8.851 Homework 1

Iain Stewart, February 11, 2003

Problem 1) Calculate the muon decay rate assuming $M_W \gg m_\mu \gg m_e$.

Problem 2) Matching with Massive Electrons

Consider QED with electrons and photons. For photon momenta q^{μ} much less than m_e we can integrate out the electrons.

a) Calculate the one-loop photon vacuum polarization diagram with dimensional regularization and $\overline{\text{MS}}$, and expand $\Pi(q^2)$ in q^2/m_e^2 .

b) Explain why the first term in the expansion motivates matching onto a theory without electrons at a scale $\mu \sim m_e$ rather than $\mu \sim 1$ TeV.

c) Write down a Lagrangian with a gauge invariant photon operator that reproduces the second term in the expansion. Use your calculation from part a) to determine the Wilson coefficient of the operator at this order in α .

d) What QED symmetry(s) forbid dimension-6 operators with three field strengths from ever appearing?

e) At dimension-8, operators are generated which give light-by-light scattering. Determine the number of α 's in their coefficients. Then use dimensional analysis in the low energy effective theory to numerically estimate the size of the $\gamma\gamma \rightarrow \gamma\gamma$ cross section for 10 keV photons.

Problem 3) Right Handed Neutrinos

Consider adding three right-handed singlet neutrinos N_R to the standard model. A Majorana mass term is allowed, so

$$\mathcal{L}_N = \bar{N}_R \, i \, \partial \!\!\!/ N_R - \frac{1}{2} \bar{N}_R^c M N_R - \frac{1}{2} \bar{N}_R M^* N_R^c \,, \tag{1}$$

where $N_R^c = C\bar{N}^T$ is the charge conjugate field, $C = i\gamma_2\gamma_0$, and M is a complex symmetric Majorana mass matrix.

a) Write down the most general dimension-4 operators that couple N_R to the fields in the standard model, making use of the gauge symmetries.

b) Transform the N_R fields to three Majorana mass eigenstates $N_i = N_i^c$, i = 1, 2, 3 with real masses M_i .

c) Count the total number of physical parameters in M and the coefficients of the operators in part a). Hint: Consider the $G = U(3) \times U(3) \times U(3)$

flavor symmetry of the free L_L , e_R , and N_R kinetic terms. This symmetry is broken by the mass and Yukawa matrices, so the number of physical parameters can be obtained by subtracting the number of parameters in G from the number in the original matrices. How many of the parameters are CP-odd phases? For the ambitious, repeat the counting for n families of light leptons and n' right-handed neutrinos.

d) Take the masses M_i large compared to the electroweak scale and integrate out the right handed neutrinos at tree level. Show that the leading term reduces to the form of the dimension-5 standard model operator we discussed in class.