion can be written as 

⊥ 1 ⊥
in · ∂χn = −(gn · Bn)χn − (iD/ ) (iD/ )χn , (6.27)n n n̄ · P 

where Dµ is given in terms of basis objects by (6.25), and where n⊥ 

The gluon equations motion allow us to elliminate n · Bn in terms of basis objects as 

where the ellipses denote a term that involves two Bn⊥s. The gluon equation of motion also allow us to 
eliminate in · ∂Bµ in terms of the basic building blocks, much like for the quark term. Finally, objects like n⊥ 
gBµν ≡ [1/(n̄ · P) W †[iDµ , iDν ]W ] and gBµ ≡ [1/(n̄ · P) W †[iDµ , in·Dn]W ] can again be eliminated ⊥⊥ n⊥ n⊥ ⊥2 n⊥
in terms of the building blocks with manipulations similar to those in (6.26), and with the use of (6.29). 

We do still need all of the original ultrasoft fields and operators, including ultrasoft covariant derivatives 
and field strengths. The ultrasoft equations of motion (equivalent to the QCD equations of motion) can 
be used to reduce the basis for these operators. It is worth remarking about the connections between 
our building blocks in Eq. (6.23) and the ultrasoft operators that come from RPI and gauge covariance. 
Multiplying the identities in (5.32) with Wilson lines on both sides we find 

iW †iDµ Wn = iDµ + iDµ = Pµ + gBµ + iDµ 
n ⊥ n ⊥ us ⊥ n⊥ n⊥ us ⊥ , 

iW †in̄ · DWn = n̄ · P + in̄ · Dµ . (6.30)n us 

Thus factors of Pµ and n̄ · P that appear in operators will be connected to higher order operators with n⊥ 
these ultrasoft covariant derivatives. 
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µWn
†iD W Wn n = Pµ +n

[
n
† µiD W⊥ ⊥ n⊥ n

= Pµ +n⊥

][ 1 µn̄
n̄

· PW †
· P niD Wn⊥ n

]
= Pµ +n⊥

[ 1 µW †
n̄ · P nin̄ ·DniD Wn⊥ n

=

]
Pµ +n⊥

[ 1 · µW † µ µn
· P n[i¯ Dn, iD ]Wn⊥ n +

¯

]
= P g

n n⊥ B . (6.26)n⊥

1
n · Bn ≡

g

[
1
W †[in̄ ·D , in ·D ]W . (6.28)
P n n n n

]

2
n · Bn =

Pν
− n⊥
n̄ · P

Bn⊥ν +
2

g2TA
n̄ · P

∑
f

[
χ̄fnT

An̄/χfn
]

+ . . . , (6.29)
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7 Wilson Coefficients and Hard Dynamics 

We now turn to the dynamics of SCET at one loop. An interesting aspect of loops in the effective theory is 
that often a full QCD loop graph has more than one counterpart with similar topology in SCET. We will 
compare the SCET one loop calculation for a single hard interaction current with the one loop calculation 
in QCD. Our goal is to understand the IR and UV divergences in SCET and the corresponding logarithms, 
as well as understanding how the terms not associated to divergences are treated. 

In our analysis we will use the same regulator for infrared divergences, and show that the IR divergences 
in QCD and SCET exactly agree, which is a validation check on the EFT. The difference determines 
the Wilson coefficient for the SCET operator that encodes the hard dynamics. This matching result is 
independent of the choice of infrared regulator as long as the same regulator is used in the full and effective 
theories. Finally, the SCET calculation contains additional UV divergences, beyond those in full QCD, 
and the renormalization and anomalous dimension determined from these divergences will sum up double 
Sudakov logarithms. 

7.1 b → sγ, SCET Loops and Divergences 

As a 1-loop example consider the heavy-to-light currents for b → sγ. Although there are several operators 
in the full electroweak Hamiltonian, for simplicity we will just consider the dominant dipole operator 
QCDJµν F µν where Fµν is the photon field strength and the quark tensor current is 

JQCD = s̄ Γb , Γ = σµν PR . (7.1) 

In SCET the corresponding current (for the original Lagrangian, prior to making the Yn field redefinition) 
was 

In general because of the presense of the vectors vµ and nµ there can be a larger basis of Dirac structures 
Γ for the SCET current (we will see below that at one-loop there are in fact two non-zero structures for 
the SCET tensor current). Note that the factor of v · n makes it clear that the current preserves type-III 
RPI. We will set v · n = 1 in the following. 

Together with the QCD and (leading order) SCET Lagrangians, we can carry out loop calculations with 
these two currents. First lets consider loop corrections in QCD. We have a wavefunction renormalization 
graph for the heavy quark denoted b, and one for the massless (strange) quark denoted q: 

b q
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We will give two examples of matching QCD onto SCET, the b → sγ transition, and e+e− → 2-
jets. The first example has the advantage of involving only one collinear sector, but the disadvantage
of requiring some familiarity with Heavy Quark Effective theory for the treatment of the b quark and
involving contributions from two Dirac structures. The second example only involves jets with a single
Dirac structure, but has two collinear sectors. In both cases we will use Feynman gauge for all gluons, and
dimensional regularization with d = 4− 2ε for all UV divergences (denoting them as 1/ε). To regulate the
IR divergences we will take the strange quark offshell, p2 6= 0. For IR divergences associated purely with
the heavy quark we will use dimensional regularization (denoting them 1/εIR to distinguish from the UV
divergences).

6

JSCET ¯= (ξnW )ΓhvC
(
v · n P†

)
=

∫
dω C(ω) χ̄n,ωΓhv . (7.2)
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This gives the wavefunction renormalization factors Zψb and Zψ respectively. In the “on-shell” scheme 
which includes both the UV divergences and the finite residues these Z-factors are 

(If one instead uses MS for the wavefunction renormalization factors, then the finite residues still show up 
in the final result for the S-matrix element due to the LSZ formula.) The remaining diagram is a vertex 
graph for the tensor current JQCD. At tree level the matrix element gives 

V 0 = ¯ (p)PR iσ
µν (7.4)qcd us ub(pb) 

while the one-loop diagram 

p
b

p

gives 

where we have kept p2 = 0 only for the IR singularities, and set it to zero whenever it is not needed to 
regulate an IR divergence. The variable q̂2 = (pb − p)2/m2 = 1 − 2pb · p/m2 and the functions appearing b b 
in Eq. (7.5) are 

f1(x) = ln(x) + 
2

ln(x) + 2Li2(1 − x) + π2 , f2(x) = 
4

ln(x) . (7.6)
(1 − x) (1 − x) 

Unlike for the conserved vector current, in QCD for the tensor current the sum of vertex and wave-
function graphs still contains a 1/E UV divergence. Hence this QCD local current operator requires an 
additional counterterm not related to strong coupling renormalization, and it is given by 

αsCF 1 
Ztensor = 1 + . (7.7)

4π E 

Adding together the QCD vertex graph and the contributions from the three Z’s, and replacing the 
kinematic variable q̂2 = 1 − n̄ · p/mb = 1 − ω/mb, the sum gives 
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α
Zψb = 1− sCF 1

4π

[
2

+
ε

µ2

+ 3 ln
εIR

+ 4
m2
b

]
,

α
Zψ = 1− sCF

4π

[
1

ε
− ln

−p2

+ 1
µ2

]
. (7.3)

V 1 α
qcd = − sCF

4π

[
ln2
(−p2

m2
b

)
+ 2 ln

(−p2

m2
b

)
− 2

ε
+

1

2
ln
(−p2

µ2

)
+ 2 ln

µ

ω
− 3 ln

µ
+ f1(1

mb
− q̂2)

]
ūsPR iσ

µνub

αsCF
+

p
f2(1

4π
− q̂2) ūsPR

( µγν − pνγµ
u

mb

)
b , (7.5)

6

1
QCD Sum = V 1

qcd +
[ 1

(Zψ
2 b

− 1) + (Zψ
2

− 1) + (Z−1
tensor − 1)

]
V 0

qcd

= −usΓub
αsCF

4π

[
ln2
(−p2

ω2

)
+

3

2
ln
(−p2

ω2

)
+

1 µ
+ ln

εIR

( 2 ω
+

ω2

)
f1

( 5
+

mb

)
2

α

]
sCF

+
ω

f2
4π

(
mb

)
ūsPR

(pµγν − pνγµ
u

mb

)
b , (7.8)
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Next consider the ultrasoft loops in SCET. In Feynman gauge the ultrasoft wavefunction renormal­
ization of the collinear quark vanishes, since the couplings are both proportional to nµ, and n2 = 0. The 
ultrasoft wavefunction renormalization of the heavy quark is just the HQET wavefunction renormalization. 
We summarize these two results as: 

Zus 
ξn ∝ nµnµ = 0 , 

We can already note that the 1/EIR pole in Zh
us 
v 
matches up with the IR pole in Zψb in full QCD (and this is 

the only IR divergence that we are regulating with dimensional regularization). In addition to wavefunction 
renormalization there is an ultrasoft vertex diagram for the SCET current. Using the on-shell condition 
v · pb = 0 for the incoming b-quark, and the SCET propagator from Eq. (4.43) for a line with injected 
ultrasoft momentum, we have 

where the tree level SCET amplitude is 

V 0 = unΓuv , (7.11)scet 

and ιE = (4π)−EeEγE ensures that the scale µ has the appropriate normalization for the MS scheme. Note 
that this graph is independent of the current’s Dirac structure Γ. On the heavy quark side the heavy-
quark propagator gives a Pv = (1 + v/)/2, but this commutes with the HQET vertex Feynman rule and 
hence yields a projector on the HQET spinor, Pvuv = uv. On the light quark side the propagator gives 
a n//2 and the vertex gives a n̄//2 to yield the projector Pn = (n/n̄/)/4 acting on the light-quark spinor, 
Pnun = un. Hence whatever Γ is inserted at the current vertex is also the Dirac structure that appears 
between spinors in the answer for the loop graph. For this heavy-to-light current this feature is actually 
true for all loop diagrams in SCET, the spin structure of the current is preserved by loops diagrams in 
the EFT. For ultrasoft diagrams it happens by a simple generalization of the arguments above, while for 
collinear diagrams the interactions only appear on the collinear quark side of the Γ, so we just need to 
know that they do not induce additional Dirac matrices. (This is ensured by chirality conservation in the 
EFT.) 

Lets finally consider the one loop diagrams with a collinear gluon. There is no wavefunction renormal­
ization diagram for the heavy quark, since the collinear gluon does not couple to it. There is a wavefunction 
renormalization graph for the light-collinear quark 

We have not written out the SCET loop integrand, but it follows in a straightforward manner from using 
the collinear quark and gluon propagators and vertex Feynman rules from Fig. (6). Note that the result for 
Zξn is the same as the full theory Zψ. This occurs because for the wavefunction graph there is no connection 
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to the ultrasoft modes or the hard production vertex, and by itself a single collinear sector is just a boosted 
version of full QCD (and Zψ is independent of this boost). There are also no subtelties related to zero-bin 
subtractions for this graph (the subtraction integrands are power suppressed and therefore the subtraction 
vanishes). There is also a diagram generated by the two-quark two-gluon Feynman rule, but this tadpole 
type diagram vanishes with our choice of regulators. There is also a tadpole type diagram where two gluons 
are taken out of the Wilson lines in the vertex, which also vanishes, ie. 

= 0 , = 0 . (7.13) 

The last diagram we must consider is the collinear vertex graph with an attachment from the Wilson 
line going to the collinear quark propagator, 

pp k+

k

µ +Here each momentum has been split into label and residual components k = (kµ , kr
µ) and p = (p , p ).rc c 

There are no +-momenta in the label components, and the only residual component for the external p is 
its +-momentum. For reasons that will soon become apparent, we have used a short hand notation for the 
relativistic collinear gluon and quark propagators, which in fact contain a mixture of label and residual 
momenta, 

k2 k− k⊥ 2 + − k⊥ ⊥)2 = k+ − p , (k + p)2 = (k+ + p )(k− + p ) − (p + pp , (7.15)r c c r r c c c c 

2and are homogeneous in the power counting with k2 ∼ p ∼ λ2 . We have also introduced the notation 
with a hat, V̂ 1 , for the collinear loop integrand.n 

In general in collinear loop integrals there can be a nontrivial interplay between the Wilson coefficients 
and the large collinear loop integration, because both depend on a momentum that is the same size in the 
power counting, namely the large minus momenta, k− ∼ Q. When matching at one-loop, O(αs), in some 
cases the tree level hard matching coefficient we insert might be independent of the loop momentum k− . 
In this case we can insert it back into the calculation only at the end. Even in this case it must be included 
when considering the renormalization group evolution, because the sharing of large momenta can lead to 
convolutions in the RG evolution equations. We will meet an example of this type later on when we discuss 
the running of parton distributions for a collinear proton. For our example of the heavy-to-light current 
for b → sγ, things are actually simple for a different reason. The SCET operator in Eq. (7.2) contains 
only a single gauge invariant product of collinear fields, (ξ̄nW ), and the Wilson coefficient only depends 
on the overall outgoing momentum of this product. Therefore if we include a coefficient into our diagram 
in Eq. (7.14) it gives only dependence on the total external momentum 

This result remains true for collinear loop diagrams at higher orders, so the coefficient can always be treated 
as multiplicative for this current, and the coefficient is always evaluated with the total −-momentum 
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= V 1
n = −ig2CF

d−
d
kr (n n̄) n̄ (p` + k`)

unΓuv µ
2ειε

∑ · ·

k` = 0
k` =
6

∫
6 −p`

(n̄ · k`)(k2)(k + p)2

= −ig2CF ˆunΓuv V
1
n . (7.14)

µ µ µ +

C
[
n̄ · (p+ k) + n̄ · (−k)]

]
= C

(
n̄ · p

)
. (7.16)
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of the collinear jet, which in this case is n̄ · p = mb. Indeed, even when we have collinear fields for 
multiple directions, the large momentum are still fixed by the external kinematics as long as we have only 
one(gauge invariant product of) collinear fields in each direction. In this case the Wilson coefficient for the 
hard dynamics remains multiplicative in momentum space. (And we remark that this is the case that is 
predominantly studied for amplitudes for LHC processes with an exclusive number of jets. In general the 
coefficient will still be a matrix in color space once we have enough colored particles to give more than one 
possibility for making an overall color singlet (4 particles). There is only one possibility for the current 
example and hence no matrix in color space.) When we have more than one block of gauge invariant 
collinear fields in the same collinear direction then this will no longer be true, there will be momentum 
convolutions between the hard coefficient C and the collinear parts of the SCET operator. 

To perform the collinear loop integration in Eq. (7.14) we should follow the rules from section 4.5 on 
combining label and residual momenta. As a first pass we will ignore the 0-bin restrictions kc = 0, −pc. 
In this case we can apply the simple rule from Eq. (4.60). Results following this rule in SCETI are often 
called the naive collinear integrals. Since only momenta of external collinear particles appear in the loop 
integrand the multipole expansion is trivial for this integral, and this gives the same result that we would 
have obtained by ignoring the split into label and residual momenta from the start: 

This result for the loop integral can be obtained either with standard Feynman parameter rules or by 
contour integration in k+ or k− . Feynman parameter tricks and other equations that are useful for doing 
loop integrals in SCET are summarized in Appendix E. 

Having assembled results for all the SCET loop graphs we can now add them up to obtain the bare 
SCET result 

and then compare with the full QCD calculation, setting the renormalized coupling g2 = 4παs(µ). For the 
moment we still will label our SCET result as naive since it ignores the 0-bin restrictions. If we examine 
the IR divergences encoded in the ln(−p2) factors (and the 1/EIR from the heavy quark wavefunction 
renormalization) then we find for Γ = PRiσµν that at leading order V 0 = V 0 andqcd scet 

Thus the results match up in the IR (as long as the remaining 1/E terms in the SCET result can be 
interpretted as UV divergences). To obtain this result for the sum of the SCET diagrams there is an 
important cancellation between the collinear and ultrasoft diagrams, ln(−p2/µ2)/E − ln[−p2/(µn̄ · p)]/E = 
ln(n̄ · p/µ)/E = − ln(µ/mb)/E. The cancellation of the ln(−p2) dependence in this 1/E pole is crucial both 
to match the IR divergences correctly in QCD, and in order for the remaining 1/E pole to possibly have 
an ultraviolet interpretation. The remaining dependence on n̄ · p = mb in the 1/E pole is fine because this 

56  

6

V̂ 1 naive
n = µ2ειε

∫
d−
d
k (n · n̄)(n̄ · (p+ k))

(n̄ · k)k2(k + p)2

i
=

2

(4π)2

[
ε2

+
2

ε
+

2

ε
ln

(
µ2

−p2

)
+ ln2

(
µ2

−p2

)
+ 2 ln

(
µ2

−p2

)
+ 4− π2

.
6

]
(7.17)

Sum SCET = V 1
us + V 1

n +

[
1

2
(Zushv − 1) +

1
(Zξ

2 n − 1)

]
V 0

scet , (7.18)

(Sum QCD)ren α
=− sCF

4π

[
ln2

(
−p2

m2
b

)
+

3

2
ln

(
−p2

m2
b

)
+

1
+ . . .

εIR

]
V 0

scet + . . . ,

(Sum SCET)naive α
=− sCF

4π

[
ln2

(
−p2

m2
b

)
+

3

2
ln

(
−p2

m2
b

)
+

1

εIR
− 1

ε2
− 5

2ε
− 2

ε
ln

(
µ

+
mb

)
. . .

]
V 0

scet .

(7.19)



 

 

 
 

7.1 b → sγ, SCET Loops and Divergences 7 WILSON COEFFICIENTS AND HARD DYNAMICS  

is the large momentum that the Wilson coefficient anyway depends on. This same cancellation also has a 
reflection in the double logarithms where the ln(µ2) dependence cancels out from the ln2(−p2) dependent 
term. Again this cancellation is important for the matching of IR divergences with the full theory. 

The final catch is related to our use of the naive collinear integrand is the interpretation of the 1/E 
poles from the collinear loop integral. The 1/E divergences from the ultrasoft vertex diagram are clearly 
determined to be of UV origin (from large euclidean momenta or large light-like momenta). However in the 
collinear vertex diagram with the naive integral one of the divergences actually comes from n̄ · k → 0, and 
hence is of IR origin. This IR region is actually already correctly accounted for by the ultrasoft diagram 
where the heavy quark propagator is time-like, v · k + i0, as it should be in the infrared region. In this 
region the original propagator does not behave like n̄ · k. The n̄ · k term which comes from the collinear 
Wilson line W is instead the appropriate approximation for large n̄ · k, rather than small n̄ · k. Thus the 
issue with the naive collinear loop integral for the vertex diagram is that is double counts an IR region 
accounted for by the ultrasoft diagram. This double accounting is removed once we properly consider the 
0-bin subtraction contributions. Therefore we apply now the rule with the 0-bin subtractions kc = 0, −pc 
using Eq.(4.64) to obtain 

It is easy to see where the 0-bin integrand comes from because it can be obtained from the appropriate 
ultrasoft scaling limit of the naive collinear integrand. For kc = 0 we have a subtraction for the region 
kc ∼ λ2 where we only keep terms up to those scaling as λ−8 , which gives precisely the integrand in 

1,0binEq. (7.20) denoted as V̂n . The terms with n · k and n̄ · k in the denominator count as λ2, while the 
term with k2 ∼ λ4 to give the eight powers that compensate the ddk ∼ λ8 for the subtraction. Note that 
we have kept the offshellness 0 = p2 ∼ λ2 since it is the same order as the (n̄ · p)(n · k) term. The other 
subtraction is kc = −pc so we have the subtraction region kc + pc ∼ λ2 . For this case one of the factors in 
the denominator is n̄ · k → −n̄ · p ∼ λ0 (and there is suppresion from the numerator as well) so there is no 
contribution at O(λ−8). 

Being more careful about the UV (1/E) and IR (1/EIR) divergences we find 

So we see that the subtraction cancels the n̄ · q → 0 IR singularities 1/EIR in the first line. The UV 
divergences arising from n̄ · q → ∞ are independent of the IR regulator and just depend on the UV 
regulator E. Since the 0-bin contribution is scaleless with our choice of regulators, taking EIR = E and 
ignoring this subtraction would give us the correct answer. Nevertheless, even with this regulator the 0-bin 
contribution is still important to obtain the correct physical interpretation for the divergences. 6 

Since the final result after subtracting the 0-bin contribution is the same as in Eq. (7.17) with the 
1/E poles all now known to be UV, we can determine the appropriate UV counterterm to renormalize the 
SCET current. Defining 

Cbare(ω, E) = ZC (µ, ω, E)C(µ, ω) = C + (ZC − 1)C , (7.22) 

k2 2 2≤ ≤ ≤k Λ Λ−
2 2For other less inclusive calculations or for other choices of regulators (such as Ω , Ω−⊥⊥⊥

subtractions are even more crucial to obtain the correct result and have the UV divergences independent of the IR regulator. 
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and adding the counterterm graph with (ZC − 1)C to cancel the 1/E poles in MS gives 

(Where by momentum conservation ω = mb.) We can now add up the collinear and ultrasoft loop graphs 
to obtain the final renormalized SCET result, and compare with the renormalized QCD result 

From these two results we see that the renormalized QCD and SCET have the same infrared divergences. 
The difference of these results is determined by ultraviolet physics and determines the one-loop matching 
result for the MS Wilson coefficients C1(µ, ω, mb) and C2(µ, ω, mb) that multiply the SCET operator in 

µγν ν γµEq. (7.2) for the Dirac structures Γ = Γ1 = PRiσµν and Γ = Γ2 = PR(n ⊥ − n ⊥) respectively. Only 
the Dirac structure Γ1 was present at tree-level, while Γ2 is generated at one-loop. Taking the difference 
of the above two results and simplifying we find 

7.2 e+e− → 2-jets, SCET Loops 

In this section we perform the matching from QCD onto SCET for the process e+e− → 2-jets. This 
matching will be independent of the details of the kinematical constraints that are used to enforce that we 
really are restricting ourselves to have only 2 jets in the final state, which will all be contained in the long 
distance dynamics of the effective theory. Indeed, the fact that we can successfully carry out this matching 
at the amplitude level makes it clear that it does not depend on which constraints we put on the phase 
space of the 2-jet final state. Once again, it will also be independent of the choice of IR regulator as long 
as the same regulator is used in both the QCD and SCET calculations. We will use Feynman gauge in 
both QCD and SCET, and take d = 4 − 2E to regulate UV divergences and offshellness for the quark and 

2 2antiquark, pq = pq = p2 = 0, to regulate all IR divergences. ¯ 
+ In full QCD, the production of hadrons in e e− collisions occurs via an s-channel exchange of a virtual 

photon or a Z boson. The coupling is either via a vector or an axial vector current and is therefore given 
by 

JQCD = q̄ Γi q , ΓV = gV γ
µ , ΓA = gAγµγ5 , (7.26) 

where gV,A contain the electroweak couplings for the photon or Z-boson (for a virtual photon gV = eq the 
electromagnetic charge of the quark q, and gA = 0). In SCET the current involves collinear quarks in the 
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back-to-back n and n̄ directions 

By reparametrization invariance of type-III the dependence on the label operators can only be in the 
combination ωω ' inside C, so 

+Finally in the CM frame momentum conservation fixes ω = ω ' = Q, the CM energy of the e e− pair, so 
we can write 

JSCET = C(Q2) (ξ̄n̄Wn̄) Γi (W †ξn) , (7.29)n

and the matching calculation in this section will determine the renormalized MS Wilson coefficient C(Q2, µ2). 
In this case there is only one relevant Dirac structure Γi in SCET for each of the vector and axial-vector 
currents. 

We again begin by calculating the full theory diagrams. As in the case of B → Xsγ we need the wave 
function contributions for the light quarks, in this case one for the quark and one for the anti-quark. Both 
wave function contributions are the same as the results obtained before 

The remaining vertex graph can again be calculated in a straightforward manner. At tree level we find 

V 0 = ū(pn)Γiv¯(p¯) (7.31)qcd n n

while the one loop vertex diagram 

p
q

p
q

gives 

Here ιE = (4π)−EeEγE ensures that the scale µ has the appropriate normalization for the MS scheme. Adding 
the QCD diagrams we find 
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As before, we next consider the loops in SCET. The wave function renormalization for the collinear 
quark is the same as in the previous section, and we find 

The tree level amplitude in SCET is V 0 = ¯ (pq)Γi v¯(p¯), and to leading order V 0 = V 0 Thescet un n q qcd scet. 
ultrasoft vertex graph in SCET involves an exchange between the n-collinear and n̄-collinear quarks, 

and is given by 

There are two possible collinear vertex graphs which involve a contraction between the Wn[n̄ · An] Wilson 
line and a n-collinear quark, and another between the Wn̄[n · An̄] Wilson line and the n̄-collinear quark 

For the first diagram, we find 

One can easily show that the second collinear vertex diagram gives the same result as the first diagram. 
Furthermore the collinear integral here is identical to the one for b → sγ in Eq. (7.14). The result in 
Eq. (7.36) is for the naive integrand, since it does not include the 0-bin subtraction contribution. But the 
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For the first diagram, we find
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0-bin subtraction terms here are scaleless as in Eq. (7.21), and hence the final result in Eq. (7.36) is correct 
with the interpretation of the 1/E divergences as UV. 

Adding the SCET diagrams we find after some straightforward manipulations 

Comparing the ln(p2) dependence in the final line to the QCD amplitude in Eq. (7.33) We can see that 
SCET reproduces all IR divergences of the form ln p2/Q2, and that the matching coefficient is therefore 
independent of IR divergences as it should. However, while the matrix element of the full QCD current is 
UV finite (since it is a conserved current), the matrix element in the effective theory is UV divergent and 
therefore needs to be renormalized. Defining a renormalized coupling by 

C(Q, E) = ZC (µ, Q, E)C(µ, Q) = C + (ZC − 1)C (7.38) 

the renormalization constant that cancels the divergences in Eq. (7.37) is 

Taking the difference between the renormalized matrix elements in full QCD and SCET, 

we obtain the matching result for Wilson coefficient of the operator in Eq. (7.29) at one-loop order 

Note that the only momentum dependence in the Wilson coefficient is in logarithms of the ratio of the 
renormalization scale to the hard scale Q. This dependence signals that it captures offshell physics from 
the hard scale Q that we are integrating out. If we choose the renormalization scale to be equal to Q, we 
find that all logarithms vanish 

Sometimes it is useful to avoid inducing large factors of π in the non-logarithmic terms, which can be 
accomplished by using a complex scale, µ = −iQ. Here this gives 

For dijet observables described by the current in Eq. (7.29) the cross section is obtained by squaring the 
amplitude, and will depend on a hard function defined by       2H(µ, Q) = C(µ, Q) . (7.44)  

Thus the imaginary contributions in C(µ, Q) cancel out for these observables. 
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1
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coll + 2
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(Zξ
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− 1)

]
V 0

scet (7.37)
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=
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−p2
− ln2 µ
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]
nΓivn̄

αsCF
=

2

4π
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ε2

+
3

ε
− 2

ε
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−Q2

µ2
− 2 ln2 p

2

Q2
+ ln2 −Q2
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− 4 ln
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CFαs(µ)
ZC = 1 +

2

4π
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ε2
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ε
+

2

ε
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(
−Q2 − i0
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µ2
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(7.39)

ren αsCF
(QCD sum) =

4π

[
−2 ln2 p

2 p2

4
Q2
− ln

Q2
− ln

−Q2

µ2
− 2π2

ū
3

]
(pn) Γi v(pn̄) , (7.40)

ren αsCF
(SCET sum) =

p
2

4π

[
2

− ln2

Q2
+ ln2 −Q2

µ2
− 4 ln

p2

Q2
− 4 ln

−Q2
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CFαs(µ)
C(µ,Q) = 1 +

Q
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+ 3 ln

(
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]
(7.41)

CFαs(Q)
C(Q,Q) = 1 +

7
8

4π

[
π2

− + 3
6
− iπ

]
. (7.42)

C
C(− Fαs(

iQ,Q) = 1 +
−iQ)

4π

[
−8 +

π2

6

]
. (7.43)
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7.3 Summing Sudakov Logarithms 

With the information from either of the last two sections, we can calculate the anomalous dimensions of 
the opertors or Wilson coefficients. Taking 

we see that the anomalous dimension is defined by a derivative of the counterterm 

To calculate the µ derivative we should recall the result for the derivative of the strong coupling in d 
dimensions 

d 
µ αs(µ, E) = −2E αs(µ, E) + β[αs] , (7.47)
dµ 

where β[αs] is the standard d = 4 QCD beta function written in terms of αs(µ, E). 
Lets apply this to our two examples in turn. The counterterm for the b → sγ current is 

Using the definition of γC in Eq. (7.46) we find 

where we differentiated both αs(µ) and the explicit ln(µ), noting that the 1/E terms cancel to yield a well 
defined anomalous dimension in the E → 0 limit which is given on the last line. 

+Similarly, the counterterm for the e e− → dijets current is  

so the anomalous dimension is obtained by 
2

Again in the last line we have taken the E → 0 limit. Note the similarity in the form of the anomalous 
dimensions for our two examples of Wilson coefficients. Both anomalous dimension equations for C(µ) are 
homogeneous linear differential equations because in both cases the operator mixes back into itself. 
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d
0 = µ

d
Cbare(ε) = µ

dµ

d
Z

dµ

[
C(µ, ε)C(µ)

]
=
[
µ

d
ZC(µ, ε)

dµ

]
C(µ) + ZC(µ, ε)

[
µ C(µ)
dµ

]
, (7.45)

d
µ

d
C(µ) =

dµ

[
− Z−1

c (µ, ε)µ Zc(µ, ε) C(µ) γC(µ)C(µ) . (7.46)
dµ
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≡

γ α
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+
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ω
+
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(7.48)

γ 1
γC(µ, ω, ε) = −

ZγC
µ
d

dµ
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+
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γ α
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4CF ln
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, (7.49)

2jet CFαs(µ)
ZC = 1 +

4π

[
− 2
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+
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(7.50)
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+
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+
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γC (µ,Q) = − s(µ)

4π

[
4CF ln

( µ2
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. (7.51)
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An interesting feature of anomalous dimensions in SCET is the presence of a single logarithm, ln(µ). 
It can be shown by the consistency of SCET, or by consistency of top-down versus bottom-up evolution 
using a factorization theorem for a process with Sudakov logarithms, that no terms with more than a single 
logarithm can appear in anomalous dimensions. The coefficient of this single logarithm is related to the 
cusp anomalous dimension that governs the renormalization of Wilson lines that meet at a cusp angle βij 
between lines along the four vectors ni and nj , where cosh βij = ni · nj /[|ni||nj |]. In the light-like limit 
2 2ni , n → 0 we have βij → ∞. The cusp anomalous dimension is linear in βij in this limit, which yields j 

a logarithmic dependence on 2ni · nj /[|ni||nj |] since cosh βij c eβij /2. This single logarithm is the same 
one encountered in Eqs. (7.49) and (7.50), where the divergence has been handled by the renormalization 
procedure, and hence has become a ln(µ). Indeed, if we consider making the BPS field redefinition for 
the dijet current we get Yn 

†Yn̄, so it is clear that our ultrasoft diagrams involve two light-like Wilson lines 
meeting at a cusp. In the case of the collinear diagrams we have a Wilson line Wn that meets up with a 
collinear quark ξn, and in doing so also effectively forms a cusp. 

The all orders form for the anomalous dimension of our two example currents is 

where Γcups[αs] is called the cusp-anomalous dimension, and the one-loop result has Γcusp = 4. The1 
constant prefactor aC , the dimensionful variable ωC , and the non-cusp anomalous dimension γC [αs] all 
depend on the particular current under consideration. In order to solve the anomalous dimension equation 
we should decide what terms must be kept at each order in perturbation theory that we would like to 
consider. Counting αs ln(µ) ∼ 1 , the correct grouping for obtaining the leading-log (LL), next-to-leading 
log (NLL), etc., results is 

Thus we see that the cusp-anomalous dimension with the ln(µ) is required at one-higher order than the 
non-cusp anomalous dimension. (Typically this is not a problem due to the universal form of the cusp 
contribution, and the fact that its coefficients are known to 3-loop order for QCD, that is up to Γcusp.)3 
To solve the first order differential equation involving γC we also must specify a boundary condition for 
C(µ, ω). At both LL and NLL order the tree-level boundary condition suffices, while at NNLL we need 
the one-loop boundary condition, etc. 

Lets solve the generic anomalous dimension at LL order where 

This equation may be solved for specific quantum field theories. For QED without massless fermions the 
coupling does not run, and with the tree-level boundary condition C(µ = ω, ω) = 1 + O(αs) we have 

This result involves an exponential of a double logarithm, and is often referred to as the Sudakov form  
factor. The suppression encoded in this result is related to the restrictions in phase space that are intrinsic  
for the allowed types of radiation that our operators can emit. The Sudakov form factor also gives the  
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µ
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∑
k=1

(αs
4π

)k
Γcusp
k , γC [αs] =
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+ . . . . (7.53)
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)]
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probability of evolving without branching in a parton shower. For QCD we must also account for the 
running of the coupling, and at LL order we can use the LL β-function, 

d β0 11 4 
µ αs(µ) = − αs 

2(µ) , β0 = CA − TF nf . (7.56)
dµ 2π 3 3 

Together Eqs. (7.54) and (7.56) are a coupled set of differential equations. The easiest way to solve these 
two equations is to use the second one to implement a change of variable for the first by noting that 

Using the more generic boundary condition which fixes the coefficient at the scale µ0, C(µ0, ω) = 1+O(αs) 
we then have 

where in the last line we used 1/αs(ω) = 1/αs(µ0) + β0 ln(ω/µ0), and defined 2π 

αs(µ) 
z ≡ . (7.59)

αs(µ0) 

The solution is therefore 

This result sums the infinite tower of leading-logarithms in the exponent which are of the form, C ∼ 
exp(−αsL2 −α2L3 −α3L4 − . . .), where the coefficients here are schematic and L = ln(µ/µ0) is a potentially s s

large logarithm. Again this result is called the Sudakov form factor with a running coupling. Note that 
the form of the series obtained by expanding in the argument of the exponent is much simpler than what 
we would obtain by expanding the exponent itself. At each order in resummed perturbation theory the 
terms that are determined by solving the anomalous dimension equation can be classified by the simpler 
series that appears in the exponential as follows 

A natural question to ask is how generic are the two examples treated so far in this section? It turns 
out that much of the structure here is quite generic for cases like our examples, where the ω variables are 
fixed by external kinematics. This will occur for any operator that involves only one building block, χn or 
Bµ 
n⊥, for each collinear direction n. For example, with four collinear directions we have the operator 
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. (7.57)
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NNLL

∫
dω1 dω2 dω3 dω4 C(ω1, ω2, ω3, ω4)

[
χn1,ω1

Γµν Bµn2⊥,ω2
Bνn3⊥,ω3

χn4,ω4

]
(7.62)
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and again the ωi’s will be fixed by momenta that are external to collinear loops. An example where this 
would not be true is if we had the same collinear direction n in two or more of our building blocks, such as 

For this operator one combination of ω1 and ω2 will be fixed by momentum conservation, while the other 
combination will involve collinear loop momenta. This will lead to anomalous dimension equations of a 
more complicated form, involving convolutions such as 

Indeed, the operator in Eq. (7.64) is responsible for several classic evolution equations: i) DIS where 
we have DGLAP evolution for the parton distribution functions fi/p(ξ), ii) hard exclusive processes like 
γ∗π0 → π0 where we have Brodsky-Lepage evolution for the light-cone meson distributions φπ(x), and iii) 
the deeply virtual Compton scattering process γ∗ p → γp ' where the evolution is a combination of both 
of theses. It is interesting that all of these processes are sensitive to different projections of the evolution 
of the single operator given in Eq. (7.64). We will carry out an example of an evolution equation with a 
convolution in the next section, where we consider DIS and the DGLAP equation. 

8 Deep Inelastic Scattering 

(ROUGH) DIS is a rich subject, so for the purpose of these notes we will treat only aspects related to 
factorization and the renormalization group evolution with SCET. In particular we will demonstrate the 
factorization of momentum by showing that the forward DIS scattering amplitude can be written as an 
integral over hard coefficients times parton distribution functions. 

8.1 Factorization of Amplitude 

The scattering process is depicted in the figure. The hard scale Q of the process is defined by the photon 

Figure 11: Deep Inelastic Scattering 

momentum qµ 

q 2 = −Q2 (8.1) 
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∫
dω1 dω2 C(ω1, ω2)

[
χn,ω1

n̄/ χn,ω2

]
. (7.63)

d
µ C(µ, ω) =
dµ

∫
dω′γ(µ, ω, ω′)C(µ, ω′) . (7.64)
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and satisfies Q2 » Λ2 . Our Bjorken variable x is defined in the standard way 

Q2 
x = (8.2)

2p · q 

and with momentum conservation defined by pµ + qµ = pµ , we have X 

Q2 
2 2 p = (1 − x) + m . (8.3)X px 

With this result we may determine the various energy regions of the process 

Describe Parton Variables 
We will consider our scattering process in the standard OPE region so that the final state has p2 ofX 

order Q2 and can consequently be integrated out. Conversely, the proton with its comparatively small 
invariant mass p2 ∼ Λ2 may be treated as a collinear field. We analyze the process in the Breit Frame in 
which the perpendicular momentum component of qµ is zero with 

µ Q 
q = (n̄µ − nµ). (8.4)

2 
The proton and final state momentum are then 

µ µn n̄
pµ = n̄ · p + n · p (8.5)

2 2 
µ µ 2 n n̄ mp

= n̄ · p + (8.6)
2 2 n̄ · p 
nµ Q 

= + · · · (8.7)
2 x 

µ µ µpX = p + q (8.8) 
nµ n̄µ (1 − x) 

= + Q . (8.9)
Q 2 x 

The cross section for DIS in terms of leptonic and hadronic tensors is 

d3k ' πe4 
dσ = Lµν (k, k ' )Wµν (p, q) (8.10) 

2|pk '|(2π)3 sQ4 

where k and k ' are the incoming and outgoing lepton momenta, respectively, and we have defined q ≡ k ' −k, 
and s ≡ (p + k)2 . Lµν (k, k ' ) is the leptonic tensor computed using standard QFT methods and Wµν (p, q) 
is the hadronic tensor which will occupy us in this section. Wµν is related to the imaginary part of the 
DIS scattering amplitude by 

1 
Wµν (p, q) = ImTµν (8.11)

π 

( Regions Description
1( 1x −

)
∼ 1 =⇒ p2

X ∼ Q2 Standard OPE Region
1
x − 1

)
∼ Λ

Q =⇒ p2
X ∼ QΛ Endpoint Region(

1
x − 1

)
∼ Λ2

=
Q2 ⇒ p2

X ∼ Λ2 Resonance Region

where
1

Tµν(p, q) =
∑
〈p| T̂µν(q) |p〉 T̂µν(q) = i

2
spin

∫
d4xeiqxT [Jµ(x)Jν(0)]. (8.12)

66



8.1 Factorization of Amplitude 8 DEEP INELASTIC SCATTERING  

Taking Jµ to be an electromagnetic current, we may write 

which satisfies current conservation, P, C, and T symmetries. Matching the T̂µν (q) onto the most general 
leading order SCET operator for collinear fields in the nµ direction and satisfying current conservation 
µ ˆq Tµν we have 

where 
(i) n̄/ (i)

O = ξi W C (P+, P−)W †ξi (8.15)j n,p j n,p2 
Oj

g = Tr[W †B⊥
λ W Cj

g(P+, P−)W †B⊥ λW ] (8.16) 

(8.17) 

with igBλ and P± defined as ⊥  
† 

igB⊥ 
λ ≡ [in̄ · Dn, iDλ P± = P ±P. (8.18)n, ⊥], 

(i)
The subscripts j in O are arbitrary labels, similar to those found in (8.13), which differentiate the two j 
parts of of T̂µν . The superscript (i) defines the flavor (u, d, s, etc.) of quarks and the superscript g in Oj

g 

(i)
stands for a gluon. In accord with their labels, Oj will lead to the quark and anti-quark PDF and Oj

g 

1will lead to the gluon PDF. The placement of factors of Q is done in order to yield dimensionless Wilson 
coefficients. The fact that these Wilson coefficients are dimensionless can be understod by realizing that 
according to (8.12), T̂µν has mass dimension 2. 

In (8.14) there are both quark and gluon operators. However, with T̂µν defined in terms of an electro­
magnetic current we can focus on the quarks and treat the gluons as an higher order contribution so that 
T̂µν becomes 

µν

T̂µν g⊥ (i) (nµ + n̄µ)(nν + n̄ν ) (i)→ O + O . (8.19)
Q 1 Q 2 

(i)
Returning to the quark operator O , we may introduce a convolution to separate the hard coefficients j 
from the long distance operators 

where ω± = ω1 ± ω2. Our hope is to connect this operator to the PDF as a clear demonstration of 
factorization. The PDF for quarks is given by 

and the PDF for anti-quarks is simply f i/p(ξ) = −fi/p(−ξ). In momentum space, we can write the matrix 
element in (8.21) as 

67  

q
Tµ,ν(p, q) =

(
− µqν
gµν +

q
T

q2

)
1(x,Q2) +

(
µ

pµ +
q

p
2x

)(
ν

ν + T
2x

)
2(x,Q2). (8.13)

µν

T̂µν
g

→ ⊥
Q

(
O

(i)
1 +

Og1
Q

)
+

(nµ + n̄µ)(nν + n̄ν)

Q

(
O

(i)
2 +

Og2
Q

)
(8.14)

ˆ ⊥ ( ¯µ ¯ (
.

(i)
Oj =

∫
(i)

dω1dω2Cj (ω+, ω )[(− ξnW )ω1δ(ω1 − P
†
)
/̄n

(W †ξn))ω
2 2δ(ω2 − P)] (8.20)

f 2iξn̄ py
i/p(ξ) =

∫
dye− · 〈p| ξ(y)W (y,−y)nξ/̄ (y) |p〉 (8.21)

〈p| ξ(y)W (y,−y)/̄nξ(y) |p〉 = 〈p| (ξnW )ω1n/̄(W †∫ ξn))ω2 |p
1

〉 (8.22)

= 4n̄ · p dξ δ(ω ) (8.23)
0

−

× [δ(ω+ − 2ξn̄ · p)fi/p(ξ)− δ(ω+ + 2n̄ · p)f i/p(ξ)]. (8.24)
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The delta function over ω− sets ω1 = ω2. The other set of delta functions ensure that for ω+ > 0 we use 
quark PDF fi/p(z). and for ω+ < 0 we use anti-quark PDF f i/p(z). Using these results we may rewrite 

(i)
our operator O including spin averages as j 

Now, by charge conjugation invariance (reference), we have C(−ω+, ω−) = −C(ω+, ω−) so that the final 
form of the spin averaged matrix element is 

We note that although we are using SCETII no soft gluons have appeared in our analysis. This fact can 
be understood by observing that our original operator 

(i) n̄/ (i)
O = ξi W C (P+, P−)W †ξi j n,p j n,p2 

is a color singlet and therefore decouples from any color-charge changing (i.e. gluon) interactions. With 
(8.29) we have the necessary result for a demonstration of factorization. Now all that is left to do is perform 

(i)
the matching of the full field theoretic operators T1(x, Q2) and T2(x, Q2) onto the operators Oj . Recalling 
our formula for Tµν in terms of T̂µν , we have 

This is the SCET amplitude. The QCD amplitude is 

LµνWriting this result in light-cone coordinates and using the Ward Identity (qν L
µν = qµ = 0), and the 

2qµfact that all terms proportional to (n̄µ − nµ) = Q become zero upon contraction with Lµν , we have 
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1 (
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4
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†
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1
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∫
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dω1dω2Cj (ω+, ω )4n̄ p
4

− · (8.26)

×
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dξ δ(ω )[δ(ω+ − 2ξn̄
0

− · p)fi/p(ξ)− δ(ω+ + 2n̄ · p)f i/p(ξ)] (8.27)

= n̄ · p
∫ 1

[Cij(2n̄
0

· pξ, 0)fi/p(ξ)− Cij(−2n̄ · pξ, 0)f i/p(ξ)]. (8.28)

1 (
p

2

∑
spin

〈 | i)
Oj |p〉 = n̄ · p

∫ 1

Cij(2n̄
0

· pξ, 0)[fi/p(zξ) + f i/p(zξ)]. (8.29)

(
=

/̄

2 j ( +, )−

Tµν
1

= ˆp
2

∑
spin

〈 |Tµν |p〉 (8.30)

µνg
= ⊥ 1

Q

µ
(

p
2

∑
spin

〈 | i) 4n nν
Oj |p〉+

Q

1 (
p

2

∑
spin

〈 | i)
Oj |p〉 . (8.31)

TSCETµ,ν (p, q) =

(
q− µqν

gµν +
q2

)
T1(x,Q2) +

(
pµ +

qµ
2x

)(
pν +

qν
T

2x

)
2(x,Q2) (8.32)

(
Q2

TQCD = gµν T⊥ 1(x,Q2
µν − ) + nµν

4x2
T2(x,Q2)− T1(x,Q2)

)
(8.33)
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We refer the reader to [?] for a full derivation of this result. Matching T QCD onto T SCET , yields the 
relations 

which, upon inversion, gives 

Hj (z) ≡ Cj (2Qz, 0, Q, µ),	 (8.41) 

where the hard scale Q and the µ dependence has been made explicit, we have the final result 

where the sum over i is implicit. 
Remarks 

•	 This result represents the general (to all orders in αs) factorization for DIS. As promised we have 
the computable hard coefficients Hi weighted by the universal non-perturbative PDFs fi/p and f i/p. 

•	 The coefficients Cj are dimensionless and can therefore only have αs(µ) ln(µ/Q) dependence on Q. 
This result is in accord with Bjorken Scaling. 

•	 The µ in Hi(µ) and fi/p(µ) is typically called the factorization scale µ = µF . There is also the 
renormalization scale as in αs(µR). In SCET µ is both the renormalization and factorization scale, 
since the same parameter µ is responsible for the running of the EFT coupling αs(µ) and for the 
EFT coupling Cj (µ). 

•	 When we consider the tree level matching onto the wilson coefficients we find that C2 = 0 implying 
the Callan-Gross relation 

Q2W1 
=	 (8.44)

W2 4x2 
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1− (
p

2Q

∑
spin

〈 | i)
Oj |p〉 = T1(x,Q2) (8.34)

2 2
(

p
Q

∑
spin

〈 | i)
Oj |p〉 =

(
Q

T2(x,Q2)
4x2

− T1(x,Q2)

)
(8.35)

T1(x,Q2 1
) = − (

p
2Q

∑
spin

〈 | i)
Oj |p〉 (8.36)

1
= −

x

∫ 1

0
dξCi1(2n̄ · pξ, 0)[fi/p(ξ) + f i/p(ξ)] (8.37)

T2(x,Q2 8x2

) =
2

(
p

Q3

∑
spin

〈 | i) 2x
Oj |p〉 −

(
p

Q3

∑
spin

〈 | i)
Oj |p〉 (8.38)

4x
=

1

Q2

∫
dξ

0

(
(i)

4C2 (2n̄ · pξ, 0)− (i)
C1 (2n̄ · pξ, 0)

)
[fi/p(ξ) + f i/p(ξ)]. (8.39)

(8.40)

≡ , , ,

T1(x,Q2 1
) = −

x

∫ 1

0
dξ H

(i)
1

(
ξ

x

)
[fi/p(ξ) + f i/p(ξ)] (8.42)

T2(x,Q2 4x
) =

1

Q2

∫
dξ

0

[
(i)

4H2

(
ξ

x

)
−H(i)

1

(
ξ

x

)]
[fi/p(ξ) +

Q2

where in the Breit Frame x =

f i/p(ξ)] (8.43)

2p·q = Q2

n̄·pn·q = Q
n̄·p . With the definition
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and that 

8.2 Renormalization of PDF 

(ROUGH) In this section we calculate the anomalous dimension of the parton distribution function. We 
define the PDF as 

fq(ξ) = (pn| χn(0) 
n/
χn,ω(0) |pn) (8.47)

2 
where ω = ξ n̄ · pn > 0. Since we have a forward matrix element there is no need to consider a momentum 
label ω ' on χ , by momentum conservation it would be fixed to ω ' = ω. We renormalize our PDF in our n

EFT framework with dimensional regularization, noting that there are only collinear fields an no ultrasoft 
interactions for this example. Collinear loop processes can change ω (or ξ) and also the type of parton. 
The renormalized PDF operators are given in terms of bare operators as 

The µ independence of the bare operators f bare (ξ) yields an RGE for the renormalized operators in MS, i 

At 1-loop we can take Z−1(ξ, ξ '' ) = δii δ(ξ − ξ '' ) + · · · so that ii 

Computing the PDF at tree level, we obtain 

n/̄
= un un δ(ω − p −) = δ(1 − ω/p−) (8.52)

2' -n " 
−p

At the 1-loop level there are multiple contributions the first contribution yields the computation 
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Q
C1(ω+) = 2e2Q2

i

[
Q

(ω+ − 2Q) + iε
− (8.45)

(−ω+ − 2Q) + iε

]
H1 = −e2Q2

i δ

(
ξ

x
− 1

)
(8.46)

fbare
i (ξ) =

∫
dξ′ Zij(ξ, ξ

′)fj(ξ
′, µ). (8.48)

i

µ
d
fi(ξ, µ) =

∫
dξ′γij(ξ, ξ

′)fj(ξ
′, µ) (8.49)

dµ

where

γij = −
∫

d
dξ′′Z−1(ξ, ξii

′′)µ′ Zi′j(ξ
′′, ξ′) . (8.50)

dµ

1-loop d
γij = −µ

dµ

[
Zij(ξ, ξ

′)
]1-loop

(8.51)

p
= −ig2CF

∫
dd

−(d
l

− 2)l2⊥ µ2εeεγE
δ(l

[l2 + i0]2[(l − p)2
−

+ i0]
− ω) (8.53)

(4π)ε

2g2

=
A

(1
(4π)2

− ε)2Γ(ε)eεγE (1− z)θ(z)θ(1− z)
( −

µ2

) ε

(8.54)

αsCF
=

1
(1

π
− z)θ(z)θ(1− z)

[
2ε
− 1− 1

ln
2

(
A/µ2

)]
(8.55)
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+ −where A = −p p z(1 − z) with z = ω/p− The next contribution is given by 

We can simplify this result with use of the distribtuion identity. 

θ(1 − z) δ(1 − z) 
= − + L0(1 − z) − EL1(1 − z) + · · · (8.59)

(1 − z)1+E E 

where the plus function Ln(x) is defined as 

and satisfies the following identities 

With this replacement we find that the 1/E2 terms in the real and virtual terms cancel and the remaining 
1/E is UV divergent. In the end the explicit contribution of this process is 

The last conrtibution to the renormalized PDF is the wavefunction renormalization of the external 
fermions. 

There are additional contributions from diagrams such as those in (), but we will ignore these by assuming 
that the operator is not a flavor singlet. Summing the various contributions, we have 
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d
=2ig2CF

∫ dl n/̄un 2
/n n̄2 · lnu/̄ n

︷ real

[
(l− − p−)l2(l − p)2

︸︸ ︷ virtual

δ(l− − ω
︷
)−

︸︸
δ(p− − ω

︷
)] (8.56)

CFαs(µ)
=

z
eεγEΓ(ε)

π

[
θ(z)θ(1− z)
(1− z)1+ε

(
−p−p+z − i0 −

µ2

) ε

(8.57)

−δ(1− z)
(
−p−p+z − i0

µ2

)−ε
Γ(2− ε)Γ(−ε)

Γ2− 2ε

]
(8.58)

θLn(x) =

[
(x) lnn(x)

(8.60)
x

]

∫ 1 ∫ 1 ∫ 1 lnn x
dx

0
Ln(x) = 0, Ln(x)g(x) = dx

0 0
[g(x)

x
− g(0)]. (8.61)

CFαs(µ)
=

1
δ

π

[
{ (1− z) + zθ(z)L0(1− z)}

(
ε

+ ln
µ2

(8.62)(
2

−p+p−z − i0
π

)
−zL2(1− z)θ(z) + δ(1− z) 2− .

6

)]
(8.63)

α
Fig() = δ(1− z)(Zψ −

sCF
1) =

π

[
− 1

4ε
− 1

4
− 1

4
ln

(
µ2

δ
−p+p− − i0

)]
(1− z) (8.64)

CFαs(µ)
Sum =

3

π

[{
δ(1

4
− z) + zθ(z)L0(1− z)+

(1
+

− z) 1
θ(z)θ(1

2
− z)

}(
ε

+ ln
µ2

+
−p+p−zi0

)
finite function of z

]

CFαs(µ)
=


π

 1 2

(
1 + z2

1− z

)
+︸ ︷︷ ︸

Determines Z1-loop
qq

(
1

ε
+ ln

µ2

−p+p−zi0

)
+ · · · finite function of z

 (8.65)
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− −If we let the total momentum of the hadronic state be p̂ . Then define p−/p̂ = ξ− . So that 

ω ξp̂− ξ 
z = = = (8.66)− ξ ' ̂ − ξ ' p p

1-loopThen our Zqq becomes 

And usng 
d d 

γij = −µ Zij (z, µ), µ αs(µ) = −2Eαs(µ) + β[αs(µ)] (8.68)
dµ dµ 

we then obtain the our final result 

+ 

which is the Aliterelli - Parisi (DGLAP) quark anomalous dimension at one-loop. 

8.3 General Discussion on Appearance of Convolutions in SCETI and SCETII 

+9 Dijet Production, e e− → 2 jets 

(ROUGH) 
The production of jets at an e+e− collider has historically been very important. Measurements of 

various jet in e+e− collisions were used to validate QCD as the correct theory of the strong interaction, 
and to this day, even 10 years after the LEP has been turned off, measurements of event shape distributions 
are being used to study the nature of the strong interaction and to determine fundamental constants of 
nature such as the coupling constant of the strong interaction. 

The dominant kinematical situation in e+e− → jets is to produce two jets, but of course a larger 
number of jets can be obtained by the emission of additional hard strongly interacting particles. In this 
section we will discuss the production of two jets in e+e− collisions, which is to say the production of 
energetic particles in two back-to-back directions, accompanied only by usoft radiation in arbitrary regions 
of phase space. 

Clearly, the question whether we have 2 or more jets has to be determined on an event by event basis, 
and there are many possible observables which can distinguish 2-jet events from events with more than 
2 jets. The most natural definition might be to use a jet finding algorithm, and select those events with 
exactly two hard jets as defined by this algorithm. However, there is another set of observables which 
can be used to identify 2-jet events, and which are much easier to analyze theoretically. This class of 
observables are called event shapes, with the most well known event shape variable being thrust. In this 
section, we will only discuss the thrust distribution in e+e− collisions, but it should be clear from the 
discussion how one can extend the results to other event shape variables or other 2-jet observables. 

9.1 Kinematics, Expansions, and Regions 

The thrust of an event is defined as follows: 
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1
Z1-loop
qq = δ(1− z) +

αs(µ)

ε

1
CF θzθ(1

2π
− z)

( + z2

.
1− z

)
(8.67)

+

C
γqq(ξ, ξ

′ Fαsµ
) =

θ(ξ′ − ξ)θ(1− ξ′)
π

1

ξ′

(
+ z2

(8.69)
1− z

)
+

p~
T = max~nT

∑
i | i · ~nT |∑
i |~pi|

(9.1)



 

9.2 Factorization 9 DIJET PRODUCTION, E+E− → 2 JETS 

The sum over i runs over all particles in the final state, and the direction pnT is called the thrust axis. To 
fully understand this equation, let’s first ignore the maxnT and pick a fixed direction pnT .Thrust is then 
defined by summing the absolute value of the projections of the momenta of all particles onto the thrust 
axis, and divide by the sum over the magnitude of all momenta. In the situation where the momenta of all 
particles are aligned (or anti-aligned) exactly with the thrust axis, the magnitude of the projection onto 
the thrust axis is exactly equal to the magnitude of the momentum itself, such that one obtains T = 1. 
Thus, energetic particles that are collinear or anti-collinear to the thrust axis give T ≈ 1. Soft particles 
with vanishing momentum do not contribute to the the thrust, since their contributions vanish in the 
numerator and denominators. Thus, events with T ≈ 1 only contain particles which are either collinear or 
anti-collinear to the thrust axis, or are usoft, and are therefore 2-jet like and can be described by SCETI. 
For later convenience we will often choose the variable 

τ = 1 − T (9.2) 

instead of T itself. In this case the 2-jet case corresponds to τ → 0, while τ away from zero corresponds to 
three or more jets. 

To make the connection of thrust with SCET even more obvious, we will define the two four-vectors 

nµ = (1, pnT ) , n̄µ = (1, −pnT ) (9.3) 

Using this definition, we can write p p
Q − i∈R n · pi − n̄ · pii∈LT = 

Qp p
i∈R n · pi + n̄ · pii∈L⇒ τ = 

Q 

9.2 Factorization 

The thrust distribution in the full theory is given by summing over all final states in the event, and 
projecting each event onto its value of thrust, defined by (9.1) 

+Here M(e e− → X) is the full QCD matrix element to produce the final state X from the collisions of an 
+e e− pair. 

To obtain the expression in SCET, we need to match the full QCD matrix element onto operators 
in SCET. As was already discussed in Section Since we only consider final states with energetic particles 
collinear to either the direction nµ or n̄µ, the appropriate operator in SCET is 

Onn̄ = χ̄n̄Γχn (9.5) 

where χn is the gauge invariant quark jet field introduced in (6.20) and Γ is a Dirac structure that describes 
the production of a qq̄ field from a γ/Z boson. Thus, the matching from full QCD onto SCET can be 
written as 

+M(e e − → X) = Cnn̄ (0 |Onn̄| X) (9.6) 

such that we can write  
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dσ 1
=

dτ

∑∣∣ ∣2M(e+e− → X)
∣

(2π)4δ4(q
2Q2

− pX)δ(τ − τ(X)) . (9.4)
X

dσ 1
=

dτ
2C

2Q2

∑
n

| nn̄|
∑
|〈0 |Onn̄|X〉|2 (2π)4δ4(q − pX)δ(τ − τ(X)) (9.7)

X
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9.3 Perturbative Results 

9.4 Results with Resummation 

10 SCET II 

(ROUGH) When soft gluons interact with collinear particles, the resulting particle has momentum 
Q(λ, 1, λ) and is therefore off the SCET mass shell. 

2 q = qs + qc ∼ Q(λ, 1, λ) → q = Q2λ >> (Qλ)2 (10.1) 

Consequenlty, these offshell particles can be integrated out of the theory. Analogous to our definition of 
the ultra-soft wilson line, we can define a soft wilson line S[n ·As] resulting from integrating out the offshell 
particles. 

Aslo, similar to the usoft case, gauge invariance restricts the placement of factors of S in operators. For 
example, we use our canonical heavy to light (soft to collinear) current. under soft and collinear gauge 
transformations, the fields transform as 

soft: hv → Ushv ξn,p → ξn,p (10.3) 
collinear: hv → hv ξn,p → Up−Qξn,Q (10.4) 

The fact that our standard current J = ξn,pWnΓ
µhv is not gauge invariant under the soft transformations 

suggests that it is an incomplete description of the physics of this process. We can make this current soft 
gauge invariant by including the soft Wilson line. The soft Wilson line Sn transforming as 

Sn → UsS (10.5) 

makes the current 
J = ξ W ΓµS†hv (10.6)n,p

gauge invariant. We may also build up this current by a diagrammatic analysis. Necessary to the procdure 
is the fact that only n · Aus component of the usoft gluon builds up S (EXPLANATION) and only the 
n̄ · An,q component of the collinear gluon build up W . The simplest diagram for soft- collinear coupling, 
where collinear and soft gluons take the quarks off-shell is given in 

Diagram. 
This diagram yields the current 

µ ν 
2Fig () = −g n n̄

ξ T aΓT bhv. (10.7) 
n · qs n̄ · qc 

n,q

But we have a probelm. This current appears to have the color factors a and b in the wrong order. With  
a representing soft gluons and b representing collinear gluons this current appears to be derived form the  
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dσ

dM2d
= σ0H(Q,µ)2

M

∫
dl+dl− Jn(M2 −Ql+,µ) Jn̄(

2
M −Ql,µ−)S(l+, l−) (9.8)

Sn =

[
p

∑
exp

erms

(
1−g
n·
Pn ·As,q

)]
(10.2)
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operator ξ S†ΓµWhv which is not equivalent to (10.6) because S and W do not commute. This apparent n,p

problem is solved by considering the remaining two diagrams of the same order as this one 
Diagrams. 
These diagrams both yield the current 

2 µ νg n n̄
ifabcT cFig() = Fig() = ξn,pΓhv. (10.8)

2 n · qs n̄ · qc 

Adding the three graps together, revereses the order of the color indices (by virture of [T a, T b] = ifabc) to 
give 

µ ν 
2Fig() + Fig() + Fig() = −g n n̄

ξ T bΓT ahv (10.9) 
n · qs n̄ · qc 

n,q

which is the correct ordering for the gauge invariant current in (10.6). This procedure can be extended to 
all orders as in ( Refererence). 

We may construct SCET operators by another method using SCETI . The basis of the procedure comes 
from the fact that soft-modes in SCETII and usoft modes in SCET I have the same momentum; it is only 
the collinear fields which have distinct momentuma. The exact procedure for obtaining SCETII is 

1. Match QCD onto SCETI 

2. Redefine fields with the usoft wilson line Yn so that usoft interactions are only present in currents 

3. Match SCETI onto SCETII by taking Yn → Sn. 

As an example of the above procedure we may construct the SCETII current postulate above. 

1. Matching QCD onto SCETI 
J = uΓµb → JI = (ξ W )Γµhv (10.10)n

2. Redefining fields so that usoft interactions are only present in currents 

(0)
W (0))ΓµY †hvJI = (ξ (10.11)n 

3. Matching SCETI onto SCETII by taking Yn → Sn. 

(0)
W (0))ΓµS†hvJII = (ξ (10.12)n 

11 SCETII Applications 

(ROUGH) In this section we will apply the SCETII formalism developed in previous sections to various 
processes to illustrate the formalism 

• γ∗γ → π0 

• B → Dπ 

• The Massive Gauge Boson Sudakov Form Factor 

• pT distribution in Higgs production 

75  



  

  

  

11.1 γ∗γ → π0 11 SCETII APPLICATIONS 

• Jet broadening 

A distinguishing feature of these processes is whether they involve a new type of divergence that requires 
a renormalization procedure, known as rapidity divergences. The first two processes do not, while the last 
three do. We will discuss these divergences in detail for the massive gauge boson form factor, and then be 
very brief about the last two examples. 

11.1 γ∗γ → π0 

11.2 B → Dπ 

(ROUGH) As another exclusive scattering process, we analyze B → Dπ. We may use the SCET frame­
work here because the hard scales Q = {mb,mc, Eπ} » ΛQCD. At the scale µ ∼ mb the QCD operators 
represented by the weak Hamiltonian are 

4GF †HW = √ V Vcb[C0 
F (µ0)O0(µ0) + C8 

F (µ0)O8(µ0)] (11.1) ud2 

where 

O0 = [cγµPLb][dγµPLu] (11.2) 
O8 = [cγµPLT ab][dγµPLT a u]. (11.3) 

We want to factorize the matrix element (Dπ| O0,8 |B). We can represent this factorization diagrammat­
ically as (INSERT FIG) where there are no gluons between π quarks and B/D quarks. For this process 
we expect a B → D form factor (Isgur-Wise form factor) and a pion wavefunction/distribution. This fac­
torization will be possible because the particles B and D have soft momentum scaling and π has collinear 

2scalings. Specifically p ∼ Λ2 and we therefore use SCETII to describe this process. c 
First, matching the QCD Hamiltonian onto SCET we need the operators 

1,5 (c) 1,5h(b)
(d)

Q = [h Γ ] [ξ W ΓlC0(P+)W †ξ(u)] (11.4)0 v h v n,p n,p

1,5 (c) 1,5 (d)
T ah(b)Q = [h Γ ] [ξ W ΓlC8(P+)T aW †ξ(u)] (11.5)8 v h v n,p n,p

n/ n/ n/̄where Γ1 = , Γ5 = γ5 and Γl = (1 − γ5). Note that the two operators O0 and O8 can both produce h 2 h 2 4 
any of the Q1,5 operators. Now, implementing field redefinitions to factor usoft effects (remember we can 0,8 
start with SCETI to derive SCETII results) we have 

= Y ξ(0)ξn,p n,p 

W = YW (0)Y † 

These redefinitions are easily implemented in Q0 
1,5 . They simply take 

(d) (d)(0)
W (0)ΓlC0(P+)W (0)†ξ(u)(0)[ξ W ΓlC0(P+)W †ξ(u)] → [ξ ] (11.6)n,p n,p n,p n,p 

where we used the fact that Y commutes with the wilson coefficient C0(P+). This argument cannot be 
applied to Q1,5 because Y , containing generators of its own, does not commute with T a . However, by 8 
making use of the color identity 

T a ⊗ Y †T aY = Y T aY † ⊗ T a (11.7) 
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then we may move all usoft wilson lines into the usoft part of the operator yielding  

1,5 (c) 1,5 (d)
Q = [h Γ Y T aY †h(b)] [ξ W ΓlC8(P+)T aW †ξ(u)]. (11.8)8 v h v n,p n,p

Matching this SCETI result onto SCETII by the replacements Y → S and ξ(0) → ξ, W (0) → W , we have 

1,5 (c) 1,5h(b)
(d)

Q = [h Γ ] [ξ W ΓlC0(P+)W †ξ(u)]0 v h v n,p n,p (11.9) 
1,5 (c) 1,5 (d)

Q8 = [hv Γh Y T aY †h(v
b)] [ξn,p W ΓlC8(P+)T aW †ξ(u)]. (11.10)n,p

Now, taking the matrix elements between the appropriate hadronic states we have

We are able to achieve this factorization because with B, D purely soft and π purely collinear there are 
no contractions between soft and collinear fields. So we find that our final factorization result is 

where ξ(ω0, µ) is the Isgur-Wise function at maximum recoil and 

2 2 
ω0 = 

mB − mD (11.14)
2mB 

This result also applies to other B decays such as 

0 0 0 
B → D+π− , B → D∗+π− , B → D+ρ− 

− 0 
B → D0π− , B− → D∗0π− , B → D+ρ− 

11.3 Massive Gauge Boson Form Factor & Rapidity Divergences 

11.4 pT Distribution for Higgs Production & Jet Broadening 

12 More SCETI Applications 

(ROUGH) 
In this section we will apply the SCET formalism developed in previous sections to a few additional 

processes that either use SCETI or a combination of both SCETI and SCETII (where the more complicated 
part of the factorization occurs within SCETI). In particular we will consider 

• B → Xsγ 

• Drell-Yan pp → l+l−X: inclusive, endpoint, and isolated factorization theorems 
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〈
πn
−∣∣ ξnWΓC0(

iP+)W †ξn |0〉 =
1

fπEπ
2

∫
dxC(2Eπ(2x

0
− 1))φπ(x) (11.11)〈

Dv′πn
−∣∣hv′Γhv |B〉 = N ′ξ(ω0, µ). (11.12)

1

〈πD|HW |B〉 = iNξ(ω0, µ)

∫
C(2Eπ(2x

0
− 1), µ)φπ(x, µ) +O(Λ/Q) (11.13)
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12.1 B → Xsγ 

(ROUGH) In this section we treat the incluzive weak radiative decay B → Xsγ. This decay is defined 
by the effective Hamiltonian 

4GF e H = − √ VtbVts
∗ C7O7, O7 = mbsσµν F µν PRb (12.1)

2 16π2 

1with F µν the electromagnetic field tensor and PR = (1 + γ5). The decay is defined such that the photon 2 
momentum is opposite the collinear jet i.e. qµ = Eγ n̄µ. 

The photon energy spectrum of the decay is 

Is the forward scattering amplitude with EM current Jµ = siσµν q
ν PRb. 

We will consider the endpoint region of the decay in which nearly all of the final state energy is in the 
photon. Analyzing this process in the rest frame of B, we find that the final momentum X 

µ µ µp = pB − q (12.4)X 
µ= 

mb 
(nµ + n̄µ) − Eγ n̄ (12.5)

2 
µ µn̄ n̄

= mb + (mb − 2Eγ ). (12.6)
2 2 

Defining our endpoint region by 
mb − Eγ ≤ ΛQCD (12.7)
2 

gives us a mass squared scale of 
2 2 2 pX c mbΛ = m 

Λ
= mb λ

2 (12.8)b mb 

where in the last line we took  Taking mb as Q it is clear that this process is described by SCETI. 
Specifically, X will be represented by collinear gluons and quarks while B will be represented by heavy 
(usoft) quark. Our principal goal is to demonstrate how the effects of momentum scales are factorized in 
the formula for the photon energy spectrum. To this end we will prove that (12.2) can be factorized as 

where H(mb, µ) is a calculable quantity arising from hard scale dynamics; S(k+, µ) is a non-perturbative 
soft function; and J(k+) represents collinear gluons and quarks and is called the jet function. 

We begin by matching the QCD current onto SCET to obtain 

i(P n 
Jµ = −Eγ e 2 +P⊥−mbv)·xC(P, µ)ξn,pWγµ 

⊥PLhv (12.10) 

= −Eγ C(mb, µ)ξn,pWγµ 
⊥PLhv (12.11) 
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1 dΓ

Γ0

4Eγ
=

dEγ

1

m3
b

(
− Im
π

)
T (Eγ) (12.2)

where
i

T (Eγ) = d
mb

∫
4x e−iqx

〈
Bv

∣∣TJ†µ(x)Jµ(0)
∣∣Bv

〉
(12.3)

=
√

Λ .mb

1 dΓ

Γ0

Λ

= H(mb, µ)

∫
dk+ S(k+, µ)J(k+ +mb − 2Eγ , µ) (12.9)

dEγ 2Eγ−mb

λ



12.1 B → Xsγ 12 MORE SCETI APPLICATIONS 

where in the second line we used the label momentum conservation to set P = mb and P⊥ = 0. Inserting 
this result into (12.3), we may write 

4Eγ 
3 T (Eγ ) ≡ H(mb, µ)Teff(Eγ , µ) (12.12) 

mb 

where 

This gives us a hard amplitude of 

4Eγ 
3 

H(mb, µ) = |C(mb, µ)|2 . (12.14)3mb 

Next, we decouple usoft gluons from collinear fields by implementing the standard field redefinitions 

→ Y ξ(0) W → Y W (0)Y †ξn,p n,p (12.15) 

thus giving us a new effective current: 

Jµ (0)
W (0)γ⊥ = ξ PLY †hv. (12.16)eff n µ 

Substituting this result into (12.13) gives us 

with the label P representing the sum of the label momentum carried by the collinear fields. (Additional 
Derivation)? Now, noting that JP only depends on the k+ component of residual momentum k, we may 
do the k− and k+ integrals thus putting x on the light cone 
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where

Teff = i

∫
d4x ei(m

n̄
b q

2
− )·x 〈 µBv

∣∣TJ (x)Jeff µ eff

∣∣Bv

〉
. (12.13)

Teff = i

∫
d4x ei(m

n̄
b 2
−q)·x 〈Bv

∣∣T[hvY PRγ
⊥
µW

(0)†ξ(0)
n,p](x)[ξ

(0)
n,pW

(0)γµ⊥PLY
†hv](0)

∣∣Bv

〉
(12.17)

= −
∫
d4x

∫
d4k

(2π)4
ei(mb

n̄
2
−q−k)·x 〈Bv

∣∣T[hvY ](x)PRγ
⊥
µ
/n

2
γµ⊥PL[Y †hv](0)

∣∣Bv

〉
JP (k) (12.18)

1
=

d
d

2

∫
4x

∫ 4k

(2π)4
ei(mb

n̄
2
−q−k)·x 〈Bv

∣∣T[hvY ](x)[Y †hv](0)
∣∣Bv

〉
JP (k), (12.19)

where we defined

i

∫
d4k

(2π)4
〈0|T[W (0)†ξ(0)

n,p](x)[
(0)
ξn,pW

(0)](0) |0〉 (12.20)

1
Teff =

2

∫
d4x ei(mb

n̄
2
−q)·xδ(x+)δ(x⊥)

∫
dk⊥
2π

e−
i
2
k+x−

〈
Bv

∣∣T[hvY ](x)[Y †hv](0)
∣∣Bv

〉
JP (k+)

1
=

dx
dk

2

∫
+JP (k+)

∫ −

4π
e−

i
2

(2Eγ−mb+k+)x−
〈
Bv

∣∣T[hvY ]
(n

2
x−
)

[Y †hv](0)
∣∣Bv

〉
. (12.21)
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Focusing on the heavy fields, we may then define  

The Soft function S(k+) is non-perturbative and encodes information about the usoft dynamics of the 
B meson. (12.22) shows that we may interpret this result as giving the probability of finding a heavy 
quark b inside the B meson carrying a residual momentum of k+ . Defining J(k+) = − 1 ImJP (k

+) and π 
using(12.12),(12.21), (12.22) in (12.2), we have the final result 

12.2 Drell-Yan: pp → Xl+l− 

(ROUGH) Our final example will be the Drell-Yan (DY) process pp̄ → Xl+l− . This is a protype LHC 
process. The kinematics of this process can be described by the following set of equations. 

And the analogs of the Bjorken Variables from DIS: 

xa ≡
√ 
τeY , xb ≡

√ 
τe−Y ,	 (12.30) 

where τ ≤ xa,b ≤ 1. We study this process int three distinct energy regions 

2·Inclusive: τ ∼ 1 p ∼ q2 ∼ E2 
x cm xa, b ∼ 1, ξa, b ∼ 1 

2·Endpoint: τ → 1 p << q2 → E2	 (12.31)x cm xa, b → 1, ξa, b → 1 
2·Isolated: τ → 0 p >> q2 xa, b → 0, ξa, b → 0x 

We now analyze these specific processes in detail.  
Inclusive In this case this process represents an SCETI problem of hard-collinear factorization. we have  
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1
S(k+) ≡ dx

2

∫ −
i

e−
4π

l+x
2

− 〈
Bv

∣∣T[
n

hvY ]( x−)[Y †hv](0)
2

∣∣Bv

〉
(12.22)

1
=

dx

2

∫ −

4π
e−

i
2
l+x−

〈
Bv

∣∣Tex− n2 ·∂ [hvY ](0)[Y †hv](0)
∣∣Bv

1
=

〉
dx

2

∫ −

4π
e−

i
2
l+x−

〈
Bv

∣∣T[hvY ](0)e−x
− n

2
·∂ [Y †hv](0)

∣∣Bv

1
=

〉
dx

2

∫ −

4π
e−

i
2
l+x−

〈
Bv

∣∣ThvY e ix−2 n·∂Y †hv
∣∣Bv

1
=

〉
2

∫
dx−

4π
e−

i
2
l+x−

〈
Bv

∣∣Thveix−2 (in·Dus)hv
∣∣Bv

1
=

〉
2

〈
Bv

∣∣hvδ(in ·Dus − l†)hv
∣∣Bv

〉
. (12.23)

1 dΓ
= H(mb, µ)

∫ Λ

dl+ S(l+) J(l+ +mb − 2Eγ)
Γ0 dEγ 2Eγ−mb

p2∼m2 Hard p2∼Λ2 Usoft p2
b ∼mbΛ Collinear

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ (12.24)

pA + pB = pX + q (12.25)

E2
cm = (pA + pB)2 Collision Energy (12.26)

q2 : Hard scale of the problem (12.27)

τ ≡ q2/E2
cm ≤ 1 (12.28)

1
Y =

p
ln

2

(
b · q
pa · q

)
Total lepton rapidity (angular variable) (12.29)



  

12.2 Drell-Yan: pp → Xl+l−	 12 MORE SCETI APPLICATIONS 

a 4-quark operator in SCET, which after a Fierz Identity becomes,  

n̄/	 n/ †[(ξ̄nWn) (Wn
†ξn)][(ξ̄n̄Wn̄) (Wn̄ξn̄)]	 (12.32)

2	 2 

Remarks: 

•	 T A ⊗ T A octet structure vanishes under (pn| | · | |pn) 

•	 When we take ξn → Ynξn for coupling to soft gluons, the soft wilson lines cancel out. 

•	 This operator encodes information about the PDF because both 

n̄/	 n/(pn| |χn,ω ) and (p¯ | |χ¯ χ¯ n)	 (12.33)χn,ω | |pn n n,ω n,ω | |p¯
2 2 

are defined as PDFs. These PDFs contribute to the differential cross section for this process: 

•	 As a last important caveat, we not that Glauber Gluons cancel out at leadind order. However, 
proving this result is out of the scope of our current discussion. 

Threshold Limit In the threshold limit only the terms of Hij 
incl most singular in 1 − τ contribute. 

where i, j = u¯ d, . . ..u, d ̄ The interpretation when we take ξa,b → 1 is that one parton in each proton carries 
all the momentum. This is not the dominant LHC region.  
Isolated DY The isolated case of DY allows forward jets to carry away part of Ecm, so ξa,b → 1. It  
also restricts thr central region to still only have soft radiation (the signal region is background free).  
To guarantee this requires an experimental observation. Observable: pX = Ba + Bb. There are two  
hemispheres perpendicular to the beam axis.  

We expect the plus momenta for n- collinear radiation to be small. We find that this is indeed the case 
becuase 

B+ ≤ Qe−2Y ωt << Q (12.39)a 

and there is an identical expression for B+ . For the n-collinear proton (a) and jet (a), we do not merely b 
get a PDF from the hard-collinear-soft factorization. We get something new called a beam function. The 
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1 dσ

σ0

1

=
dq2dY

∑
i,j

∫
dξa

xa

1

ξa

∫
dξb

xb

x
H incl

ξ ij
b

(
a xb
,

ξa
, q2, µ fi(ξa, µ)fj(ξb, µ) (12.34)

ξb

)

=

[
1 +O

(
ΛQCD√

q2

)]
. (12.35)

H incl
ij → Sthr

qq̄

[√ τ
q2

(
1− ,

qaqb

)
µ

]
Hij(q

2, µ) [1 +O(1− τ)] (12.36)

B+
a = na ·Ba =

∑
na · pk (12.37)∑ kεa

= Ek(1 + tanhYk)e
−2Yk (12.38)

kεa



B FEYNMAN RULES WITH A MASS  

differential cross section for this process can be written as 

where ωa,b = xa,bEcm andBi is defined as our ”Beam Function.” 

We recll the definitions of jet function 
¯ 

− n (0| | χ̄n, ω(y ) 
n/
χn(0)| |0) (12.42)

2 2 
and pdf 

¯ 
(p| | χ̄n, ω(0) 

n/
χn(0)| |p) (12.43)

2 
We see that the Jet Function is a mix of both. The proton is a collinear field in SCETII and the jet is 
collinear in SCETI . Matching SCETI to SCETII gives us 

At tree level the Beam Function is simply 

Bi(t, x, µ) = δ(t)fi(x, µ) (12.46) 

as in the pdf case we can write the RGE for the beam function 

Like the jet function Bi is independent of mass evolution. The RGE sums ln2(t/µ), is independent of x 
and has no mixing. 

A More on the Zero-Bin 

A.1 0-bin subtractions with a 0-bin field Redefinition 

A.2 0-bin subtractions for phase space integrations 

B Feynman Rules with a mass 

If we add a mass the collinear Lagrangian becomes 

and the modified Feynman rules are shown in Fig. 12. 
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1 dσ

σ0
=
∑

H (q2, µ)

∫
dk+dk+Q2B [ω (B+ − k+), x , µ]B [ω (B+ +

ij a b i a a a )+ j ,
dq2dY dB dB+ a b k x , µ]b

ij

− b b
a b

× Si hemi(k
+
a , k

+ D
, µ) 1 +b

[
O

(
ΛQC
Q

,

√
Ba,bωa,b

(12.40)
Q

)]

Bq(ωb
+ θ(ω)
, ω/p̂−, µ) =

dy

ω

∫ −

4π
eib

+y/2
〈
pn(p̂−)

∣∣ |χ̄n(y−
n

2
)δ(ω − P̄)

/̄n

2
χn(0)|

∣∣pn(p̂−)
〉

(12.41)

1

Bi(t, x, µ) =
∑
i

∫
dξ

x

x
ij

ξ
I (t,

Λ
, µ)fj(ξ, µ)
ξ

[
1 +O

(
2
QCD

(12.44)
t

)]

bµ
n

a = (ξ − a
x)Ecm

2
+ b+a

n̄a
+ ba (12.45)

s
⊥

d
µ Bi(t, x, µ) =

∫
dt′γi(t− t′, µ)Bi(t

′, x, µ) (12.47)
dµ

L(0) 1¯= ξξξ n(x)

[
in·D + (iD/c⊥ −m)

in̄·Dc
(iD/c⊥ +m)

]
n̄/

2
ξn(x) , (B.1)
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(p̃, pr) 

 μ , A

p pɂ

μ , A

p pɂ

μ , A ν , B

q

Figure 12: Order λ0 Feynman rules as in Fig. 6, but with a collinear quark mass. 

C Feynman Rules for the Wilson line W 

Results for the Feynman rules for the expansion of the W Wilson line are also useful 

gT A n̄·εA(q)nW = 1 − + . . . , 
n̄·q  

gT A n̄·εA(q) nW † = 1 + + . . . , (C.1) 
n̄·q 

where here the momentum q is incoming and εA is the gluon-polarization vector. n 

D Feynman Rules for Subleading Lagrangians 

In this subsection Feynman rules are given for the subleading quark Lagrangians involving two collinear 
quarks 
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n/= i
n̄

2
·p

n·pr n̄·p+ p2⊥−m2+iε

= ig TA nµ
n̄/
2

= ig TA

[
nµ +

γ⊥µ (p/⊥+m)

n̄·p +
(p ′/⊥−m)γ⊥µ

n̄·p ′ − (p ′/⊥−m)(p/⊥+m)
n̄·p n̄·p ′ n̄µ

]
n̄/
2

= ig2 TA TB

n̄·(p−q)

[
γ⊥µ γ

⊥
ν −

γ⊥µ (p/⊥+m)

n̄·p n̄ν − (p ′/⊥−m)γ⊥ν
n̄·p ′ n̄µ + (p ′/⊥−m)(p/⊥+m)

n̄·p n̄·p ′ n̄µn̄ν

]
n̄/
2

+ ig2 TB TA

n̄·(q+p′)

[
γ⊥ν γ

⊥
µ −

γ⊥ν (p/⊥+m)
n̄·p n̄µ −

(p ′/⊥−m)γ⊥µ
n̄·p ′ n̄ν + (p ′/⊥−m)(p/⊥+m)

n̄·p n̄·p ′ n̄µn̄ν

]
n̄/
2

Figure 12: Order λ0 Feynman rules as in Fig. 6, but with a collinear quark mass.

1L(1)
=ξξ

(
ξ̄nW

)
iD/⊥us

n̄
W

n̄·P
( /†iD/⊥c

1¯ξn
2

)
+
(
ξniD/

⊥
c W

) n̄
iD/⊥

n̄·P us

( /
W † ξn

2

)
L(2)

=ξξ

(
ξ̄nW

) 1
iD/⊥us n̄·P

iD/⊥us
n̄/

2

(
W †ξn

)
+
(
ξ̄niD/

⊥
c W

) 1

n̄·P2
in̄·Dus

n̄/
W

2

( †iD/⊥c ξn
)
, (D.1)
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and for the mixed usoft-collinear Lagrangians from Eq. (??), 

(1) 1 Lξq = ξ̄n igB/c 
⊥Wqus + h.c. ,

in̄·Dc 
(2a) 1¯L = igM + h.c. ,ξn / W qusξq in̄·Dc 

(2b) n̄/ 1 L = ξ̄n iD/ c igB/⊥
c W qus + h.c. . (D.2)ξq ⊥2 (in̄·Dc)2 

(i) (1)
All Feynman rules for L involve at least one collinear gluon. From L we obtain Feynman rules with ξq ξq 
zero or one A⊥ gluons and any number of n̄·An gluons. The one and two-gluon results are shown in Fig. 15.n  

(2a) 
For L we have Feynman rules with zero or one {n·An, A

⊥ } gluon and any number of n̄·An gluons. The ξq us 
(2b) 

one and two-gluon results are shown in Fig. 16. Finally, for L one finds Feynman rules with zero, one, ξq 
or two A⊥ gluons and any number of n̄·An gluons. In this case the one and two gluon Feynman rules are n 
shown in Fig. 17. 

Finally, for the subleading terms in the mixed usoft-collinear gluon action we find 
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2L(1)
cg = µtr iD , iD⊥ν iD0µ,WiD⊥ W † , (D.3)

g2

{[
0 c

][
us ν

]}
L(2) 1
cg = µtr

g2

{[
iD0 ,WiD⊥νus W

†][iD0µ,WiDus
⊥
νW

†

1

]}
+

1
tr

g2

{
W
[
iD⊥µus , iD

⊥ν
us

]
W †
[
iDcµ
⊥ , iDcν

⊥ ]}+ µtr
g2

{[
iD0 , in·D

][
iD0µ,Win̄·DusW

†

1

]}
+ tr

{[
WiD⊥µus W

†, iD⊥νc
][
iDcµ
⊥ ,WiD

g2 usν
⊥ W †

]}
,

µwhere iD0 = iDµ µ+ gAn.
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(1) 
Figure 13: Order λ1 Feynman rules with two collinear quarks from Lξξ . 
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n̄/= i
2p⊥·p⊥r

2 n̄·p

¯
= ig TA

n/
µ2p⊥

2 n̄·p

= ig TA
n̄/ γ

2

[
µ
⊥p/⊥r p/′⊥

+ r γµ
⊥

n̄·p
n̄µp/⊥+ r p/

⊥

n̄·p ′
n̄

n̄·q n̄·p −
µp/′⊥p/r

′⊥ n̄
n̄·q n̄·p′ −

µp/r
′⊥p/⊥ n̄µp/′⊥p/⊥+ r

n̄·q n̄·p′ n̄·q n̄·p

]

2

= ig TA TB n̄/ γ
2

[
µ
⊥γν
⊥ · · ·

]
+ ig2 TB TA n̄/ γ

2

[
ν
⊥γµ
⊥ · · ·

]
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(p̃, pr) (2) 
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p pɂ

μ , A

p pɂ

μ , A ν , B

q

(2) 
Figure 14: Order λ2 Feynman rules with two collinear quarks from Lξξ . 
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Figure 15: Feynman rules for the subleading usoft-collinear Lagrangian L with one and two collinear ξq 
gluons (springs with lines through them). The solid lines are usoft quarks while dashed lines are collinear 
quarks. For the collinear particles we show their (label,residual) momenta. (The fermion spinors are 
suppressed.) 

D.1 Feynman rules for Jhl 

Here we give Feynman rules for the O(λ) heavy-to-light currents J (1a) and J (1b) in Eq. (??) which are valid 
in a frame where v⊥ = 0 and v ·n = 1. 

For the subleading currents the zero and one gluon Feynman rules for J (1a) and J (1b) are shown in 
Figs. 18 and 19 respectively. (From the results in the previous sections the Feynman rules for the currents 
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n̄/= i
p2r⊥

2 n̄·p

¯
= ig TA

n/ 2
2

[
p⊥µr n̄
n̄·p −

µp2⊥
(n̄·p)2

]

¯
= ig TA

n/ n̄
2

[
µp 2
r⊥

n̄·p −
n̄µp′ 2r⊥ γ

n̄·p′ −
µ
⊥p/ n̄⊥ ·pr p

(n̄·p)2 −
/′ γ⊥⊥ µ n̄·pr n̄

(n̄·p ′)2 −
µp/′ p/ n̄⊥ ⊥ ·pr n̄µp/′ p/ n̄+n̄·q(n̄·p)2

⊥ ⊥ ·pr
n̄·q(n̄·p ′)2

]

= ig2 TA TB n̄/ γ
2

[
µ
⊥γν
⊥ · · ·

]
+ ig2 TB TA n̄/ γ

2

[
ν
⊥γµ
⊥ · · ·

]

ig T a
[ /q
γµ
⊥ − n̄µ ⊥

n̄·q

]

ig2 T
bT a n̄

n̄·q1

[
µn̄ν /p

⊥
γ

n̄·p
− ν

⊥ n̄µ

]
+ ig2 T

aT b n̄

n̄·q2

[
µn̄ν /p

⊥

n̄·p
− γ⊥µ n̄ν

]
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Figure 16: Feynman rules for the O(λ2) usoft-collinear Lagrangian L(2a) 
with one and two gluons. The 

=  

=  

ξq 
spring without a line through it is an usoft gluon. For the collinear particles we show their (label,residual) 
momenta, where label momenta are p, q, qi ∼ λ0,1 and residual momenta are k, t, ti ∼ λ2 . Note that the 
result is after the field redefinition made in Ref. [?]. 
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(p, k)

(q, t)

µ , ν,

q
2

(p, k)

a b


 

(    , t  )

2
q
 


(    , t  )
11

Figure 17: Feynman rules for the O(λ2) usoft-collinear Lagrangian L(2b) 
with one and two gluons. For ξq 

the collinear particles we show their (label,residual) momenta, where label momenta are p, q, qi ∼ λ0,1 and 
residual momenta are k, t, ti ∼ λ2 . 

with v⊥ = 0 and v ·n = 1 can also be easily derived.) For J (1a) the Wilson coefficients depend only on 
the total λ0 collinear momentum, while for J (1a) the coefficients depend on how the momentum is divided 
between the quark and gluons. The J (1a) current has non-vanishing Feynman rules with zero or one A⊥ 

n 
gluon and any number of n̄·An gluons. The possible gluons that appear in the J (1b) currents are similar, 
but the current vanishes unless it has one or more collinear gluons present. 
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n̄
ig T a

/ n̄
n

2

(
µ − µ n·t

n̄·q

)

−g2fabcT c n̄/

n̄·q
n̄µnν

2

T a
ig2 T b n

n
n̄·q2

[
− µn̄ν + n̄µn̄ν

·(t1 + t2) n̄

n̄·p

]
/

2

+ ig2 T
bT a n

n
n̄·q1

[
− ν n̄µ + n̄µn̄ν

·(t1 + t2) n̄

n̄·p

]
/

2

T a
= ig

n̄/

n̄·q
q

/q
2

[ 2

γ⊥⊥ µ − n̄µ ⊥
n̄·q

]

T a
ig2 T b

=
n̄·q2

n̄/ p
γ

2

[
/

µ
⊥γν
⊥ − ⊥ γ⊥

(γ⊥
n̄·p µ n̄ν+γν

⊥n̄µ)− µ n̄ν /q2⊥

n̄·q2

+n̄µn̄ν

(
p2
⊥

(n̄·p)2
+

p/⊥ q/2⊥
+ (a, µ, q1, t1) (b, ν, q2, t2)

n̄
↔

·p n̄·q2

)] [ ]
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(p, k)

J 1a)(

µ , a

(p, k)

(q, t)

J 1a)(

=  

=  

Figure 18: Feynman rules for the O(λ) currents J (1a) in Eq. (??) with zero and one gluon (the fermion 
spinors are suppressed). For the collinear particles we show their (label,residual) momenta, where label 
momenta are p, q ∼ λ0,1 and residual momenta are k, t ∼ λ2 . Momenta with a hat are normalized to mb, 
p̂ = p/mb etc. 

(p, k)

J 1b)(

= 0  

(p, k)

(q, t)

J

µ , a

1b)(
(d)α 
i 

⊥g T a 
(d)µ n̄µ Θ q (d) 

i n̄·p,̂ n̄·q̂  α− =  i B Θ i n̄·q mb

Figure 19: Feynman rules for the O(λ) currents J (1b) in Eq. (??) with zero and one gluon. For the 
∼ λ0,1collinear particles we show their (label,residual) momenta, where label momenta are p, q, qi and 

residual momenta are k, t ∼ λ2 . Momenta with a hat are normalized to mb, p̂ = p/mb etc. 
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E Integral Tricks 

Feynman parameter tricks: 

Georgi parameter tricks (when one or more propagators are linear in loop momenta): 
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1

a−1 b−1 =

∫
2

dx
[
a+ (b− a)x

]−
(E.1)

0

a−n b−m
Γ(n+m)

=
1

Γ(n)Γ(m)

∫
xn−1(1

dx
− x)m−1

0 [a+ (b− a)x]n+m

1 1

a−1
−x

b−1 c−1 = 2

∫
dx

∫ [ 3
dy c+ (a

0
− c)x+ (b− c)y −

0
1 1

3
= 2

∫
dx

∫
dy x

[
a+ (c− a)x+ (b

]
0

− c)xy
]−

0∫ 1 −n
a−1

1 · · · a
1

n
− = (n− 1)! dx1 · · · dxn δ

0

(∑
xi − 1

) (∑
xiai

)
(am1 m

1 · · · a n
)

)−1 Γ(
=

∑
mi

n

1 −n
mdx x x −

Γ(m1) · · · 1 dx ia i 1
n δ xi 1 i

Γ(m i
n)

∫
0

· · ·
(∑

−
) (∑ ) ∏

To get the fourth line from the third we let x′ = 1− x and y′ = y/x.

−1 −1

∫ ∞ [ ]−2
a b = dλ a+ bλ (E.2)

0

∞
−q

∞
−1

∫ [ ]−(q+1) (q+1)
a b = q dλ a+ bλ = 2q dλ

0

∫
0

[
a+ 2bλ

]−
a−q b−p

2p Γ(p+ q)
=

∫ ∞
(p+q)

dλ λp−1
[
a+ 2bλ

−
Γ(p)Γ(q)

]
a−1 b−1 c−1 = 2

∫ 0

∞
dλ dλ′

0

[
c+ aλ′ + bλ

]−3
= 8

∫ ∞
dλ dλ′

0

[ 3
c+ 2aλ′ + 2bλ

]−
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The SU(Nc) QCD Lagrangian without gauge fixing

1L ¯= ψ(iD/ −m)ψ − GA A
µνG

µνA , Gµν = ∂µA
A
ν − ∂ A ABC B C

νA gf A
4 µ − µAν (F.1)

Dµ = ∂ A
µ + igAµT

A , [Dµ, Dν ] = igGAµνT
A .

The equations of motion and Bianchi

(iD/ − ¯m)ψ = 0 , ∂µGA = gfABCABµGC + gψγ TAψ , εµνλσµν µν ν (DνGλσ)A = 0. (F.2)

Color identites

¯[TA, TB] = ifABCTC , Tr TATB = TF δ
AB , TA = −TA∗ = −(TA)T ,

TA AC i
TA = C 1 , f

[
DfBCD

]
= CAδ

AB , fABCTBTCF = CAT
A ,

2

TATBTA =
( C
CF − A

2

)
TB , dABCdABC =

40

3
, dABCdA

′BC =
5 ′
δAA , (F.3)

3

where CF = (N2
c − 1)/(2Nc), CA = Nc, TF = 1/2, and CF − CA/2 = −1/(2Nc). The color reduction

formula and Fierz formula are

TATB
δAB

=
2Nc

1 +
1

2
dABCTC +

i

2
fABCTC , (TA)ij(T

A)k` =
1

2
δi`δkj −

1
δijδk` . (F.4)

2Nc

Feynman gauge rules, fermion, gluon, ghost propagators, and Fermion-gluon vertex

i(/p+m)

p2 −m2 + i0
,

−igµνδAB

k2 + i0
,

i
,

2 + i0
−igγµTA . (F.5)

k

Triple gluon and Ghost Feynman rules in covariant gauge for {AAµ (k), ABν (p), ACρ (q)
A

} all with incoming

momenta, and c̄ (p)ABµ c
C with outgoing momenta p:

− gfABC
[
gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν , gfABCpµ . (F.6)

Triple gluon Feynman rule in bkgnd Field covariant gauge Lgf = −

]
(DA

µQ
A
µ )2/(2ξ) for {AAµ (k), QBν (p), QCρ (q)}

with AAµ a bkgnd field:

− fABC
[
gµν
( q

g k − p−
ξ

)ρ
+ gνρ(p− q)µ + gρµ

(
q − k +

p ν

ξ

) ]
. (F.7)

Lorentz gauge:

(∂L = − µA
µ)2

2ξ
, Dµν(k) =

−i
k2 + i0

(
gµν − (1− ξ)k

µkν
,

k2

)
(F.8)

where Landau gauge is ξ → 0. Coulomb gauge:

∇~ · ~A = 0 , Dµν(k) =
−i

k2 + i0

(
gµν − [gν0k0kµ + gµ0k0kν − kµkν ]

,
~k2

)
D00 i

(k) =
~k2 − i0

, Dij(k) =
i

k2 + i0

(
δij − kikj

~

)
. (F.9)

k2

Running coupling with β0 = 11CA/3− 4TFnf/3 = 11− 2nf/3:

αs(µ0)
αs(µ) =

β1 + 0

2παs(µ0) ln µ

2π
=

µ0
β0 ln µ

ΛQCD

,
1

αs(µ)
=

1

αs(µ0)
+
β0

2π
ln

µ
. (F.10)

µ0
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