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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

Department of Physics 

Physics 8.901: Astrophysics I Spring Term 2006 

PROBLEM SET 7 

Due: Thursday, April 20 in class 

Reading: Read “How Massive Stars End Their Life” by Heger et al. (2003, Astrophys. J., 591, 288), 

handed out in lecture. You will also find it useful to read Sections 2.6–2.8 and 2.11.2 in HK& T, as well 

as Chapter 18 in Shapiro & Teukolsky, Black Holes, White Dwarfs, & Neutron Stars. You should also read 

Chapters 5 and 12 in Shapiro and Teukolsky (handed out in lecture). 

1. Energy released in supernova core collapse. (Problem 2.12 from Hansen, Kawaler, & Trimble.) 

Estimate the gravitational potential energy released in the collapse of a 1.2M� core from an initial 
3density of 109 g cm3 to a final density of 1015 g cm . 

2. Nuclear statistical equilibrium. (Adapted from Hansen, Kawaler, & Trimble, Problem 6.7). 

In the normal course of evolution of a massive star, the end products of nuclear burning are elements in 

the iron region of nucleon number. If the temperatures get high enough, the radiation field is capable 

of initiating photodisintegration, and all the iron-peak elements end up as individual nucleons. This 

can happen on such rapid time scales that the abundances of nuclei (as functions of temperature and 

density) can be calculated approximately as if the gas were in chemical equilibrium using a version of 

the Saha equation. 

To look at this in a very simplified way, consider a gas composed only of 56Ni and 4He where the 

“chemical reaction” between them is 

14 4He �� 56Ni + Q, 

where you may compute the Q-value from the mass excesses, 

(M − A)c 2 = 2.42 MeV for 4He 

(M − A)c 2 = −53.9 MeV for 56Ni. 

In equilibrium, the chemical potentials obey the relation 

14µHe = µNi. 

Since the nuclei are non-degenerate, the number density of species i (either He or Ni) obey the Maxwell-

Boltzmann distribution, 
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(a) Set up an equivalent of Saha equation for the reaction, pretending that you are dealing with 

atoms and ions and assuming that both nuclei are in their ground states. To do this, substitute 

the Maxwell-Boltzmann relation for the number densities into the equilibrium relation for the 



chemical potentials, and derive an equation whose left hand side is an appropriate ratio of number 

densities. Let the statistical weights be unity (which is appropriate since the ground state spins 

are zero). 

Note that there will be two differences from the Saha equation you encountered earlier in the term: 

First, there are only two species so there will only be two different n’s. Second, the multiple He 

nuclei in the reaction will result in a nonlinear dependence on nHe. The Q-value plays the role of 

the ionization energy. 

(b) Re-cast your Saha equation so that the unknowns are the mass fractions X4 and X56 where 

X4 + X56 = 1. 

(c) Fix the density to be ρ = 107 g cm−3 and solve for X4 and X56 for temperatures in the range 

4.5 < T9 < 6.5, where T9 is the temperature in units of 109 K. 

(d) Plot your results for the mass fractions versus temperature. At what temperature is X4 = X56? 

3. Trajectories near a black hole. You should read Chapter 5 and Sections 12.1–12.5 of Shapiro 

& Teukolsky (handed out in lecture) before doing this problem, in which you will study particle 

trajectories near black holes by numerically integrating the equations of motion for both massive test 

particles and photons near a Schwarzschild black hole (Equations 12.4.13–15 and 12.5.1–3 in Shapiro 

& Teukolsky). You should treat the equations as ordinary differential equations. Do not attempt to 

solve them by direct analytic integration. For Equation 12.4.13, there is a singularity at the turning 

points that makes numerical integration tricky. One can avoid this problem by taking an additional 

time derivative and rearranging appropriately. 

Define your units such that c = G = M = 1. What are then the units of time and length, scaled to 

M = 10M�? Compute trajectories for the following cases: 

(a) Compute the radial infall (l = 0) of a massive particle into the black hole. Plot r as a function 

of both coordinate time t (time as measured by an observer at infinity) and proper time τ , thus 

reproducing the results illustrated in Figure 12.1 of Shapiro & Teukolsky). Verify explicitly that 

energy is conserved in your numerical integration. 

(b) For a massive test particle, construct examples of the following types of orbits (defined on page 

345 in Section 12.4 of Shapiro & Teukolsky): (i) an unbound orbit (how close can you get to the 

black hole without being captured?); (ii) a “capture” orbit (check the definition of this in the 

reading); (iii) a bound orbit (what is their shape?); (iv) a stable circular orbits; (v) an unstable 

circular orbit (Where does the particle go? You might try perturbing it slightly to make it go the 

other way). Verify numerically that the innermost stable circular orbit is at r = 6M . 

(c) Construct light rays emitted in many different directions from a point near the horizon (choose 

r/M between 2.1 and 2.5). Verify numerically Equation 12.5.15 and the result of Exercise 12.14 

from Shapiro & Teukolsky, both illustrated in Figure 12.6. 


