f^{\prime}
Currents

if u energetic match onto $S C E T$ ($A H Q E T$ forb) $J^{a f f}=\overline{\underline{L}}_{n} r h_{v}$

for offshell, $k^{\mu}=m_{b} v^{\mu}+\frac{n^{\mu}}{2} \bar{n}=q+\cdots$
Consider

$$
\begin{aligned}
& k^{2}=m_{b}^{2}+n \cdot v m_{b} \bar{n} \cdot q \\
& k^{2}-m_{b}^{2} \sim m_{b}^{2} \\
& \quad \text { for } \bar{n} \cdot q \sim m_{b}
\end{aligned}
$$

$\bar{n} A_{n} \sim \lambda^{0} *$ no power
Suppression
for these gluons
Find $\quad \bar{\varphi}_{n} \Gamma \frac{i\left(k+m_{b}\right)}{k^{2}-m_{b}^{2}} i g T^{\wedge} \gamma^{\mu} h_{\sigma}=-9 \bar{q}_{n} \Gamma\left(\alpha /(1+\sigma)+\frac{\alpha}{2} / \bar{n} \cdot 8\right) \frac{\alpha}{2} \pi^{\mu} T^{\wedge} h$
ie

$$
\begin{aligned}
& =\Gamma \\
& \frac{q}{q}---\frac{9 \bar{n}^{\mu}}{\bar{n} \cdot g} \Gamma T^{A}
\end{aligned}
$$

some order in λ (add more gluons later)

Which Field con interact in a Lacal way?
(1)

$$
p+k=\frac{n^{\mu}}{2} \bar{n}_{\cdot} \cdot p+\frac{\bar{n}^{\mu}}{2} n \cdot(p+k)+p_{\perp}
$$

$$
+\cdots
$$

collinear P still collinear \therefore local
 k
(2)
collinem

$$
p+k=\frac{n^{\mu}}{2} \bar{n} \cdot(p+h)+\frac{\bar{n}^{\mu}}{2} n \cdot(p+h)+p_{\perp}+k_{\perp}
$$ still sollineor

(3)
 offshell integrte it out (preve egr)

(4)

(5)

Field whid rediate interactions in SCETII aee offshell making it more complicetad so we postpone furthe discussion to after developing SCETI

Separate $Q, Q \lambda, Q \lambda^{2}$ moment
label residual
Analogy
$b: \quad H Q \in T \quad P^{\mu}=m b v^{\mu}+k^{\mu}$

$$
h_{0}(x)
$$

$$
u: \quad S C E T \quad P^{\mu}=p^{\mu}+k^{\mu}
$$

$$
\tau_{n, p}(x)
$$

$$
t_{(1, \lambda)} \quad t_{\lambda^{2}}
$$

terms terms
Mode Exp

$$
\psi(x)=\int d^{4} p \delta\left(p^{2}\right) \theta(p)\left[U(p) a(p) e^{-i p \cdot x}+v(p) b^{+}(p) e^{i p \cdot x}\right]
$$

expand $\$$
Write $\psi^{+}(x)=\sum_{p} e^{-i p \cdot x} \psi_{n_{1}}^{+}(x)$

$$
\alpha \psi_{n, p}^{ \pm}=0
$$

$$
\Psi^{-}(x)=\sum_{p} e^{i p \cdot x} \psi_{n_{n p}}(x)
$$

\& both have $\theta(\bar{n} \cdot p)$

Now define... $\eta_{n, p}(x) \equiv \psi_{n, p}^{+}(x)+\psi_{n,-p}^{-}(x)$
$\bar{n} \cdot p>0$ particles. $E=\frac{\pi \cdot p}{2}>0$
$\bar{n} \cdot p<0$ antiparticles $E=-\frac{\bar{n} \cdot \rho}{2}>0$

Similiar for Gluons
$A_{n, 8}^{\mu}$
destroy

$$
A_{n, q}^{\mu}=A_{n,-q}^{\mu} \quad \text { crate }
$$

In HQET label v^{μ} was conserved by gluons In SCET. labels are changed by collinear gluons n are conserved by usoft gloons

OP Page with SCET Grid

lorge momenter $e^{-}=p^{-}+k^{-}$

$$
\& p-\neq 0
$$

Snall mometion $e^{-}=k^{-}, \quad p^{-}=0$, zero-bin $S_{C E I_{I}} P^{-}$(

Introduce Label Operator for p^{μ} momenta

$$
p^{\mu}\left(\phi_{q_{1}}^{+} \phi_{q_{2}}^{+} \cdots \phi_{p_{1}} \phi_{p_{2}} \cdots\right)=\left(p_{1}^{\mu}+p_{2}^{\mu}+\cdots-q_{1}^{\mu}-q_{2}^{\mu}\right)\left(\phi_{b_{1}}^{+} \cdots \phi_{p_{1}} \cdots\right)
$$

eigenvalue eqto
"derivative" for labels p^{μ}
derivative for residual $i \partial^{\mu}$

$$
\begin{aligned}
i \partial^{\mu} \sum_{p} e^{-i p \cdot x} \phi_{n, p}(x) & =\sum_{p} e^{-i p \cdot x}\left(\rho^{\mu}+i \partial^{\mu}\right) \phi_{n, p}(x) \\
& =\sum_{p} e^{-i x \cdot \rho}\left(\rho^{\mu}+i \partial^{\mu}\right) \phi_{n, p}(x)
\end{aligned}
$$

in products of fields this residual makes labels conserved moments. conserved

Summary

Type	$\left(p^{+}, p^{-}, p^{1}\right)$	Fields
collinear	$\left(\lambda^{2}, 1, \lambda\right)$	$\mathcal{I n}_{n, p}(x)$

soft $\left.(\lambda, \lambda, \lambda) \quad q_{s, e} \quad \begin{array}{l}q_{s, p}\end{array}\right\} \begin{aligned} & \text { essentially } \\ & \begin{array}{ll}\text { Fourier } \\ \text { transform }\end{array} \\ & \lambda^{3 / 2}\end{aligned}$
USoft $\quad\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)$
que
λ^{3}
$A_{u s}^{\mu}$
λ^{2}

