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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

Department of Physics 

Physics 8.901: Astrophysics I Spring Term 2006 

PROBLEM SET 4 

Due: Tuesday, March 21 in class 

REMINDER: The mid-term exam will be in class on Thursday, March 23. 

Reading: Chapter 6, Chapter 7 (§7.1–7.2) in Hansen, Kawaler, & Trimble. (I encourage you to at least 

skim through the rest of Chapter 7 as well.) We will also start covering the material in Chapter 2 (§2.1–2.5), 

although homework problems on this material will be on Problem Set 5. (You should still do this reading 

prior to the midterm exam, however.) 

1. Uniqueness of solutions to the stellar structure equations. HK&T, Problem 7.1. 

2. Properties of polytropic stars. Recall that in polytropic stars, pressure and density are simply 

related as P = Kρ(1+1/n), where K and n are constants and n is called the polytropic index. These 

stars satisfy the Lane-Emden equation, 

1 d
ξ2 dθ 

= −θn ,
ξ2 dξ dξ 

where the dimensionless variables θ and ξ are defined in terms of radial coordinate r and density ρ as 

r = aξ and ρ = ρcθ
n(r) and ρc is the central density. The relevant boundary conditions are θ(0) = 1 

and θ�(0) = 0 at the center (ξ = 0) and θ(ξ1) = 0 at the surface (the first zero-crossing of θ, which 

occurs at ξ = ξ1). 

Show the following: 

(a) For an ideal gas equation of state, the variable θ is a dimensionless temperature, such that 

T (r) = Tcθ(r). 

(b) The total mass of a polytropic star is M = −4πa3ρcξ
2 
1(θ�)ξ1 

. 

(c) The ratio of the mean density to the central density is �ρ� = −(3/ξ1)(θ
�)ξ1 

.ρc 

(d) The central pressure is Pc = [4π(n + 1)(θ�)2 ]−1 (GM2/R4). ξ1 

3. Solutions for polytropic models. 

(a) Show that solutions to the Lane-Emden equation for polytropes of index n can be expanded as 

ξ2 nξ4 

θ(ξ) = 1 − + + · · · ,
6 120 

for ξ small (i.e. near the center of the star). To do this, first show that polynomial expansions of 

θ(ξ) contain only even terms of ξ, and then substitute such a polynomial into the Lane-Emden 

equation and find the first three coefficients. 

(b) Numerically integrate the Lane-Emden equation for polytropic indices of n = 1.0, 1.5, 2.0, 2.5, 

3.0, and 3.5. Do this by breaking up the second-order differential equation into a pair of first-

order coupled equations in u = dθ/dξ and du/dξ, and use a numerical integration scheme (e.g., 
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4th-order Runge-Kutta or some other equivalent scheme) to find θ(ξ), applying the appropriate 

boundary conditions. To help start the integration near the center, use the first two terms of the 

analytic expansion you derived above for θ(ξ). 

Plot the dimensionless temperature θ(ξ) and the dimensionless density θn(ξ) for all six values of 

n. (Put all the temperature curves on one plot and all the density curves on another.) 

4. Classical Coulomb collisions. 

(a) What temperature would be required for two protons to collide if quantum mechanical effects 

are neglected? Assume that nuclei having ten times the rms value for the Maxwell-Boltzmann 

distribution can overcome the Coulomb barrier. Compare your answer with the estimated central 

temperature of the Sun. 

(b) Calculate the ratio of the number of protons having velocities ten times the rms value to those 

moving at the rms velocity for a Maxwell-Boltzmann distribution. 

(c) Assuming (incorrectly) that the Sun is pure hydrogen, estimate the number of hydrogen nuclei in 

the Sun. Are there enough protons moving with a speed ten times the rms value to account for 

the solar luminosity? 

5. Coulomb barrier penetration. Consider a head-on collision between two atomic nuclei whose 

charges are Z1e and Z2e and whose masses are A1 and A2 (in atomic mass units). Using the WKB 

approximation, show that the quantum mechanical tunneling probability for this encounter is given by 

−2πZ1Z2e
2 

T � exp , 
vh̄ 

where v is the relative velocity of the two nuclei and e is the proton charge. Show also that this can 

be written in the form 

T � exp(−31.28 Z1 Z2 A
1/2 E−1/2), 

where A is the reduced mass of the two nuclei (in atomic mass units) and E is the center-of-mass 

kinetic energy (in keV) of the two nuclei at a large separation before the collision. 

6. Nuclear binding energies. The Q value of a nuclear reaction is the amount of energy released 

(or absorbed) in the reaction, defined such that energy released is positive. Compute the Q values 

(in MeV) for each of the following nuclear reactions. Indicate whether the reaction is exothermic or 

endothermic. 

(a) 12C + 12C → 24Mg + γ 

(b) 12C + 12C → 16O + 24He


16O
(c) 19F + 1H → + 4He


+
(d) 1H + 1H → 2H + e + ν 

(e) 15N + 1H → 12C + 4He 

You may compute the atomic mass excesses for each isotope yourself, but it is easier to consult a table 

(see, e.g., Table 4-1 in Clayton, Principles of Stellar Evolution and Nucleosynthesis or Table 38 in 

Lang, Astrophysical Formulae, 2nd ed. 1980). 
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7. Nuclear burning. Consider the hypothetical nuclear reactions 

AG + AG → 2AJ + γ 
2AJ + 2AJ → 4AM + γ, 

where G, J, and M are hypothetical elements, γ is a photon, A is the atomic mass number of element 

G (an integer with units of amu), and the atomic numbers Z for each element are taken to be exactly 

half their atomic mass number. 

Suppose that we have two stars, one in which the first reaction is occurring and another in which the 

second reaction is occurring, and that the reactions proceed at the same rate at the respective stellar 

centers. Estimate the ratio of the central temperatures of the two stars. Comment on whether your 

answer seems reasonable or not, and why. 

Note: In the spirit of ruthless approximation, you may ignore factors which multiply exponentials, 

e.g., the densities of the reactants and the astrophysical cross-section factor S(E). 

8. Relative velocity distribution of two Maxwell-Boltzmann populations. In class we calculated 

the weighted average �σv� for nuclear reaction rates by assuming that the relative velocity of the two 

fusing nuclei has a Maxwell-Boltzmann distribution. Here, you will prove that this was justified. 

If the velocities of a set of identical, distinguishable particles with mass m has a Maxwell-Boltzmann 

distribution, then the fraction of particles that have velocity in the range [v, v + dv] is given by 

� m �3/2 2mv
f(v) dvx dvy dvz = exp − dvx dvy dvz . 

2πkT 2kT 

Suppose there are two different sets of particles, with masses m1 and m2, with Maxwellian velocity 

distributions v1 and v2, respectively. Show that the distribution of relative velocities v = v1 −v2 is also 

Maxwellian. (You will find it useful to rewrite v1 and v2 in terms of the center of mass and relative 

velocities.) 


