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1.10 Jeans’ equation in spherical coordinates 

We start by writing down the collisionless Boltzmann equation (1.119) in spherical coordinates 
(r, β, θ): 

σf σf σf σf σf σf 
+ ṙ + β̇

σf 
+ θ̇ + v̇r + v̇ψ + v̇θ = 0, (1.136)

σt σr σβ σθ σvr σvψ σvθ 

where the time derivatives of the coordinates may be expressed in terms the velocity components, 

ṙ = vr , 

β̇ = 
vψ 

and 
r 

θ̇ = 
vθ 

. (1.137) 
r sin β 

Lagrange’s equations give the components of the acceleration, 
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−vθvr − vθvψ cot β 1 σΛ 
v̇θ = . (1.138) 
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(Continued on next page.) 
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One then substitutes these into the CBE (1.136), multiplies by the powers of vr, vψ and vθ, and 
integrates over velocity space to obtain moment equations. These give one Jeans equation for each 
component of the potential gradient (force term). The radial Jeans equation is 

σv̄r σv̄r v̄ψ σv̄r v̄θ σv̄r σ 1 σ 1 σ

(�ε2 

rr) + (�ε2 
rψ) + (�ε2 

rθ)� + � v̄r + + +

σt σr r σβ r sin β σθ σr r σβ r sin β σθ

� σΛ 
rr − (ε2 

θθ + ¯2 vθ) + ε2+ [2ε2 
ψψ + ε2 vψ + ¯2 

rψ cot β] = −� . (1.139) 
r σr 

This may seem daunting (especially when one considers that the polar and azimuthal equations are 
similarly lengthy), but in practice one typically makes a number of simplifiying assumptions before 
invoking the radial Jeans equation: 

φa) Steady-state hydrodynamic equilibrium implies 
φt = 0 and v̄r = 0. 

vψ = v̄θ = 0, ε2 = ε2 = ε2b) Spherical symmetry implies ¯ ψθ = 0, and a single tangential velocity rψ rθ 

dispersion (“temperature”) ε2 = ε2 = ε2 
t1 ψψ θθ. 

With these assumptions the radial Jeans Equation becomes considerably more manageable, 

1 σ rr − εt
2
1) σΛ GM(r) 

rr) + 2 
� σr 

(�ε2 (ε2 

r 
= − 

σr 
= − 

r2 
, (1.140) 

which reduces to spherical hydrostatic equilibrium when the velocity dispersion tensor is isotropic 
and ε2 

rr = ε2 
t1 = ε2 , 

1 
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σΛ 
σr 

= − 
GMr 

r2 
. (1.141) 

To measure the departure from this condition, we define the anisotropy parameter � as 

ε2 

� ≥ 1 − 
ε

t
2
1 (1.142) 

rr 

which can take values in the range −∼ < � < 1, with the extremes corresponding, respectively, to 
purely circular and purely radial orbits. The spherical Jeans equation (1.140) can be rewritten to 
give an expression for the mass M(r) within a radius r 
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 (1.143)+ 2�(r)+ 
d ln r d ln r 

? �−3 �−0.2 

The difficulty with determining �(r) from observations, is that one can only measure the line-of-sight 
velocity dispersion ε2 

los. It is not in general possible to make independent measurements of ε2 andrr 

ε2 (see Figure 1.22). t1 

The above table gives “typical” values of the velocity dispersion and scale length for a giant 
elliptical galaxy and a very rich cluster of galaxies. The cluster of galaxies will have of order 100 bright 
galaxies (and a great many very much fainter galaxies). We can use these values and equation (1.143) 
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Figure 1.22: An observer measuring the Doppler broadening of lines in a galaxy spectrum sees some 
combination of the radial and tangential velocity dispersion, averaged over the line of sight. 

system ε2 N Rrr 

galaxy (300 km/s)2 1011 10 kpc 
cluster (1000 km/s)2 102 1000 kpc 

above to calculate a dynamical mass for a rich cluster. This can be compared to the dynamical masses 
computed for the constituent galaxies. The ratio of these two is 

Mcluster 1 ε2 1clus Rclus 

gal Rgal 
� 

100 
· 10 100 = 10. (1.144)

NgalMgal 
� 

Ngal ε2 · 

This very large discrepancy was first noted by Zwicky in the mid-thirties. It was at first known as the 
“missing mass” problem, but “missing light” would have been more correct, as the mass was surely 
present. For the next 40 years this problem was given scant attention, or dismissed as the result of 
some combination of bad data and bad modeling. When the first X-ray observations of clusters were 
made in the 1970s, very different observations and modeling led to the same conclusion. The missing 
mass problem became part of the larger “dark matter” problem that we first encountered within the 
Milky Way. Thirty years of effort have failed to produce a non-gravitational detection of this dark 
matter. In the meantime evidence (to be described later) has mounted that this matter must be 
non-baryonic. 

Starting with the hydrostatic equation (1.141) and making the additional assumption of isother
mality, taking the velocity dispersion sigma2) to be independent of radius, allows us to move the 
velocity dispersion outside the derivative. Taking all particles to have the same mass m the density 
is then δ = m� and the hydrostatic equation reduces to 

ε2 σδ σΛ GMr 
= = . (1.145)
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ρ Figure 1.23: A schematic representation of the 
density profile of an isothermal sphere. 

Multiplying this by r2, and differentiating with respect to r and then multiply by 1/r2 we get 

1 d 
� 

r2 d 4ψGδ 
δ = . (1.146) 

r2 dr δ dr 
− 

ε2 

Substituting δ ≥ ωe� (with the central density given by δc = ω), we get 
� 

ε2 
� 

1 d 
� 

2 d 
� 

r � = −e � . (1.147)
4ψGω r2 dr dr 

Making a change of variables ∂ ≥ r with κ2 = 
� 

ε2 
⎡ 
, we get 

γ 4�Gσ 

1 d d 
∂2 � = −e � , (1.148)

∂2 d∂ d∂ 

which looks much like the Lane-Emden equation for polytropic stellar models, except the right-hand-
side is an exponential instead of a power law. Indeed it is the limiting case of the Lane-Emden 
analysis for infinite polytropic index. The solution to this equation is called the isothermal sphere. 
We are interested in solutions with boundary conditions �(0) = � ⊥(0) = 0. Figures 1.23 and 1.24 
show the density and circular velocity of the isothermal sphere as a function of radius. Note that for 
large r, they approach the asymptotic values first mentioned in Sec. (1.5): 

2v d ln δc = (1.149)
ε2 

− 
d ln r 

� 2. 

Note also that wiggles persist at large radii, though with smaller and smaller amplitudes. 




