g. QCO b⇒ues J= TPb P = Y = (1-85)

if u energetic match onto SCET (\$ HBET for b)

Jeff = Tn rhv

hu for offshell, k" = Mb U" + n" n-8 + ...

k= mi + n. v mi n. 8 k2-ML2 ~ ML2

for Tig~Mb

n.An ~ 2° ≠ no power

Suppression

for these gluons

Find $\frac{\sqrt{2}}{k^2-m_b^2}$ ig $+^{\Lambda}\gamma^{\mu}$ hu = $-9\frac{\sqrt{2}}{\sqrt{2}}\left(\frac{m(1+a)+\sqrt{2}\sqrt{n}\cdot a}{\sqrt{2}}\right)\frac{\sqrt{2}}{\sqrt{2}}\frac{\pi^{\mu}}{\sqrt{2}}$ $= -\frac{9\overline{n}^{\mu}}{\sqrt{2}}\frac{\sqrt{2}}{\sqrt{2}}\left(-\frac{m}{2}\left(1-\frac{m}{2}\right)+2\sqrt{2}\right)\frac{\sqrt{2}}{\sqrt{2}}\frac{\pi^{\mu}}{\sqrt{2}}\frac{\sqrt{2}}{\sqrt{2}}\frac{\pi^{\mu}}{\sqrt{2}}\frac{\pi^{\mu}}{\sqrt{2}}$ $= -\frac{9\overline{n}^{\mu}}{\sqrt{2}}\frac{\sqrt{2}}{\sqrt{2}}\frac{\sqrt{2}}{\sqrt{2}}\frac{\pi^{\mu}}{\sqrt{2}}\frac{$

(odd more gluons later)

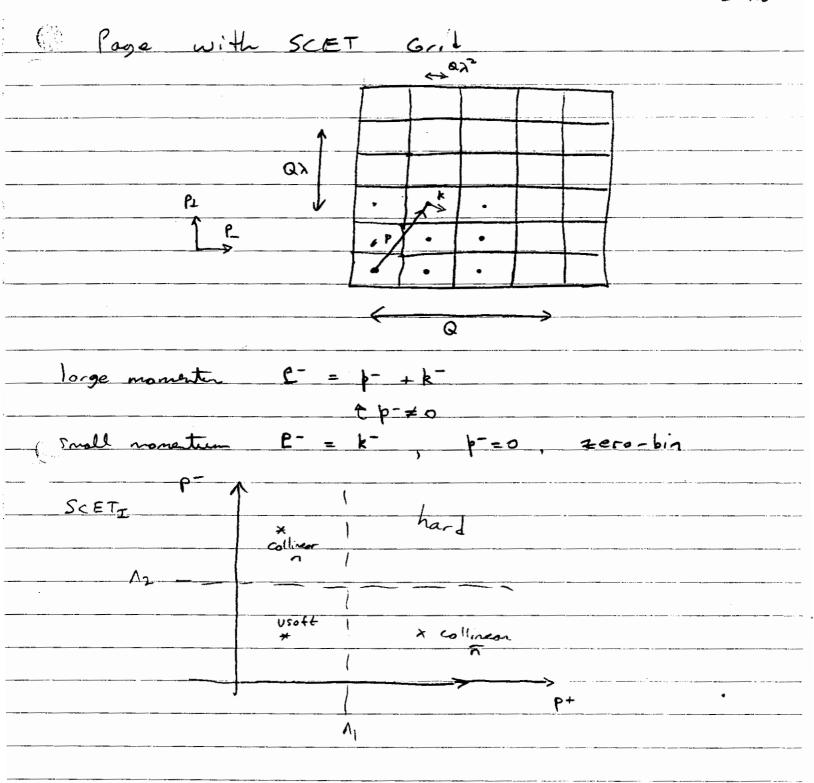
Which	fieldo con	interest in	a local	way 3	
()		p+k =	$\frac{\Omega^{\mu}}{2} = \frac{\overline{\Omega}^{\mu}}{2}$	n.(p+k) + P1	+ /,,
colliner P				still a	ollinear
②	collinear 4 k	p+k =	0/ 5: (a+4)	+ n/ n·(p+h)	
P_		F-1/2 -	2		collinear
	collinea				ocal
3 husoft husoft Mor	∮ k ♣	offshall	integrate it	out (pre	v. eg.)
(4) vsoft vsoft	g collinear Collinear		local		
(5) P	Collinson	in scet			
soft	↑ offsl	11 P+k = (p+k)2=	1 1 1 P +	7 n.k +	· · · · · · · · · · · · · · · · · · ·
		mediate inter			
		making it m Further discu			

More on Power Counting

5kip to 201

Separate Q, Q2, Q2 momenta label residual Analogy b: HQET P" = Mb U" + k" hr (x) u: $SCET P^{\mu} = p^{\mu} + k^{\mu} \langle n, p (x) \rangle$ $\frac{\text{Mode Expn}}{Y(x)} = \left(\frac{1}{4}P S(P^2) O(P^0) \left[U(P) a(P) e^{-iP \cdot x} + V(P) b^{\dagger}(P) e^{iP \cdot x} \right]$ $= V^{\dagger} + V^{-}$ Write $Y(x) = \sum_{p} e^{-ip \cdot x} Y_{n,p}(x)$ α 40,0 = 0 $\Psi(x) = \sum_{p} e^{ip \cdot x} \Psi_{n,p}(x)$ t both have $O(\overline{n} \cdot p)$ Now define $l_{n,p}(x) = l_{n,p}(x) + l_{n,-p}(x)$ $\bar{n} \cdot p > 0$ particles $E = \bar{n} \cdot p$ > 0 \bar{n}^{\prime} p<0 antiparticles $\bar{E} = -\frac{\bar{n}^{\prime}p}{2} > 0$ $A_{n,8}^{\mu} = A_{n,-8}^{\mu}$ Similiar for Gluens

In HOET labels are changed by collinear glooms


In SCET labels are changed by collinear glooms

collinear you useft to glooms

collinear you useft to g

(1.54, residual)

P'=8+P (Pik) (P, k+26)

See hep-ph/0605001 for information on the details that we discussed in lecture

[Introduce	Label Operator	for pro	pnenta
Pr (ø;	bi \$ 32 \$P, \$P2		e eato
	for labels for residual 2-ipix Øn,p(x) = E P in products of makes label	e-ip·x (pr + i)r e-ix·p (pr + i)r fields this	Pan, p (x) Pan, p (x) Tesidual momentum conserved 5/3/06
Summary			
Туре	(p+, p-, p1)	Fields	Field Scaling
collineer	(a²,1, a)		(5, 1, 5)
soft	(,,,,)	Bs, P Desser As, P + roas	er 73h
Usoft	(3', 3', 7')	9 os A #s	