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PROBLEM SET 5 

Due: Thursday, April 6 in class 

Reading: Finish reading the first part of Chapter 2 (§2.1–2.6) on stellar evolution in Hansen, Kawaler, & 

Trimble, and also read §9.3 on the solar neutrino problem. You may also find it useful to review §3.5–3.6 on 

degenerate equations of state. For a deeper discussion, you can consult Chapters 2–3 of Black Holes, White 

Dwarfs, and Neutron Stars by Shapiro & Teukolsky. 

1. Lower and upper main sequence stars. 

(a) Estimate the hydrogen-burning lifetime of stars on the lower and upper ends of the main sequence. 

The lower end of the main sequence occurs near 0.085 M�, with logTe = 3.438 and log(L/L�) = 

−3.297. Assume that the upper end of the main sequence occurs at 90 M� with logTe = 4.722 

and log(L/L�) = 6.045. Assume that the 0.085 M� star is entirely convective so that, through 

convective mixing, all of its hydrogen becomes available for burning rather than just the inner 

10%. 

(b) Use the information above to calculate the radius of a 0.085 M� star and a 90 M� star on the 

main sequence. 

2. Evolution on the red giant branch. Once a low-mass star leaves the main sequence and ascends 

the red giant branch, its luminosity is provided by hydrogen burning in a thin shell surrounding a 

degenerate helium core. As hydrogen is burned in the shell, the mass of the helium core grows and 

the star continues to ascend the giant branch. It turns out that both the luminosity and the radius 

of red giants can be written as steep functions of their helium core mass alone, nearly independent of 

any other quantity. These expressions are 

� �6 � �4 
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L � 2 × 105L� 
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, R � 3700R� ,
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where mc is the helium core mass, and L and R are the luminosity and radius of the (entire) red giant, 

respectively. Note that these expressions are “empirical” in that they are based on the results of stellar 

evolution calculations and are not derived analytically. 

Use these relations to compute the evolution of a star (L and R as functions of time) as it ascends the 

red giant branch. Take the initial core mass value to be mc = 0.1M� and the final value (at the tip of 

the giant branch) to be mc = 0.45M�. (Note that L = 0.007 ˙ ˙Mc2, where M represents both the rate 

that hydrogen is burned in the shell around the core, and the rate of growth of the degenerate helium 

core.) 

Plot the radius, luminosity, and effective temperature of the star as a function of time on the giant 

branch. Also, plot the track of the evolving giant on an H-R diagram (i.e., logL versus log T , with 

logT increasing to the left). 



3. Core helium flash in red giants. (Adapted from Hansen, Kawaler, & Trimble, Problem 6.8). 

Suppose you have a gram of pure 4He in the center of a pre–helium-flash red giant. The density and 

temperature of the gram are, respectively, ρ = 2×105 g cm−3 and T = 1.5×108 K. This is hot enough 

to burn helium by the triple-α reaction, which is the only reaction you will use. The energy generation 

rate for this reaction is given by 

5.1 × 108 ρ2 Y 3 
−4.4027/T9 −1�3α = 

T 3 e erg g−1 s , 
9 

where Y is the helium mass fraction and T9 is the temperature in units of 109 K. 

You are now to follow the time evolution of the gram as helium burning proceeds, by computing the 

temperature T (t) as a function of time. Start the clock runnning at t = 0 with the stated conditions. 

For simplicity, assume that the density and the helium concentration remain constant for all time and 

that no heat is allowed to leave the gram. Compute T (t) numerically until that time when the material 

begins to become nondegeerate. For this, use the nonrelativistic demarcation line ρ ≈ 10−8 T 3/2; 

densities below this will be nondegenerate. 

For a given input of heat energy ΔE, you can calculate the change in temperature of a mass Δm from 

the specific heat cV using 
(ΔE/Δm)

ΔT = . 
cV 

Note that you will need to use the total specific heat cV = cV,e+cV,He. The degenerate electron specific 

heat is given by 

cV,e =
1.35 × 105 

T x (1 + x 2)1/2 erg g1 K1 ,
ρ 

where ρ ≈ 2 × 106x3 allows solution for the dimensionless Fermi momentum x. The ideal gas specific 

heat for the helium ions is 
3k 

cV,He = . 
4mp 

Plot temperature T (t) versus time in days. You will be able to recognize the flash when it happens 

because the temperature will suddenly skyrocket afer not too many days of burning. Indicate whether 

the result you get is reasonable and what criteria you use to make that determination. 

After how many days does the helium flash occur? As a test of the quality of your numerical integration 

scheme, do your best to determine this onset time precisely; to do so, you will need to either use a 

small step-size in time or an adaptive step-size method (see, e.g., Chapter 16 of Numerical Recipes by 

Press et al. or another reference on numerical integration of ordinary differential equations). 

4. Neutrino oscillations. A promising solution to the solar neutrino problem (the deficit of electron 

neutrinos detected from the Sun relative to what is predicted by standard solar models; see your 

reading in §9.3 of Hansen, Kawaler, & Trimble) the phenomenon of neutrino oscillations, an expected 

consequence of non-zero neutrino masses. We can use the elementary quantum mechanics to understand 

the essential idea. For simplicity, we will ignore the τ -neutrino and consider only a two-state system 

comprising the electron neutrino νe and the muon neutrino νµ. 

Our two-state system can be represented with two different sets of basis vectors. One set comprises the 

energy eigenstates |ν1� and |ν2�; a neutrino of type j with momentum p is an energy eigenstate with 
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2eigenvalue E = p2c2 + mjc
4 . The other set comprises the weak-interaction eigenstates produced 

in weak decay processes, denoted by |νe� and |νµ�. Neutrinos are produced by weak interactions in 

eigenstates of lepton number (νe and νµ) that are not necessarily energy eigenstates. These two basis 

sets are related by a unitary transformation, 

|νe� = cos θ |ν1� + sin θ |ν2� 

|νµ� = − sin θ |ν1� + cos θ |ν2�, 

where the phases have been chosen the phases to make the matrix elements real. The mixing angle θ 
is presumably determined by the same dynamics that determines the neutrino masses, and it is just as 

mysterious at this time. 

Suppose that at time t = 0 we have a beam of electron neutrinos |νe� (which is thus a superposition 

of mass eigenstates) with momentum p, propagating from the origin in the z-direction. For simplicity, 

use free-particle plane waves and non-relativistic quantum mechanics in what follows (even though, 

strictly speaking, one should be using wave packets and relativistic quantum mechanics). 

(a) In the limit where the masses mj are small, show that the wavefunction for the beam after a time 

t and distance z is 

−ipc(t − z/c) � �

3
1c t/2¯ 2c 

3t/2¯ψ(z, t) = exp 
¯

exp(−im 2 hp) cos θ |ν1� + exp(−im 2 hp) sin θ |ν2� . 
h 

Taking E ≈ pc and z ≈ ct and ignoring the overall phase factor, this reduces to 

3ψ(z, t) = exp(−im 2 hE) cos θ |ν1� + exp(−im 2 hE) sin θ |ν2�.1c z/2¯ 2c 
3z/2¯

(b) Show that, after a distance z, the probability that a muon neutrino νµ will be found in the initially 

pure νe beam is 
2c3Δm z 

P (z) = sin 2(2θ) sin 2 ,
4h̄E 

2 2where Δm2 ≡ m1 − m2. We thus see that the initially pure |νe� state oscillates until P reaches 

a maximum possible value of sin 2(2θ), and then oscillates back to being a pure |νe� state as it 

travels an oscillation length 
4πh̄E 

Losc = . 
c3Δm2 

We also see that, for neutrino oscilations to occur, we must have a non-zero mixing angle θ and 

a non-zero neutrino mass difference, and therefore at least one non-zero neutrino mass. 

In principle, one could imagine a choice of Δm2 and sin 2(2θ) that could reproduce the observed deficits 

of solar neutrinos at various energies, although this would imply that the experimental results depend 

upon the precise distance between the Earth and the Sun (and that the solar neutrino problem would 

appear different on, say, Mars). A more likely explanation additionally involves a mechanism for 

enhanced oscillations during passage of neutrinos through the solar interior, due to the so-called MSW 

effect. 

As of summer 2004, the best experimental values give sin 2 2θ = 0.82± 0.07 and Δm2c4 = (8.2± 0.6)× 

10−5 eV2 . 
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5. Mass-radius relation for polytropic stars (e.g., white dwarfs). In this problem, we return to 

polytropic stars, whose pressure and density are related as P = Kργ , where γ = 1 + (1/n), K and n 
are constants, and n is the polytropic index. Recall that these stars satisfy the Lane-Emden equation. 

In lecture and in a previous problem set, we showed that the radius of the star is R = aξ1 where 

(n + 1)K 
�1/2 

ρ(1−n)/2n ,a = 
4πG c 

and that the mass is 
� � 

M = 4πa 3ρc −ξ2 
dθ 

. 
dξ ξ=ξ1 

(a) Show that the mass-radius relation for a polytropic star is 

M = 4πR(3−n)/(1−n) (n + 1)K 
�n/(n−1) 

ξ
(n−3)/(1−n) 

−ξ2 
dθ 

4πG 1 dξ 
. 

ξ=ξ1 

(b) Show that for a low-density white dwarf (non-relativistic, γ = 5/3, n = 3/2), the radius and mass 

can be expressed as 

ρc 

�−1/6 
� µe 

�−5/6 

R = 1.122 × 104 km,3106 g cm 2 

ρc 
�1/2 

� µe 
�−5/2 

M = 0.4964 M�3106 g cm 2 
� �−3 

� µe 
�−5R 

= 0.7011 M�,
104 km 2 

where µe is the mean molecular weight per electron and ne = ρ/µemp where mp is the proton 

mass, ρ is the mass density, and ne is the electron number density. Note that for a completely 

ionized element of atomic number Z and weight A, µe = A/Z to 1 part in 104 . 

(c) Show that for a high-density white dwarf (relativistic, γ = 4/3, n = 3), the radius and mass can 

be expressed as 

ρc 
�−1/3 

� µe 
�−2/3 

R = 3.347 × 104 km,3106 g cm 2 

µe 
�−2 

M = 1.457 M�. 
2 

This is an approximation to the Chandrasekhar mass, the maximum mass of a stable white dwarf. 

(Strictly speaking, a more rigorous calculation would include electrostatic and other corrections 

to the degenerate equation of state.) 


