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1 Course Outline 

This course is an introduction to branes in string theory and their world volume dynamics. The theme of 
the course will be different that the traditional approach of teaching string theory. Instead of looking at the 
theory from the point of view of the world-sheet observer, we will approach the problem from the point of 
view of an observer which lives on a brane. Instead of writing down conformal field theory on the world-
sheet and studying the properties of these theories, we will look at various branes in string theory and ask 
how the physics on their world-volume looks like. This will give a totally different approach than the usual 
CFT approach on the world-sheet and will give new intuition and new insights on how we should think and 
understand string theory in various dimensions and supersymmetries. This approach is relatively new. It is a 
result of the change in thinking the world of string theory had gone through in the past 10 years. During this 
period researchers in the field begun to understand the importance of branes in string theory and the crucial 
role they play in various phenomena. The realization that branes are crucial in string theory then led to an 
opening of a whole new world of research that has to do with the dynamics of supersymmetric gauge theories 
and quantum field theories on the world volume of branes in various dimensions and supersymmetries. 

By the end of this course, we should be able to take an arbitrary configuration of branes and con
struct a supersymmetric field theory that resembles the Standard Model. We will cover D-branes, which 
are supersymmetric string solitonic1 solutions. A Dp-brane is a membrane with p spatial dimensions (or 
p + 1 spacetime dimensions). We will study Dp-branes, NS-branes, M-branes, small instantons, and their 
worldvolume theories and interactions. We’d like to build up an understanding of quantum field theory and 
supersymmetric gauge theory in the worldvolume of the brane, so that we can eventually make a connection 
to phenomenology. 

2 Charged Strings and Branes 

A Dp-brane is a subspace of spacetime in which open strings can end. The D stands for Dirichlet, because 
the strings which end on Dp-branes have Dirichlet boundary conditions, i.e. the spacetime coordinates of 
the string endpoints are constrained to lie in the brane. After learning about the open string, one could 
imagine a theory of open strings with Neumann boundary conditions on all coordinates and no need for 
auxiliary objects such as Dp-branes. In the perturbative formalism, the first hint that Dp-branes might be 
essential to string theory appears when studying T-duality, the duality between a string theory compactified 
on a circle of radius R, and a theory compactified on a circle of radius ��/R. When this duality is applied 
to open strings, the strings with Neumann conditions get Dirichlet boundary conditions; these strings must 
necessarily end on Dp-branes.2 Another way to justify the existence of D-branes is to note that Type IIA 
and IIB theories contain massless (p + 1)-forms called Ramond-Ramond (R-R) fields. Then we can posit the 
existence of objects with p + 1 spacetime dimensions that are charged under the R-R fields. 

1 We should be careful about using the word solitonic here. Dp-branes have an energy density that scales as the inverse 
coupling, although solitons usually have energy density that scales as the inverse square coupling. 

2 See, for example, Clifford Johnson’s D-Brane Primer (hep-th/0007170) p. 61 
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Now consider the simplest configuration involving a string and a brane. We have an F1 (fundamental) 
string ending on a Dp-brane. (We use the name F1 to distinguish the original string from a similar one-
dimensional object, the D1-brane.) Let’s introduce a gauge field Bµ� living in the bulk of spacetime. This 
gauge field is an antisymmetric 2-form, so Bµ� (x) = −B�µ(x), and for shorthand we call it B(2). Where 
does this field come from? Recall that in the spectrum of bosonic closed string states, the massless state 

1 ˜
j�
−

i�
− 1 |0∗ decomposes into a symmetric traceless 2-tensor, a 2-form, and a scalar in SO(D-2). This 2

form reappears in the massless states of any superstring theory. Just as the symmetric traceless 2-tensor 
corresponds to the graviton and can be used to build up a coherent background (the curvature of spacetime), 
the 2-form can also provide a background field, B(2). The F1 string typically is charged with respect to B(2). 
How do we write this in the form of an equation? Let’s start with Gauss’ Law in 3+1 dimensions: 

τQ = E · dτa . (1) 
S2 

In a more geometrical form, two of Maxwell’s laws (including the differential form of (1)) can be written in 
terms of the field strength F (2) = dA(1) as follows: 

d � F (2) = Q�(3) . (2) 

Now for the string, we can construct the field strength H (3) = dB(2) and write an equation similar to (2): 

d �H(3) = Q�(8). (3) 

Specifically, we can consider an F1-string in Type IIB theory, so that we are living in 10 total spacetime 
dimensions. So the Hodge dual is taken in 10 dimensions, making �H a 7-form (because 7 = 10 − 3) and 
therefore the LHS of (3) is an 8-form. The RHS is also an 8-form because we can write �(8) = �(x1) ��(x2 ) � 
· · · � �(x8 ). By �(x1) we mean the 1-form version; in terms of the basis vector it would be written �(x1) dx1 . 

Now consider the case of the string stretched along the positive x1 direction and ending on a Dp-brane 
located at x1 = 0. Our first attempt to write an equation analogous to (3) gives us: 

d �H(3) = Q�(8)α(x 1) [näıve guess] (4) 

But this equation becomes inconsistent if we take a derivative on both sides: d(d�H (3)) = 0 but d(Q�(8)α(x1 )) = 
Q�(9) →= 0. In the case of a D5-brane, we can correct this equation in the following way: 

d �H(3) = Q�(8)α(x 1) − �(4) �6 F (2). (5) 

The newly subtracted term involves the Hodge dual of a gauge field (�6F (2)) localized on the brane world-
volume (�(4)). We need 

d �6 F (2) = Q�(5) (6) 

so that after taking the derivative of the whole equation, it stays consistent. From this equation we know 
that F (2) must be a 2-form. The interpretation is that the string is charged under the B(2) field, as in 
equation (3); furthermore, comparing (6) and (2), the end of the string acts as an “electric” source for the 
field strength F (2). 

Exercise: Generalize the source equation (5) for an F1 string ending on a Dp-brane, for p = −1...9. 

We can derive (5) as the equation of motion from the action 

S = d10 x 
1 
H(3) � �H(3) + QB(2)�(8) − (B(2) � �6F (2)) �(4) (7)

2 
1 

= H(3) � �H(3) + Q B(2) − B(2) � �6F (2) (8) 
spacetime 2 worldsheet worldvolume 
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Note that you can go from (5) to (7) by wedging all terms with B(2), integrating over all spacetime, and 
integrating the first term by parts. The first term in (8) is the kinetic action for the B(2) field that lives 
in the bulk, so it is an integral over all spacetime. The second term is only an integral over the worldsheet 
of the string because it represents the charge of the string electrically coupled to B(2). The third term is 
an integral over the brane worldvolume because it is an interaction between B(2) and F (2) which only takes 
place on the brane. This last term is necessary in order for the string to end on the brane. As we saw in the 
discussion above, without this term the string can not end on the brane. 

Gauge Invariant Action 

We would like to preserve gauge invariance under B(2) � B(2) + d�(1). Under this gauge transformation, 
the physics is invariant because d(d�(1)) = 0 and H(3) � H(3). So any gauge-invariant term in the action 
will be a function of H(3), not B(2). But what about a term like the integral of B? Let’s look at the integral 
of the pullback of B(2) on some two-dimensional manifold �. (Mathematical note: A form is a map from the 
tangent space of a manifold to R. We define the pullback of a form in � by the map from � to R induced by 
the inclusion map from spacetime to �, assuming � is a submanifold of spacetime.) The integral looks like 

I(B) = d2 z (θ�� δ�X
µδ� X

� Bµ� ), (9) 

where we have changed to brane coordinates, using the θ tensor to contract indices because we are dealing 
with antisymmetric forms. The d2z indicates integration over worldsheet coordinates. Now let’s perform the 
gauge transformation. We get 

dXµ 

I(B) � I(B + d�) = I(B) + dψ �µ (10)
dψα� 

after using Stokes’ law to go from an integral of d�(1) over � to an integral of �(1) over the boundary. We 
see that in the absence of a boundary, IB is gauge invariant. In the presence of a boundary (e.g. for the 
worldsheet of an open string), the gauge invariance is lost. To solve this problem we notice that the end 
of the string couples electrically to a gauge field A(1) as in equation (6). We will have a term in the action 
involving 

dXµ 

A = Aµ dψ . (11)
dψα� α� 

Therefore, if we also gauge transform A(1) � A(1) + �(1), equation (11) transforms as follows: 

dXµ 

A � A + dψ �µ . (12)
dψα� α� α� 

As a result, the combined action 

B − A (13) 
� α� 

is gauge invariant. This means that if we started with the combination B(2) − F (2) in (9), we would get 

I(B − F ) = I(B) − I(F ) = B − F = B − dA (14) 

dXµ dXµ 

� I(B) + dψ �µ − A − dψ �µ 
α� dψ α� α� dψ 

� I(B − F ) (15) 

Thus we learn that any gauge-invariant action is a function of B(2) − F (2), not B(2). 
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4 Massless fields in 11d SUGRA 

In this course we will start with theories with the highest supersymmetry (32 supercharges3) and then 
successively divide by two. The following are theories with 32 supercharges: 11 dimensional supergravity 
(SUGRA), Type IIA and Type IIB string theory in flat 10 dimensions. We will first review the massless 
fields in 11d SUGRA. They form representations of the little group for massless states, SO(9). First let’s 
state the number of degrees of freedom in irreps of the massless little group in an arbitrary dimension d. 

(d − 1)(d − 2) d(d − 3)
Symmetric, traceless 2-tensor (graviton) � − 1 = (16)

2 2 
d − 2 

p-form � (17) 
p 

2Spinor � 2[ d−3 ] (18) 

2 ]Gravitino � (d − 3) 2[ d−3 

(19) 

Now we can evaluate the above expressions at d = 11 for the massless supergravity multiplet. First we 
have gµ� , the graviton, with 9·10 − 1 = 44 bosonic degrees of freedom. Next we have a 3-form C (3) which 2 

has 9 = 84 components. Finally, the gravitino �µ has 8 · 24 = 128 components. This means that the 3 
number of bosonic degrees of freedom (44+84) equals the fermionic degrees of freedom (128), as it should in 
a supersymmetric theory. 

3 The same as the old name N = 8, which applies to four dimensions only. The modern label “32 supercharges” does not 
depend on the number of dimensions. 

4 


