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Part I

Galaxies

Messier �0�, Sombrero (alaYy. Credit: &SO/1. Barthel
	,apteyn Institute, (roningen
. License CC�B:.
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1. KEY OBSERVATIONS OF GALAXIES

Key observations of galaxies

1.A� Basic� units� of� radiative� transfer�

We� first� define� some� fundamental� quantities.�

Flux:�

dEν
Fν = (1)

dA dt dν

with� units� [Fν ] = erg s−1cm−2Hz−1.�
Fν is� the� flux� at� a� specific� frequency� ν.�

Specifc� intensity:�

dEν
Iν = (2)

dA dt dν dΩ

with� units� [Iν ] = erg s−1cm−2Hz−1sr−1.�
This� is� the� flux� per� solid� angle.�

Note:�

• Fν(r) ∝ 1
r2
.�

Fν(r1)× 4πr1
2 =

(dEν)1 = (dEν)2 = (3)�
Fν(r2)

2 × 4πr2
2

( )2
Fν(r1) r2⇒ =
Fν(r2) r1 (4)

1⇒ Fν(r) ∝ 2r

• Iν(r) ∝ constant� because:�

Fν 1
Iν = and dΩ ∝

2dΩ r

Due� to� energy� conservation:�

1 1 (5)⇒ Fν ∝ and dΩ ∝
2 2r r

⇒ Iν ∝ constant
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1. KEY OBSERVATIONS OF GALAXIES

Magnitude� scale:�
Define� the� apparent� magnitude� m,� i.e.� how� bright� an� object� appears:�

( )(
(Fν)1

m1 −m2 = −2.5 log (6)
(Fν)2

With� this� definition,� a� brighter� object� has� a� lower� magnitude.� There� are� two� main� magnitude�
systems:� Vega� and� AB.�

The� Vega� system� is� calibrated� using� the� flux� of� the� AO� V� star� Vega� (Fν)Vega,� which� has� a�
non-flat� distribution� (flux� changes� for� different� frequencies).� The� AB� system� is� calibrated� to�

a� hypothetical� source� with� flux�

(Fν)AB = 3.63× 10−20erg s−1cm−2Hz−1 (7)�

which� has� a� flat� distribution.�

We� also� have� the� monochromatic� magnitude,� i.e.� the� magnitude� at� a� single� wavelength,�
defined� for� each� system:� ( )(

Fν
Vega : mν = −2.5 log

(Fν)Vega( )( (8)
Fν

AB : mν = −2.5 log
( AB)νF

( )(( )(
(

( )(( )(
AB

( )(( )(
)

( )(( )(
ν

( )(( )(
F

( )(( )(
ν

( )(
F

( )(
ν

( )(

A� more� practical� quantity� is� the� band�
magnitude.� In� most� observations,� the�
fluxes� are� integrated� over� a� filter� band-
pass� with� a� transmission� function� TX(ν)
for� band� X.� An� example� of� a� set� of�
filters� (U,B,V,R,I)� and� the� transmission�
function� (what� percent� of� the� flux� is� let�
through� at� a� given� frequency� or� wave-
length)� is� shown� to� the� right.�

( ∫( )(
FνTX(ν)dν

Vega : mX = −2.5 log ∫(
(Fν)VegaTX(ν)dν( ∫( )( (9)
FνTX(ν)dν

AB : mX = −2.5 log ∫(
(Fν)ABTX(ν)dν∫(

(Fν)AB = constant� and� TX(ν)dν = 1,� so�
∫(

(Fν)ABTX(ν)dν = (Fν)AB . (10)�
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1. KEY OBSERVATIONS OF GALAXIES

Telescopes� like� Hubble� and� SDSS� observe� primarily� in� the� visible� light� spectrum.� JWST�
measures� slightly� longer� wavelengths� and� is� sensitive� to� the� infrared� range.� The� NIRCam�
instrument� filters� are� shown� in� below.� We� show� the� total� throughput� (photon-to-election�
conversion� efficiency)� for� extra-wide,� wide,� medium,� and� narrow� filters� for� NIRCam� (image�
from� https://jwst-docs.stsci.edu).�

Each� filter� measures� a� different� energy� range� of� electromagnetic� waves� and� therefore� probes�
different� physics.� As� an� example� of� this,� we� show� the� Orion� Nebula� as� viewed� in� visible� light�
from� Hubble� below� on� the� left� and� in� X-ray� from� Chandra� on� the� right.� In� the� visible� range,�
we� can� see� the� diffuse� gas� while� in� the� X-ray,� we� can� see� point-like� sources� from� stars.�

Figure is in the public domain. +WST User %ocumentation 	+%oY
. Baltimore, M%: Space Telescope 
Science Institute� 20���202��07�2�. https://Kwst�docs.stsci.edu
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1. KEY OBSERVATIONS OF GALAXIES

For� all� filters,� −2.5 log(3.63× 10−20) = 48.6,� so� (for� the� AB� system)�
(∫( )(

= −2.5 log FνTX(ν)dν − 48.6mX (11)�
mν = −2.5 log(Fν)− 48.6 .

The� value� for� (Fν)AB was� chosen� such� that� mV (AB) = mV (Vega) and� they� have� the� same�
magnitude� in� the� V-band.� For� other� bands,� one� must� apply� the� conversion�

(∫( )(
(Fν)ABTX(ν)dν

mX(AB)−mX(Vega) = −2.5 log . (12)
(Fν)VegaTX(ν)dν

This� gives� us,� for� example:�
UAB = UVega − 0.8

BAB = BVega − 0.11 (13)�
VAB = VVega

Be� careful� which� magnitude� is� quoted!� SDSS� uses� u, g, r, i, z filters.�

Define� the� absolute� magnitude� as� the� apparent� magnitude� if� the� object� were� at� a� distance� of�
10 pc.� Apparent� magnitude� depends� on� both� the� brightness� of� the� object� and� its� distance.�
Absolute� magnitude� is� related� to� the� intrinsic� brightness� of� the� object.�

( )(
D

mX −MX = 5 log ≡ µ (14)
10 pc

Image of Orion /ebula created using SAOImage %S� image display and visuali[ation tool for 
astronomical data. https://sites.google.com/cfa.harvard.edu/saoimageds�/home
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1. KEY OBSERVATIONS OF GALAXIES

Since�
L L

Fapp = and Fabs =
4πD2 4π(10 pc)2( )(

L⇒ mX = −2.5 log + constant
4πD2

( )(
L (15)MX = −2.5 log + constant

4π(10 pc)2

⇒ mX −MX = +2.5 log(D2)− 2.5 log((10 pc)2)

= 5 log(D)− 5 log(10 pc)

= 5 log(D/pc)− 5

µ = mX −MX is� the� distance� modulus� (a� measure� of� distance).�

Colors:�
If� observations� are� made� in� more� than� one� filter� (X, Y ),� then� one� can� define� a� color� as� the�
difference� in� magnitudes� between� the� two� bands:�

(X − Y ) = mX −mY = MX −MY (16)�

Stars� and� galaxies� can� be� “red"� or� “blue",� for� example.� It� is� common� to� use� the� difference�
between� g and� r filters� to� get� g − r color.� A� higher� g − r value� is� red� and� a� lower� value�
is� blue.� Note� that� higher� g − r has� a� higher� g relative� to� r,� but� a� higher� magnitude� is� less�
bright.�

We� can� take� images� of� the� same� object� through� different� filters� and� combine� them� for� a� more�
complete� view� of� the� object.� Here� we� show� images� of� the� supernova� remnant� Cassiopeia� A�
taken� in� three� wavelength� ranges� (0.6-1.65� keV,� 1.67-2.25� keV,� and� 2.25-7.5� keV)� shown� in�
red,� green,� and� blue� and� then� combined� into� a� single� image.�

+� +� −→

Surface� brightness:�
We� measure� the� luminosity� ([erg� s−1])� per� area.� This� is� often� called� Σ or� I.� It� effectively�
measures� the� magnitude� per� square� arcsecond:�

M ∝ −2.5 log(I) . (17)�

Spiral� and� elliptical� galaxies� show� different� surface� density� profiles:�
−r/rsexponential : I(r) = I0e (spirals)

(18)1
−7.67(r/re)de Vaucouleurs : I(r) = I0e

4 (ellipticals)

Images of supernova remnant created using SAOImage %S� 8�
image display and visuali[ation tool for astronomical data. 
https://sites.google.com/cfa.harvard.edu/saoimageds�/home

https://sites.google.com/cfa.harvard.edu/saoimageds9/home
https://1.67-2.25
https://0.6-1.65


1. KEY OBSERVATIONS OF GALAXIES 

More generally, we have the Sérsic profle with Sérsic index n: 

1 
−(r/r0) nI(r) = I0e (19) 

Observationally, n ≈ 4 for ellipticals and n ≈ 1 for spirals. Theory needs to explain this! 

1.B Basic properties of the galaxy population 

Types of galaxies: 
Images of galaxies show mainly three types: 

Andromeda M31: Courtesy of Robert• Spirals (Sp): 
Gensler. Used with permission. 

– dominate in the feld (outside clusters) 

– disks with gas and stars 

– young stellar population 

– rotationally supported 

– blue color 

– exponential surface brightness profle 

• Ellipticals (E): 

– cluster environment 

– spheroidal 

– old stellar population 

– pressure supported 

– red color 

– de Vaucouleurs surface brightness profle 

• Lenticular (SO): 

– stellar disk 

– no gas disk 

– link between spiral and elliptical galaxies 

Andromeda 

M87 

NGC 2787 
Galaxy luminosity distribution: 
The luminosity L of an object is Z 

dE 
L = = Iν dAdΩdν . (20)

dt 

M87 Image: Courtesy of Canada-France-Hawaii Telescope / NGC 2787 Image: NASA and The Hubble Heritage Team (STScI/AURA);9 
Coelum. Used with permission. Acknowledgment: M. Carollo (Swiss Federal Institute of Technology, 

Zurich) 

https://apod.nasa.gov/apod/ap051222.html
https://apod.nasa.gov/apod/ap040616.html
https://apod.nasa.gov/apod/ap020408.html


1. KEY OBSERVATIONS OF GALAXIES

What� is� the� distribution� function� of� L for� galaxies?� We� commonly� use� the� Schechter� function�
to� describe� the� number� density� of� galaxies� at� a� given� luminosity:�

( )α
−L/L∗φ(L)dL = φ∗

L
e

dL
(21)

L∗ L∗

φ∗:� normalization� φ∗ ≈ 0.02h3Mpc−3

α:� faint-end� slope� α ≈ −1.09
L∗:� characteristic� L at� the� normalization� point� L∗ ≈ 1010 L h−2

Velocity� structure� of� galaxies:�
Spectral� data� of� galaxies� allows� us� to� measure� velocities.� Spiral� galaxies� have� ordered,� circular�
motion� with� Vc ∼ 200± 50 km/s.� We� can� measure� the� circular� velocity� through� the� motions�
of� stars� and,� further� out,� from� the� spectral� lines� of� gas.� Outside� the� galaxy,� one� finds� that�
vc remains� constant,� but� one� would� expect:�

2mvc
r

=
GMm

2r
(22)�

for� a� circular� orbit.� This� implies� vc ∝ r−1/2,� for� centralized� mass,� which� is� not� constant.� To�
have� vc constant,� we� need� ∫(r

vc ∝
1

4πr2ρ(r)dr
r 0 (23)�

⇒ρ(r) ∝ r−2

to� large� radii.� This� was� one� of� the� first� hints� for� dark� matter.�
What� is� dark� matter?� A� few� things� we� know:�

• It� can’t� be� non-luminous� gas� since� we� would� have� seen� it� through� absorption� lines�

• Dim� stars� or� other� dense� objects� at� larger� distances� (MACHOS:� Massive� Compact� Halo�
Object)� have� been� ruled� out� since� microlensing� (the� temporary� brightening� of� a� distant�
object� due� to� a� closer� massive� object� bending� the� light� rays� closer� together)� does� not�
occur� frequently� enough�

• Neutrinos� have� been� ruled� out� since� they� lead� to� the� wrong� structure� formation� because�
they� move� so� fast� (hot� dark� matter).� Since� neutrinos� move� close� to� the� speed� of� light,�
they� have� too� much� kinetic� energy� to� be� bound� in� low-mass� potential� wells.�

10�



1. KEY OBSERVATIONS OF GALAXIES 

• It could possibly be WIMPs (Weakly Interacting Massive Particles). However, there 
are no detections of WIMPs so far. 

• General theories: 

– Cold Dark Matter (CDM): dark matter is a particle that moves slowly (v � c) 
and is collisionless, interacting solely through gravity. 

– Self-interacting dark matter (SIDM): dark matter interacts through gravity as well 
as through self-interactions that allow particles to scatter and transfer energy and 
momentum. 

– Warm dark matter (WDM): dark matter is still collisionless but moves with a 
faster velocity than CDM, which makes it harder to form less massive halos. 

– Bose-Einstein condensate (very low mass) dark matter: dark matter particles are 
very low mass such that their de Broglie wavelength is on the length scale of 
galaxies and leads to interference patterns in halos. 

– Modifed Newtonian dynamics (MOND): Dark matter is not a type of matter but 
is accounted for through modifcations to our theory of gravity. 

Elliptical galaxies have a random motion velocity structure with velocity dispersion σv ∼ 
200 − 300 km/s. There is negligible circular motion, typically vc ∼ 50 − 100 km/s. 

Spectra can also be used to measure redshift/recession velocity z of galaxies: 

λobs − λ0 λobs 
z = or 1 + z = (24)

λ0 λ0 

For low z (z � 1), one fnds that the distance d is related to the redshift through the 
present-day Hubble constant H0: 

cz 
d ≈ , (25)

H0 

which yields 
v = H0d ≈ cz , z � 1 (26) 

czThe redshift directly yields the recession velocity. A more formal proof of d ≈ will be 
H0 

discussed later (low z limit for all distances). 

Note: h is defned so the Hubble constant today is H0 = 100 h km/s/Mpc 

1.C Stellar population synthesis 

So far, we have used spectral information only to derive velocities. However, we can also use 
this information to derive the spectral energy distribution (SED) of a galaxy. Stellar SEDs 
are blackbodies with di˙erent temperatures. The types of stars are referred to as O, B, A, 
F, G, K, M, L, and T, each with di˙erent temperatures that contribute di˙erently to the 

11 
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2. STRUCTURE AND A QUALITATIVE PICTURE OF GALAXIES 

spectrum of the galaxy. Galaxies are a combination of these, so the total fux at a given 
frequency is a combination of the fux from each star: 

Fν = NOFν,O + NB Fν,B + ... (27) 

Determining NO, NB, NA, NF ... is the basic idea of stellar population synthesis. 

Structure and a qualitative picture of galaxies 

Goal: look at the most basic dynamical properties of a galaxy. 

A galaxy is a collisionless fuid of stars and dark matter orbiting together with collisional gas 
in a common self-gravitational potential. 

With this defnition, we can try to understand the main dynamical properties. 

2.A Virial Theorem 

Derivation: assume stars orbit in a galaxy with mass, position, and velocity (mi, ~ri, ~vi). We 
then defne the virial G: X 

G = ~pi · ~ri (28) 
i 

which we can rewrite: � �X d~ri
G = mi · ~ri . (29)

dt 
i 

Since 
˙ ˙d

(~r · ~r) = ~r · ~r + ~r · ~r = 2~ṙ ~r , (30)
dt 

we get X1 d 
G = mi (~ri · ~ri)

2 dt 
i (31)X1 d 2 = mir .i2 dt 

iP 
Defning I 2 as the moment of inertia about the origin, we get= miri i 

1 dI 
G = . (32)

2 dt 

Now consider the time derivative of G: X XdG ˙ ˙= ~pi · ~ri + p~ · ~ri
dt 

i iX X 
~Fi 

2 (33)= · r~ i + mivi 
i iX 
~ = Fi · ~ri + 2T 

i 

12 



2. STRUCTURE AND A QUALITATIVE PICTURE OF GALAXIES 

where T is the kinetic energy. Because gravity is a pairwise force, we can write 

NX 
F~ 
k = F~ 

jk . (34) 
i=1 

Fii = 0 and 1 ≤ j ≤ N , so we can split Fjk into two parts, the upper and lower portions of 
the matrix 

k ↓ j → ⎛ ⎞ 
0 2 ⎜ ⎟ (35). .Fjk = ⎝ . ⎠ 
1 0 

with 
N k−1 N−1 NXX X X 

~ ~1 = Fjk · ~rk and 2 = Fjk · ~rk (36) 
k=2 j=1 k=1 j=k+1 

so 
N N k−1 N−1 NX XX X X 

~ ~ ~Fk · ~rk = Fjk · ~rk + Fjk · ~rk . (37) 
k=1 k=2 j=1 k=1 j=k+1 

~ ~F is pairwise, so −Fkj = Fjk, which gives 

N N k−1 N−1 NX XX X X 
~ ~ ~Fk · ~rk = Fjk · ~rk − Fkj · ~rk . (38) 

k=1 k=2 j=1 k=1 j=k+1 

The second term in the above equation can be rewritten: 

N−1 N N−1 N N k−1X X X X XX 
~ ~ ~Fkj · ~rk = Fjk · ~rj = Fjk · ~rj (39) 

k=1 j=k+1 j=1 k=j+1 k=2 j=1 

which has the same matrix elements as the frst term, so we get 

XN N k−1XX 
~ ~Fk · ~rk = Fjk · (~rk − ~rj ) . (40) 

k=1 k=2 j=1 

We now assume that there is a potential V such that: 

~Fjk = −rkV (|~rjk|) = −rkV (rjk) 

dV 
� 
~rk − ~rj 

� (41) 
= − 

dr rjk 

13 



2. STRUCTURE AND A QUALITATIVE PICTURE OF GALAXIES 

so we get 
N N k−1X XX 

~ ~Fk · ~rk = Fjk · (~rk − ~rj ) 
k=1 k=2 j=1 XXN k−1 

dV |~rk − ~rj |2 

= − (42)
dr rjk 

k=2 j=1 XN k−1X dV 
= − rjk . 

dr 
k=2 j=1 

We now assume the special case V (rjk) = αrn 
jk. This gives us 

dV 
= nαrn−1 

jk dr (43)
dV ⇒ rjk = nV 
dr 

so 
N N k−1X XX 

~Fk · ~rk = − nV (rjk) 
k=1 k=2 j=1 

N k−1 (44)XX 
= −n V (rjk) 

k−2 j=1 

= −nVtot . 
Finally: X 

~ dG 
= Ii · ~ri + 2T = 2T − nVtot (45)

dt 
i 

1 d2IWith dG = 
dt2 , U = Vtot, and n = −1 (for gravity): 

dt 2 

1 d2I 
= 2T + U . (46)

2 dt2 

We now take the time average:� � Z TdG 1 dG G(T ) − G(0) 
= dt = 

dt T dt T� �T 0 (47)
dG ⇒ = 2hT iT − nhVtotiT
dt T 

G(T )−G(0)For a steady state system and long time average, T ≈ 0, so we get 

0 = 2hT iT − nhVtotiT 
. (48)

0 = 2hT iT + hUiT for n = −1 

This is the virial theorem, often written simply as 0 = 2T + U . 

Note the three important assumptions for the virial theorem to hold: 

14 
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2. STRUCTURE AND A QUALITATIVE PICTURE OF GALAXIES 

• F is a pairwise force 

n• The potential V has the form V ∝ r 

• We have a steady state time averaged quantity d
dt 

2

2 
I = 0. 

Applications: 
We now apply the virial theorem to a galaxy. 

2T + U = 0 . (49) 

Assuming that a galaxy is made of N stars all with the same mass m (so total mass M = Nm) 
and average velocity ~v, we get a total kinetic energy for the system X1 1 1 

T = mivi 
2 ≈ Mv̄2 = Mv2 . (50)

2 2 2 
i 

From dimensional analysis for a galaxy of size R, we get a total potential energy 

GM2 

U = − . (51)
R 

The virial theorem then implies � � 
GM2 

Mv2 + − = 0 
R r (52) 

GM ⇒v = . 
R 

Using some typical numbers: 
R ≈ 10kpc M = 2 × 1033g � �2 
M ≈ 1011M G = 0.0043M−1pc km

s s 
0.0043M−1pc(km/s)2 1011M 

v = 
10 000pc (53)

√ 
≈ 4 × 104 km/s ≈ 200 km/s 

which is in good agreement with observations. 

We can also use the virial to get the ideal gas law. 
For an ideal gas with N particles at temperature T is 

K =
3 
NkT (54)
2 

where we use K for kinetic energy to di˙erentiate from temperature and k is the Boltzmann 
constant. The force comes from the pressure from the particles, so the force per unit area is 

~ ~dF = −P dA . (55) 
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2. STRUCTURE AND A QUALITATIVE PICTURE OF GALAXIES 

Then the potential energy is * + ZX 
~ ~− 

1 
Fi · ~r = 

P 
~ri · dA (56)

2 2 
i 

and n = 2. From the divergence theorem Z Z 
~ ~ ~ri · dA = r · ~rdV Z (57) 
= 3 dV = 3V . 

The virial theorem gives 
0 = 2 hKiT − 2 hVtoti 

3 P (58) 
= 2 NkT − 2 3V 

2 2 
so 

NkT = PV . (59) 

2.B Relaxation times 

The virial theorem gave us some frst insight into the dynamics of galaxies. Now we will 
show that stars are collisionless, i.e. that two-body collisions are rare in galaxies. Since this 
is true, we can describe the distribution of stars as a smooth density feld and gravitational 
potential. 

Frequency of strong encounters between stars: 
Goal: estimate the change in velocity δ~v by which the encounter defects the velocity ~v of 
the subject star. 

L*
log(L)

log(ɸ)

!

F⊥

x vSubject 
star m

r "
Field 
star m

b

We assume that |δ~v|/|~v| � 1 and that the feld star is stationary. This means that δ~v is 
perpendicular to ~v since the accelerations parallel to ~v cancel out as the subject star passes 
by the feld star. We calculate δv = |δ~v| by integrating F⊥: " � �2 

#−3/2 
Gm2 Gm2b Gm2 vt 

F⊥ = cos θ = = 1 + . (60)
2 2)3/2b2 + x (b2 + x b2 b 

16 



2. STRUCTURE AND A QUALITATIVE PICTURE OF GALAXIES 

Newton’s law m~v̇ = F~ gives us the change in the perpendicular velocity Z +∞1 
δv = dtF⊥ 

m −∞Z +∞Gm dt 
= h i3/2b2 � �2−∞ vt 1 + 

b (61)Z +∞Gm ds 
= 

2)3/2bv (1 + s−∞ 

2Gm 
= 

bv 

using s = vt . Thus, δv is roughly equal to the acceleration at closest approach, GM , times
b b2 

the duration of the acceleration, 2 
v
b . 

Strong encounters: 
An encounter is strong if δv ∼ v (which also causes the calculation to break down). This is 
also when a star will have its path defected by ∼ 90◦ ≡ bstrong. 

δv ∼ v ⇔ b . b90 = 
GM ≡ bstrong . (62)
2v 

The cross section for strong encounters is 

σstrong = πbstrong
2 (63) 

From the virial theorem, we have 

GM GNm 
v 2 ∼ = 

R R 
2R (64) 

⇒bstrong ≈ 
N∗ 

so we get: 

σstrong ≈ 
4π

R2 (65)
N2 
∗ 

which is small since N ∼ 1011 . This means that the probability p of a strong encounter over 
a single crossing of a star through a galaxy with an average number density of stars n is 

p = nσstrongR 

N 4πR2 

= 4 N2 
R (66)

3 πR
3 

3 ∼ 10−11 = . 
N 

This is a tiny probability! So there are likely no strong encounters in a galaxy. For globular 
clusters, N ∼ 104 , so strong encounters are more common. 
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2. STRUCTURE AND A QUALITATIVE PICTURE OF GALAXIES 

What about weak encounters? 
We have seen that strong encounters are rare, i.e. they practically never happen. Neverthe-
less, if a star crosses a galaxy many times, it will encounter many weak encounters. Each of 
those will slightly perturb its velocity until v⊥ ≈ v. The time it takes for this to happen is 
the relaxation time of the system. 

Multiple weak encounters 

L*
log(L)

log(ɸ)

!

F⊥

x vSubject 
star m

r "
Field 
star m

b

A star makes a random walk through a galaxy. Its total deviation from its path is the sum 
of each of its encounters with other stars. For N encounters, 

NX 
δv2 = (δvi)

2 . (67)tot 
i=1 

The strength of each encounter depends on the impact parameter b. The number of encoun-
ters N within (b, b + db) is 

N = (2πbdb) n| {z } (|v{zΔt}) |{z} (68) 
area length density . 

L*
log(L)

log(ɸ)

!
F⊥

x vSubject 
star m

r "
Field 
star m

b

b

vΔt

b+db

We then have ZX bmax 

(δvi)
2 = (number of encounters in (b, b + db)) × (δv for each encounter with b) 

i Z � bmin 

bmax 
�2

2Gm 
= (2π v Δt n b db) 

bvbmin Z2 bmax8πG2m n db 
= Δt . 

v bbmin 

(69) 
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2. STRUCTURE AND A QUALITATIVE PICTURE OF GALAXIES 

Now we determine the limits on the integral: 

bmax ≈ R ≈ 10 kpc 
(70)

bmin ≈ bstrong =
2R 

= 10−10kpc (0.01AU) 
v∗ 

so Z bmax db 
� � 
bmax 

= ln ≡ ln Λ (Coulomb logarithm) 
bmin 

b bmin� � 
10 kpc (71)

= ln 
10−10 kpc � � 
1011 = ln ≈ 25 . 

Relaxation time: 
We defne the relaxation time trelax through X 28πG2m n 

(δvi)
2 ≈ v 2 ⇒ ln Λtrelax 

v 
i (72)

3v ⇒trelax = 
2 

. 
8πG2m n ln Λ 

We now compare this to the dynamical time torbit ≈ R/v of the system: 

trelax v v4 

=trelax = 
2 

, . (73)
torbit R 8πG2m n ln ΛR 

2 GM M/m Using the virial theorem v = 
R and number density n = 

R3 gives us:4π 
3 

(GM/R)2 

= 
8πG2m2 M/m 

4π R3 R ln Λ 
3 

M 
= 
8πm

4
3 
π ln Λ 

(74)
N N∗ N∗ 

= = � � = � � 
6 ln Λ bmax R6 ln 6 ln 

bmin 2R/N∗ 

N∗ ∼ 
6 ln N∗ 

which is very large! Thus, stars are orbiting in an unperturbed collective potential (colli-
sionless)! 

2.C Collisionless relaxation 

Relaxation occurs in two ways within a galaxy: the collisional gas with interactions reaches 
a Maxwellian distribution through two-body interactions, but the collisionless systems (stars 
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2. STRUCTURE AND A QUALITATIVE PICTURE OF GALAXIES 

and dark matter) must relax through a di˙erent process otherwise galaxies and galaxy clus-
ters would not reach a relaxed state within the age of the Universe. We say a system is 
relaxed when its coarse grained phase-space distribution function does not change any more. 

Collisionless relaxation processes: 
Phase mixing: 
The coarse grained phase-space distribution function is distributed over time so doesn’t 
change with time. 

 

log(L)

log(ɸ)

! F⊥

x vSubject 
star m

r "
Field 
star m

b

x

v

Changing 
distribution function 
t=0

x

v

Constant 
distribution function 
t>0

no relaxation

particle loses 
energy

particle gains 
energy

Violent relaxation: 
Since energy in the stellar and dark matter systems in galaxies can’t be eÿciently exchanged 
through collisions, we must fnd another way for energy exchange. The energy of an individ-
ual star (specifc energy) is: 

2E =
1 
v + φ . (75)
2 

Then the change in energy over time is 

dE ∂E d~v ∂E dφ 
= + 

dt ∂~v dt ∂φ dt 
dφ 

= −~v · r ~ φ + 
dt 
∂φ ∂φ d~x 

= −~v · r ~ φ + + (76) 
∂t ∂~x dt 
∂φ ~ = −~v · r ~ φ + + ~vrφ 
∂t 

∂φ 
= 
∂t 

Thus, the only way for a star to change its energy is by having a time-dependent potential. 

To think of this intuitively, we can consider an object moving through a potential well. If 
the potential is constant with time, the particle will recover the same energy as it comes out 
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3. MODELLING GALAXIES 

the other side and there is no relaxation. If the potential grows with time, the particle will 
need to expend more energy to cross it and will not have enough energy to get back out of 
the potential well, thus losing energy. If the potential shrinks with time, the particle will 
gain energy as it crosses the well. 

log(L)

log(ɸ)

! x vSubject 
star m

Field 

b
b+db

x

v

Changing 
DF

x

v

Constant 
DF

no relaxation

particle loses 
energy

particle gains 
energy

As a galaxy or cluster forms, the gravitational potential changes signifcantly as mass accretes 
and collapses into a halo. Averaging over all particles, the timescale for violent relaxation 
tvr is *� �2 

+−1/2
dE 

tvr = dt 

E2 *� �2 +−1/2∂φ 

= ∂t 

E2 
(77) 

* +−1/2
φ̇2 

∼ 
φ 

where in the last step we used the time-dependent virial theorem (see Lynden-Bell 1967). 
This occurs on roughly the same timescale as free-fall since this is the timescale at which 
the potential changes during collapse. It’s very fast, hence ‘violent’ relaxation! 

Modelling galaxies 

So far, we have looked at the basic dynamical properties of galaxies. Now we discuss the 
main ingredients of modelling galaxies: 

• potential-density pairs (the common potential) 
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3. MODELLING GALAXIES 

• orbits (trajectories of stars orbiting in a potential) 

• phase-space distribution function (distribution of orbits, Vlasov equation) 

• stability (Jeans criterion) 

• composition of stars (stellar populations), star formation rate, initial mass function 

• chemical evolution of galaxies 

• active galaxies 

3.A Potential-density pairs 

Stars move in a collective potential. What are interesting potentials and the related density 
functions? 

Scalar potential: 
~−r ~ φ =

1 
F (78) 

m 
Note that mφ = U is the potential energy of the system and using Poisson’s equation 
r2φ = 4πGρ, we get Z 

ρ(~r)
φ(~r) = G d3 ~r (79)

|~r0 − ~r|
⇒ potential φ − density ρ − pairs! (80) 

Examples: 
• Kepler/point mass potential: 

φ = − 
GM 

(81) 
r 

~To fnd F , we take the gradient of φ 

1 GM ~F = 
2 
êr . (82)

m r 

• Homogeneous sphere: 
M 

ρ(~r) = 4 
3 πR

3 (83) 
~F =? 

~We do not have φ, so we need a di˙erent way to get F . We can use Gauss’s theorem 
for gravity for a surface Sr with radius R enclosing a volume Vr:Z Z 

~ ~ ~ ~F · dS = (r · F )dV 
Sr Vr Z 

~ = −m (r 2φ)dV 
V (84)Z 

= −4πGm ρ(~r)dV 

= −4πGM(< r)m 
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3. MODELLING GALAXIES 

~Since we’re working with gravity, we have F (r) = −F (r)êr and Z Z 
~ ~ ~F · dS = F (r)(−êr)dS = −4πr2F (r) (85) 

Sr Sr 

⇒ 4πr2F (r) = rπGM(< r)m (86) 

So 
GMm 

Outside the sphere : r > R ⇒ F (r) = 
r2 (87)ρr 

Inside the sphere : r < R ⇒ F (r) = 4πG m 
3 

From these, we can now also get φ : 
m 
1 F~ = −r ~ 2φ 

GMm 
Outside the sphere : r > R ⇒ φ(r) = + constant 

r (88)
ρr2 

Inside the sphere : r < R ⇒ φ(r) = 2πG m + constant 
3 

• Mestel disk (example of a disk potential): 

log(ɸ)

! x vSubject 
star m

Field 

x

Constant 
DF

no relaxation

particle loses 
energy

particle gains 
energy

r" � � 
r 1 + | cos θ|

φ(r, θ) = v 2 ln + ln (89)c r0 2 

Is this a disk? It’s hard to see based on the potential, so we need to fnd ρ. Let’s look 
at Poisson’s equation: � � � � 

1 ∂ ∂φ 1 ∂ ∂φ 1 ∂2φ r 2φ = r 2 + sin θ + 
r2 ∂r ∂r r2 sin θ ∂θ ∂θ r2 sin2 θ ∂ϕ | {z } (90) 

= 0, since no ϕ dependence 

Using φ = vc 
2φ0: 

2 � � 
2 � � 

v ∂ 1 v ∂φ0 ∂2φ0c 2 c r 2φ = 
2 

r + cos θ + sin θ 
r ∂ r r2 sin θ ∂θ ∂θ2 

2 � � �� (91) 
vc cos θ ∂φ0 ∂2φ0 

= 1 + + 
r2 sin θ ∂θ ∂θ2 

We now calculate ∂φ0 and ∂
2φ0 . We assume cos θ > 0. The calculations are the same

∂θ ∂θ2 

or cos θ < 0 except for an overall sign change cos θ → − cos θ. � � � � 
r 1 + cos θ 

φ0 = ln + ln (92)
r0 2 
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Then�
∂φ

∂θ

∂2φ0

∂θ2

So�

( ) (( )(
2 sin θ sin θ

= − = −
1 + cos θ 2 1 + cos θ

(93)�
cos θ sin2 θ

= − −

cos θ ∂φ0

sin θ ∂θ

1 + cos θ (1 + cos θ)2

∂2φ0 2 cos θ sin2 θ
+ = − −

∂θ2 1 + cos θ (1 + cos θ)2

−2 cos θ − 2 cos2 θ − sin2 θ
=

(1 + cos θ)2

1 + cos2 θ + 2 cos θ (94)
= −

(1 + cos θ)2

(1 + cos θ)2
= −

(1 + cos θ)2

= −1

2vc= = 0,� so� there� isFor� cos θ �= 0,� this� gives� ∇2φ (1 − 1)
r2

no� density� for� θ �= π/2 and� all� mass� is� in� a� thin� plane� with�
infinite� density� ρ (3D� density).�

We� can� calculate� the� surface� density�
∫(+∞ 1 � 2φ dzΣ(r) = ∇ (95)

4πG−∞

With� z = r cos θ so� dz = −r sin θdθ + cos θdr ≈ −r dθ since� θ ≈ π/2,� we� get�
∫(

Σ(r) = ρ dz

∫( −ε (96)
1

π
2

�∇2φ(−r dθ) .=
4πG+επ

2

We� go� from� π
2
+ ε where� z < 0 to� π

2
− ε where� z > 0.� We� can� then� switch� the� bounds�
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and� change� the� overall� sign�
∫(

1 2
π+ε

�∇2φ r dθΣ(r) =
4πG

2
π−ε ( [( ])∫(
2
π+ε 2 ∂2φ01 cos θ ∂φ0

+
vc 1 + r dθ=
r2 sin θ ∂θ ∂θ24πG

2
π−ε ( )∫(

2
π+ε2 ∂2φ01 cos θ ∂φ0vc≈ dθ+

∂θ24πG sin θ ∂θ (97)r
2
π−ε

(continuous functions → 0 for ε → 0)
∫(

2
π+ε2 ∂2φ01 vc≈ dθ

∂θ24πG r
[ 2

π−ε](

2

π
2

π

+ε

−ε

1 ∂φ0
=

4πG ∂θ

When� θ > π ,� cos θ < 0 and� | cos θ| = − cos θ,� and� when� θ < π ,� cos θ > 0 and
2 2

| cos θ| = cos θ.� So� we� take� the� derivative� using� − cos θ in� the� first� term� and� cos θ in�
the� second� term�

[( ]( [( ]( )(
1 sin θ − sin θ

Σ(r) =
4πG 1− cos θ π

−
1 + cos θ π−ε+ε

2 2

(ε → 0)
2 (98)

1 v
= c (1 + 1)

4πG r
1 vc

2

⇒ Σ(r) = .
2πG r

• Navarro-Frenk-White� profile� (NFW):�
empirical� profile� found� in� simulations� of� CDM�
halos.�

{(
ρ0 r−1 r � a

ρ(r) = ( ) (( )2 ∝ (99)�
( r 1 + r r−3 r � a
a a

Simulations� showed� the� ρ0 and� a are� strongly� correlated� for� CDM� halos,� so� halos� are�
approximately� members� of� a� 1-parameter� family.� The� conventional� choice� for� this�

25�



3. MODELLING GALAXIES 

parameter is r200, the distance which has an enclosed density 200 times the cosmic 
critical density ρc (which we will cover later) or M200 = 200ρc 4 πr3 

3 200. 

The concentration of a halo is 
r200 

c = (100) 
a 

Central result: 
The second parameter c is only a very weak function of mass and for fxed mass, and 
it is the same for all halos in that mass range.� � 

2 ln 1 + 
a
r 

φ = −4πρ0a r + constant (101) 
a 

Related topics: 

– Core-cusp problem: From observations of stellar dynamics, the inner profle of 
halos fattens to a slope ∼ 0 (core) instead of −1 (cusp). This is possibly due to 
supernova feedback, but it could also be resolved through modifcations of cold 
dark matter. 

– Diversity of shapes problem: Observationally, halos display diversity in the shapes 
of their profles with some cuspier and some more cored profles whereas, in simu-
lations, halos are universally described by the NFW profle and self-similar across 
mass ranges (the profles look the same when scaled). 

– Missing satellite problem: Simulations produce more satellite halos than there are 
observed satellite galaxies. It’s possible that not all subhalos form stars, so we 
need to be able to fnd “dark subhalos." This could be done by looking for disrup-
tions in stellar streams or through gravitational lensing. Recently, however, there 
have been many more satellites found as our observational techniques improve. 

– Too-big-to-fail problem: This is related to the missing satellites problem, where 
the number of predicted large halos doesn’t match the number of large galaxies 
observed (but the total number of satellite halos is consistent). The gravitational 
potential of these galaxies, however, is large enough that they should have col-
lected enough gas and stars to form galaxies and maintain their evolution (e.g. 
not lose the stars through stripping). 

3.B Orbits 

Now that we have looked at potential-density pairs, we can study orbits in these potentials. 
Orbits refer to the motion of stars through 6D phase space (~x(t), ~v(t)). Often, the integrals 
of motion restrict the dimensionality of the orbit (1 per integral of motion). 

Integrals of motion: 
The orbital energy E is: 

2 2E =
1 
v + φ(r) =

1 
ṙ + φ(r) (102)

2 2 
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Taking� the� time� derivative� (for� a� time-independent� potential)� gives� us�

dE dφ
= ṙr̈ + ṙ = ṙr̈ − r̈ṙ = 0 (103)

dt dr

which� implies� that� the� energy� is� constant� along� the� orbit.�

�The� angular� momentum� L (for� a� central� force� potential)� is:�

�L = �r × �ṙ (104)�

and� the� time� derivative� is�

dL�
ṙ × ˙ r ×¨= � �r + � �r = �r × (F (r)êr) = 0 (105)

dt

so� angular� momentum� is� also� constant� along� the� orbit.� This� means� we� have� a� 4D� phase�
space� instead� of� 6D� for� time-independent,� central� force� potentials,� which� is� often� a� good�
approximation.�

Central� potentials:� φ = φ(r)
Goal:� derive� equations� for� radial� and� tangential� components,� which� is� sufficient� to� describe�
motion� since� it� is� a� 4D� phase� space.�

( )(
cosψ

êr = sinψ( )( (106)
sinψ

êψ = − cosψ

We� have:�
d d
�r = (rêr)

dt dt
d

= ṙêr + r (êr)
dt )(

dêr dr dêr dψ
= ṙêr + r +

dr dt dψ dt︸︷︷︸(
(107)= 0

d˙= ṙêr + rψ êr
︸dψ︷︷ ︸(( ) (( )(

d cosψ − sinψ
= = = êψ

dψ sinψ cosψ

˙= ṙêr + rψêψ
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so 
d2 d ˙~r = (ṙêr + rψêψ)
dt2 dt 

d˙ ˙= (r̈êr + ṙψêψ) + (rψêψ)
dt 

˙ r( ˙ 
d � ̇ 

� 
= r̈êr + ṙψêψ + ˙ ψêψ) + r ψêψ

dt 
d˙ ˙ ¨ ˙= r̈êr + ṙψêψ + ṙψêψ + rψêψ + rψ êψ
dt (108)| {z } 
dêψ dψ 

= 
dψ dt 

= −ψ̇êr 
= r̈êr + ṙψ̇êψ + ṙψ̇êψ + rψ ̈ êψ − rψ̇2 êr� � � � 

ψ̇2 ˙ ¨ = r̈  − r êr + 2ṙψ + rψ êψ 

and, since we are using a central force, 

d2 

~r = F (r)êr (109)
dt2 

where F is the force per unit mass. Combining the two above equations, we get the scalar 
equations for 4D orbits for the radial and tangential components of motion: 

ψ̇2radial : r̈  − r = F (r) 
(110)

˙ ¨ tangential : 2 ̇rψ + rψ = 0 . 

For now, we focus on the radial equation and substitute u = 1 
r to avoid the singularity at 

r = 0. Then � � � �2
d2 1 1 dψ 

F (r) = − . (111)
dt2 u u dt 

With 
~ 2L = ~r × ~v ⇒ L = r 

dψ 
(112)

dt 
we can parameterize t with ψ to get u = u(ψ): 

d L d d 
= 

2 
= Lu2 (113)

dt r dψ dψ 

Then 
d ~L = ~r × ~r 
dt� � 

˙= ~r × ṙêr + rψêψ � � 
= rêr × ṙêr + rψ̇êψ 

(114) 

2 ˙= r ψ 
dψ2 = r . 
dt 
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Then we get � � � � 
F (u) = Lu2 d 

Lu2 d 1 − 
1 dψ 

Lu2 

dψ 
d 

= Lu2 

dψ 

dψ u� � 
−1 du 

Lu2 

u2 dψ 

u 
1 − 
u 

dψ � �2 
Lu2 (115) 

d2u 
= −L2 u 2 − L2 u 3 

dψ2 

which gives us the orbit equation: 

d2u F (u)
+ u = − (116)

dψ2 L2u2 

with u = u(ψ). Note that there is no time dependence. 

We now examine some examples using this equation. 

Examples: 

• Kepler: 
GM d GM 

φ(r) = − → F (r) = − φ = − = −GMu2 (117)
r dr r2 

so we get the orbital equation: 

d2u F (u) GM 
+ u = − 

2 
= . (118)

dψ2 L2u L2 

Note that this is a harmonic oscillator, so we know the solution: 

GM 
u(ψ) = C cos(ψ − ψ0) + (119)

L2 

Then for ψ = 0 to ψ = 2π, u(ψ = 0) = u(ψ = 2π) and we get closed orbits (frequency 
ω = 1). 

• Post-Newtonian relativistic correction: � � 
GM 2GM 

φ(r) = − 1 + (120)
r rc2 

so 
d 

F (r) = − φ 
dr 
GM 4G2M2 

= − − (121)
2 3 2r r c 

4G2M2 

= −GMu2 − u 3 . 
2c 
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So we get the orbital equation: 

d2u F (u) GM 4G2M2 

+ u = − = + u 
dψ2 L2 2 L2 L2 2u c! 
d2 4G2M2u GM (122)⇒ + 1 − u = . 
dψ2 L2c2 L2| {z } 

constant 

The term in parentheses implies that k2 =6 1, so ω < 1, which means that u(ψ = 0) 6= 
u(ψ = 2π). This accounts for the precession of Mercury. 

The solution for a harmonic oscillator 

mü+ ku̇ = const (123) 

is 
u = cos(ωt − φ) (124) 

where ω2 = k/m. Then if w =6 1 and k =6 1, u(0) =6 u(2π). Here, t is analogous to ψ, 
so if the position u after one orbit when ψ = 2π is not the same as when ψ = 0, the 
mass has not returned to its previous position and the orbit is not closed. 

Mercury precession image by Hans Yu, 
Astroniomical Returns blog. 
©Astronomical Returns. All rights 
reserved. This content is excluded 
from our Creative Commons license. 
For more information, see 
https://ocw.mit.edu/help/faq-fair-use/ 

Axisymmetric Potentials: φ = φ(R, |z|) 
We will derive equations for R, z, and ψ. 

d d 
~r = (rêr + zêz)

dt dt 
d˙= ṙêr + rψêψ + żêz + z (êz) |dt{z } ⎛ ⎞ (125)

0 ⎝ ⎠= 0 since êz = 0 
1 

˙= ṙêr + rψêψ + żêz . 
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Note that 
d ˙êr = ψêψ
dt 
d 
êψ = −ψ̇êr (126)

dt 
d 
êz = 0 

dt 
then � �d2 d ˙= ṙêr + rψêψ + żêz

dt2 dt � �d˙ ˙ ˙= r̈êr + ṙψêψ + ṙψêψ + r ψêψ + z̈êz
dt 

= r̈êr + ṙψ̇êψ + ṙψ̇êψ + rψ ̈ êψ − rψ̇2 êr + z̈êz (127)� � � � 
ψ̇2 ˙ ¨ = r̈  − r êr + 2ṙψ + rψ êψ + z̈êz | {z }� �1 d 2 ˙= r ψ 

r dt 
and for an axisymmetric potential � � 

d2 ∂φ ∂φ ~ ~r = F = − , 0, − (128)
dt2 ∂r ∂z 

so we get each component of the force: 

∂φ 
ψ̇2radial : r̈  − r = − 

∂r � �1 d 2 ˙tangential : r ψ = 0 
r dt� �d 2 ˙ (129)⇒ r ψ = 0 
dt 
(using conservation of Lz = r 2ψ = constant) 

∂φ 
vertical : z̈ = − . 

∂z 

We then rewrite this in terms of the e˙ective potential: 

L2 

φeff = φ + z 
2 

(130)
2r 

where the last term is the centrifugal barrier. Since 

~v =
d 
~r (131)

dt 

then, using the above from ~ṙ, � �1 2 2ψ̇2 2E = ṙ + r + ż + φ 
2 (132)
1 � 2 2 

� 
= ṙ + ż + φeff 
2 

31 



��������

��������
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so 
∂φ 

ψ̇2 r̈ = r = 
∂r � � 
∂ L2 

ψ̇2 − z = r φeff − 
2∂r 2r 

˙= rψ2 − 
∂ψeff 

∂r 
− 
L2 
z 
3r

(133) 

˙= rψ2 − 
∂φeff 

∂r 
− 

4 ψ̇2r

r3 
(using Lz 

2 ˙= r ψ) 

∂φeff 
= − 

∂r 
and 

z̈ 
∂φeff 

= − . (134)
∂z 

So fnally we get the scalar equations for 4D orbits (E, Lz): 

∂φeff 
r̈ = − 

∂r 
∂φeff 

z̈ = − (135)
∂z 

1 � 2 2 
� 

E = ṙ + ż + φeff . 
2 

Note that the orbits have a uniform rotation around the symmetry axis (z) with ψ̇ = L
r2 
z , 

but we have oscillations in r and z. If r is not oscillating, then z = 0, and any perturbation 
leads to oscillations in z and r. 

Guiding center and circular orbits: 
φeff has a minimum at some Rg such that for a given Lz, φ(Rg, 0) is minimal: 
At the minimum: 

∂φeff 
= 0 

∂r 

∂φeff 

r=Rg ,z=0 

= 0 
(136) 

∂z r=Rg ,z=0 

where symmetry implies that there is no force 
at z = 0. 

r# #=-π/2 #=π/2

$r
êr

ê$

Rg

r

ɸeff(r,0)

Then we get: 
∂φeff 

0 = 
∂r Rg ,0 

L2∂φeff z⇒ = 
∂r R3 

Rg ,0 g 

ψ̇2 = Rg 

(137) 

since 
∂φeff 

∂r 
∂φ L2 

z = − . 
3∂r r

(138) 
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3. MODELLING GALAXIES 

We also have 
L2 

˙ zΩ2 = ψ2 = 
R4 

. (139) 
g 

And since 
∂φeff 

∂r 
∂φeff 

= 
∂z Rg ,0 

= 0 
Rg ,0 

(140) 

then 
r̈ = z̈ = 0 (141) 

so we have a circular orbit with speed Ω = ψ̇. The minimum of φeff occurs at a radius Rg 

at which a circular orbit has angular momentum Lz and E = φeff . This orbit is called the 
guiding center. If an object is pushed o˙ the guiding center, there is a restoring force that 
leads to oscillations, or epicycles. 

Epicycle approximation: 
In disk galaxies, many stars are on mostly circular orbits, but they are not exactly circular. 
We look for small perturbations around the circular orbit. 
We will defne our coordinate system (x, y) as 

x = r − Rg (142) 
y = z 

and expand φeff around (x, y) = (0, 0). 
Keeping only second-order terms for the epicycle approximation, we get 

φ̃ 
eff (x, y) = φ̃ 

eff (0, 0)+(φ̃ 
eff,x)x +(φ̃ 

eff,y)y +(φ̃ 
eff,xy)xy + 

1
(φ̃ 
eff,xx)x 2 + 

1
(φ̃ 
eff,yy)y 2 + . . . (143)

2 2 

where 
∂ ̃φeff 

φ̃eff,x = = 0 
∂x 0,0 

∂ ̃  
φ̃ 
eff,y = 

φeff 
= 0 (144)

∂y 0,0 

∂2 φ̃eff 
φ̃ 
eff,xy = = 0 (by symmetry). 

∂x∂y 0,0 

We defne κ and ν: 
∂2φeff 

κ2 ≡ φ̃ 
eff,xx = φeff,rr = 

∂r2 
Rg ,0 (145)

∂2φeff 
ν2 ≡ φ̃ 

eff,yy = φeff,zz = 
∂z2 

. 
Rg ,0 

so 
1 1˜ κ2 2 ν2 2 + ˜φeff ≈ x + y φeff (0, 0)
2 2 (146) 

2 2 =
1
(κx) +

1
(νy) + φ̃ 

eff (0, 0) . 
2 2 
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We can write down the equations of motion for 

1 1˜ ˜ κ2 2 ν2 2φeff (x, y) = φeff (0, 0) + x + y (147)
2 2 

so 
∂ ̃  ∂ ̃∂φeff ∂x φeff φeff 

ẍ = r̈ = − = − = − = −κ2 x 
∂r ∂r ∂x ∂x (148)

∂ ̃  ∂ ̃∂φeff ∂y φeff φeff 
ÿ = z̈ = − = − = − = −ν2 y

∂z ∂z ∂y ∂y 

and we get the fnal equations of motion: 

ẍ = −κ2 x 
. (149) 

ÿ = −ν2 y 

This is harmonic oscillation with epicycle frequency κ and vertical frequency ν in addition 
to the circular frequency r 

Lz vc 1 ∂φ 
Ω(r) = 

2 
= = (150)

r r r ∂r 
where for the last equality we used the fact that the centripetal force is equal to the gravi-

∂φ ctational force v
r 

2 

= 
∂r on a circular orbit. 
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3. MODELLING GALAXIES 

At r = Rg and Ω(Rg), we can rewrite κ in terms of Ω: � � 
dΩ2 

r + 4Ω2 

dr Rg� � � � 
d 1 ∂φ L2 

z = r + 4 
4dr r ∂r r Rg� � � � 

1 ∂φ 1 ∂2φ L2 

= r − + + 4 z 

r2 ∂r r ∂r2 r4 
Rg! 

1 ∂φ ∂2φ L2 

= − + + 4 z 

r ∂r ∂r2 r4|{z} Rg 

L2 
z = Ω2 = 
r4� � 

L2 ∂2φ L2 

= − z + + 4 z 

r4 ∂r2 r4 
Rg� � 

∂2φ L2 (151) 
= + 3 z 

∂r2 r4 
Rg� � �� 

∂ ∂φ L2 
z = − 
3∂r ∂r r Rg⎛ ⎛ ⎞⎞� � 

∂ ∂ L2 
z⎝ ⎝ ⎠⎠= φ + 
2∂r ∂r 2r| {z } Rg 

= φeff 

∂2φeff 
= 

∂r2 
Rg 

=κ2 � � 
d(Ω2)⇒ κ2 = r + 4Ω2 . 
dr 

Motion in the epicycle approximation (valid for x, y, z � Rg): 
We look at each component of the motion: 

radial : r(t) = r0 cos (κt + α) + Rg 

vertical : z(t) = z0 cos (νt + β)� �−2 � �−2 (152)
Lz Lz x x 

tangential : ψ̇ = 
2 
= 
R2 

1 + = Ω(Rg) 1 + 
r g Rg Rg 

where we use r = x + Rg in the tangential equation. Assuming that x � Rg and defning 
Ωg ≡ Ω(Rg), we can approximate the tangential component to be: � � 

2x 
ψ̇ ≈ Ωg 1 − . (153)

Rg 
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We� then� integrate� over� time,� so�

2Ωgr0
ψ(t) = Ωgt+ ψ0 − sin(κt+ α) . (154)

κRg

This� gives� us� circular� motion� of� the� guiding�
center� with� a� closed� retrograde� elliptical� or-
bit� in� the� frame� of� the� guiding� center.� We�
also� have� oscillations� in� the� z direction� with�
frequency� ν.�

r! !=-!/2 !=!/2

"r
êr

ê"

Rg

r

"eff(r,0)

Rg

Oort� constants:� (see� Problem� Set� 3)�
Goal:� measure� the� epicycle� frequency� κ at� the� position� of� the� sun� in� the� Milky� Way� by�
measuring� the� motion� of� nearby� stars� (proper� motion� an� the� sky� and� line� of� sight� velocity).�

We� use� the� galactic� coordinate� system� to� measure� the� location� of� stars� in� the� sky� (l, b):�

r! !=-!/2 !=!/2

"r
êr

ê"

Rg

r

"eff(r,0)

Rg

b
l

R galactic 
center

sun

d

l:� galactic� longitude�
b:� galactic� latitude�

R is� the� distance� from� the� sun� to� the� galactic� center� (∼ 8kpc)� and� d is� the� distance� from� the�
sun� to� the� star.� l measures� the� angle� in� the� plane� of� the� Milky� Way� away� from� the� line� of�
sight� to� the� galactic� center,� and� b measures� the� angle� above� the� plane� of� the� galaxy.� Within�
this� system,� we� find:�

proper motion : µ ≈ d(A cos(2l) + B)
(155)

line of sight motion : v‖ ≈ dA sin(2l)

where� A and� B are� the� Oort� constants� given� by:�

1 dΩ
A = −

2 dR((
1

)(
dΩ

(156)�
B = − Ω + R .

2 dR

More� importantly,� they� can� be� related� to� κ:�

κ2 = −4B(A− B) . (157)�
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Luminosity-velocity relations: 
We can relate properties of a galaxy to observables through several equations: 

R 
θ = (apparent size)

d 

F = 
L (158)
4πd2 

GM2 v = . 
R 

Introducing surface brightness Σ 

F L d2 

Σ = = · 
θ2 4πd2 R2 

4L v
(159) 

= · 
4π G2M2 

then 
L = 

4v
. (160)

Σ4πG2(M/L)2 

If we assume, for a given class of galaxies, that the surface brightness and the mass-to-light 
ratio are the same, then 

L ∝ v 4 . (161) 

This introduces two important relations. 

The Tully-Fischer relation is used for spiral galaxies and relates the maximum velocity in 
the rotation curve vmax, which can be measured from HII spectra, and the luminosity: 

4L ∝ vmax . (162) 

The Faber-Jackson relation is used for ellipticals and relates the velocity dispersion σv to the 
luminosity: 

L ∝ σv
4 . (163) 

Thus, we can get an estimate of the intrinsic luminosity of a galaxy be measuring stel-
lar velocities. The constant of proportionality is roughly L∗/(220 km/s)4 , where L∗ is the 
characteristic galaxy luminosity. 

3.C Phase-space distribution function 

We have described the individual orbits in a potential, but this is not suÿcient to describe 
galactic dynamics. We want information of the confguration of all particles. Each star is 
described by its position ~x and velocity ~v, and we need to know this for all stars, i.e. how 
stars are distributed in the 6D phase space (~x,~v). 

We defne a phase-space distribution function 

f(~x,~v, t)d3 ~x d3 ~v (164) 
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as the probability that at time t, a randomly chosen star has 
(~x∗, ~v∗) ∈ ([~x, ~x + d~x], [~v, ~v + d~v]). This means that the function must be normalized for all 
t, i.e. Z 

f(~x,~v, t)d3 ~x d3 ~v = 1 . (165) 

Collisionless Boltzmann equation: 
We want to describe the time evolution of f(~x, ~v, t). Since probability cannot be destroyed, 
the 6D continuity equation must hold. 

We defne the 6D phase-space vector 

w~ = (~x, ~v) (166) 

then � �∂f ∂ 
+ fw~̇ = 0 . (167)

∂t ∂w~ 
This is the same form as the standard 3D continuity equation. We can rewrite this by 

˙ ˙expanding out w~ and using velocity ~v = ~x and acceleration ~a = ~v: � �∂f ∂ 
0 = + fw~̇ 

∂t ∂w~ 
∂f ∂ ∂ 

= + (f~ẋ) + (f~v̇)
∂t ∂~x ∂~v � � (168)
∂f ∂ ∂ ~ = + (f~v) + f(−rφ)
∂t ∂~x ∂~v 
∂f ∂f ∂φ ∂f 

= + ~v − . 
∂t ∂~x ∂~x ∂~v 

This gives us the collisionless Boltzmann equation (CBE): 

∂f ∂f ∂φ ∂f 
+ ~v − = 0 . (169)

∂t ∂~x ∂~x ∂~v 

Note that another way to see this is by writing out df 
dt = 0 and taking the limits lim~x→∞ = 0 

and lim~v→∞ = 0. 

General Jeans equations: 
A solution to the collisionless Boltzmann equation is diÿcult to obtain, so we instead study 
moments of the CBE and the phase-space distribution. 

Moments of the phase-space density give us some average quantities of the system. 

a) The frst moment gives the density n of the system: Z 
n = f d3 ~v . (170) 
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b) The second moment gives the average velocity v̄ i: Z 
v̄ i =

1 
vif d3 ~v . (171)

n 

c) The third moment gives the velocity dispersion σij 2 : Z 
vivj =

1 
vivj f d3 ~v 

n (172) 
σij 
2 = vivj − v̄ iv̄ j = (vi − v̄ i)(vj − v̄ j ) . 

We now examine moments of the collisionless Boltzmann equation more closely. We break 
each integral into three terms to simplify each individually. 

a) First moment: Z � � 
d3 ~v 

∂f ∂f 
+ ~v − 

∂φ ∂f 
= 0 Z ∂t Z ∂~x ∂~x ∂~vZ 

d3 ~v 
∂f 
+ 

∂f 
d3 ~v ~v − d3 ~v 

∂φ ∂f 
= 0 (173) 

∂t | {z } | {z ∂~x} | ∂~x{z ∂~v} 
1 2 3 

Z Z 
1 : d3 ~v 

∂f 
= 

∂ 
d3 ~vf = 

∂n 

2 : 
Z ∂t 

∂f 
d3 ~v ~v 

∂~x 

∂t 
∂ 

= 
∂~x 

�Z ∂t � 
d3 ~v ~vf = 

∂ 
∂~x 

� �
¯ n~v = 

X ∂ 
∂xi 

(nv̄i) (174) Z Z i 

3 : d3 ~v 
∂φ ∂f 
∂~x ∂~v 

= 
∂φ 
∂~x 

d3 ~v 
∂f 
∂~v 
= 
∂φ 
∂~x 

v=+∞[f ] ~~v=−∞ = 0 

For the third term, we used the fact that phase-space distribution goes to 0 at ±∞ for 
physical systems. 

This gives us the 3D continuity equation: 

∂n ∂ � � 
+ n~v ̄ = 0 . (175)

∂t ∂~x 

b) Second moment: Z � � 
∂f ∂f ∂φ ∂f 

d3 ~v vj + ~v − = 0 
∂t ∂~x ∂~x ∂~vZ Z Z 

∂f ∂f ∂φ ∂f 
d3 ~v vj + d3 ~v vj ~v − d3 ~v vj = 0 (176) 

∂t ∂~x ∂~x ∂~v| {z } | {z } | {z } 
1 2 3 
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1 

2 

3 

Z Z 
∂f ∂ ∂ ∂n ∂v̄ j

: d3 ~v vj = d3 ~v vj f = (nv̄ j ) = v̄ j + n 
∂t ∂t ∂t ∂t ∂t X X∂ ∂v̄ j ∂v̄ j ∂ 
= −v̄ j (nv̄ i) + n = n − v̄ j (nv̄ i)

∂xi ∂t ∂t ∂xii i X∂n ∂ 
using the continuity equation = − (nv̄ i)

∂t ∂xii 

to go from the first line to the second 

Z Z ZX X∂f ∂f ∂ 
: d3 ~v vj ~v = d3 ~v vj vi = d3 ~v vjvif 

∂~x ∂xi ∂xii i | {z }� � 
= nvj vi = n σij 

2 + v̄ iv̄ j X ∂ � � �� 
σ2 = n vjij + v̄ i ̄  

∂xiZ iZ ZX X∂φ ∂f ∂φ ∂f ∂φ ∂f 
: d3 ~v vj = d3 ~v vj = d3 ~v vj (177)

∂~x ∂~v ∂xi ∂vi ∂xi ∂vii i 

((k, l, i) are permutations of (1, 2, 3))Z Z Z � �X ∂φ ∂f 
= dvk dvl dvi vj

∂xi ∂vii | {z }Z 
= [vjf ]

vi=+∞ ∂vj− dvi f vi=−∞ ∂viZ 
= 0 − dviδij f Z Z ZX ∂φ 

= − dvk dvl dviδij f 
∂xii ZX ∂φ 

d3 = − ~vδij f 
∂xii 

∂φ 
= −n 

∂xj 

Plugging each term back in, we get 

∂v̄ j X ∂ X ∂ � � �� ∂φ 
n − v̄ j (nv̄ i) + n σij 

2 + v̄ iv̄ j + n = 0 (178)
∂t ∂xi ∂xi ∂xii i 
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which we can rewrite X X X∂v̄ j ∂ ∂ ∂ ∂φ 
n − v̄ j (nv̄ i) + (nσ2 )+ (nv̄ iv̄ j )+n = 0 
∂t ∂xi ∂xi 

ij ∂xi ∂xji i i| {z } (179)X X∂ ∂ 
= (nv̄ i) v̄ j + v̄ j (nv̄ i)

∂xi ∂xii i 

where the two underlined terms cancel. This gives us X X∂v̄ j ∂ ∂ ∂φ 
n + (nv̄ i) v̄ j + (nσij 

2 ) + n = 0 . (180)
∂t ∂xi ∂xi ∂xji i 

This is the Jeans equation, often written 

∂v̄ j X ∂v̄ j 1 X ∂(nσij 
2 ) ∂φ 

+ v̄ i = − − (181)
∂t ∂xi n ∂xi ∂xji i 

Each term can be physically interpreted: 

∂v̄ j 
: acceleration of fluid 

∂t X ∂v̄ j
v̄ i : kinematic viscosity/shear 
∂xii 

(182)
1 X ∂(nσij 

2 )
− : pressure 
n ∂xii 

∂φ − : gravity 
∂xj 

Jeans equations in spherical systems: 
We can convert to spherical coordinates and take velocity moments to give us the Jeans 
equations in spherical coordinates. This is complicated! 

To simplify, we take the radial Jeans equation and focus on steady-state symmetric systems. 

Implications: 

• 
∂t 
∂ = 0 since we have steady state 

• v̄ r = 0 otherwise we have net radial motion 

• v̄ θ = v̄ φ = 0 or the symmetry is broken 

• σ2 = σ2 = 0 or the symmetry is broken rφ rθ 

• σ2 = σθθ 
2 ≡ σ2 or the symmetry is broken. φφ t 
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The simplifed Jeans equation is: 

1 ∂ 2(σrr 
2 − σt 

2) ∂φ GM(< r)
(nσrr 

2 ) + = − = − 
2 

(183) 
n ∂r r ∂r r 

where we’ve plugged in gravity as the force. 

We have three limits we can look at: 

• σrr 2 � σt 
2: nearly circular orbits 

• σrr 2 � σt 
2: nearly radial orbits 

• σrr 2 = σt 
2: isotropic orbits 

We defne the anisotropy parameter: 

σ2 

β = 1 − t (184)
σ2 
rr 

which gives us a useful form of the Jeans equation for observations: 

1 ∂ 2βσrr 
2 GM(< r)

(nσrr 
2 ) + = − 

2 
. (185)

n ∂r r r 

This depends only on radial components with uncertainty from β, assuming spherical sym-
metry and a steady-state system. 

This can be simplifed further to get mass estimates: � � 
r2 1 ∂ 2βσrr 

2 

M(< r) = − (nσrr 
2 ) + 

G n ∂r r� � 
rσrr 
2 r ∂ 

= − (nσrr 
2 ) + 2β 

G nσrr 
2 ∂r � � (186)

rσ2 r dn r dσ2 
rr rr = − + + 2β 
G n dr σrr 

2 dr� � 
rσrr 
2 d ln n d ln σrr 

2 

= − + + 2β 
G d ln r d ln r 

where the last line can be measured with observations. 

3.D Stability of stellar systems 

The existence of equilibrium solutions to the collisionless Boltzmann equation does not assure 
stability. Real stellar systems are subject to perturbations. What is important for stability? 
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Small� scales:� Jeans� instability� and� random� motions�

Consider� a� nearly� uniform� distribution� of� stars� with� per-
turbations� with� respect� to� a� static� uniform� background.�
We� can� study� the� stability� of� this� configuration� by� in-
specting� the� continuity� and� the� Jeans� equations.�

r! !=-!/2 !=!/2
"r

êr

ê"

Rg

r

"eff(r,0)

Rg

b
l

R galactic 
center

sun

d

Guiding 
Center

overdensity

non-rotating 
static system

We� first� rewrite� and� simplify� the� Jeans� equations:�

∑ ∑∂v̄j ∂vj¯ 1 ∂(nσij) ∂φ
+ v̄i = − − . (187)

∂t ∂xi n ∂xi ∂xji i

We� can� rewrite� the� number� density� n using� ρ = mn and� assume� that� σij is� isotropic� so� the�
pressure� is� P = ρσij

2 = ρσij = mnσij
2 .� Then� we� can� rewrite� the� Jeans� equations� as:�

( )∂�v 1� � �+ �v · ∇ �v = −∇φ− ∇P . (188)
∂t ρ

Similarly,� the� continuity� equation� becomes:�

�∂ρ
+∇ · (ρ�v) = 0 . (189)

∂t

Note� that� we� have� dropped� the¯ ’s� (average� value� symbols)� for� simplicity� in� our�
equations� and� �v is� referring� to� the� average� velocities� at� (�x, t).� We� will� continue� with� this�
convention� in� the� following� calculations.�

Small� perturbations:�
For� a� small� perturbation� in� a� static� uniform� background,� we� have�

ρ = ρ0 + ερ1(�x, t)

�v = �v0 + ε�v1(�x, t) (190)
P = P0 + εP1(�x, t)

φ = φ0 + εφ1(�x, t) .

�We� can� choose� φ0 = 0 and,� since� the� background� is� static,� �v0 = 0.� ρ0 and� P0 are� both�
nonzero� constants.� Note� that� this� is� not� a� physical� set� of� conditions� since� Poisson’s� equation�
gives� ∇2φ0 = 4πGρ0 so� φ0 = 0 implies� ρ0 = 0,� but� we� continue� with� our� calculations� ignoring�
this.� This� is� known� as� the� Jeans� swindle.�

We� can� plug� this� into� the� continuity� equation:�

∂ ∂ ( )(
�ρ0 + ε ρ1 +∇ ρ0�v0 + ερ1�v0 + ερ0�v1 + ε2ρ1�v1 = 0 . (191)

∂t ∂t
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Performing derivatives on constants and neglecting terms of order �2 , this becomes: 

∂ ~� ρ1 + r · (�ρ0 ~v1) = 0 
∂t (192)
∂ρ1 ~⇒ + ρ0r · ~v1 = 0 . 
∂t 

We then plug this into the Jeans equation: � � � �∂~v0 ∂~v1 1 ~ ~ + � + (~v0 + �~v1) · r ~ (~v0 + �~v1) = −r (φ0 + �φ1)− r (P0 + �P1) (193)
∂t ∂t ρ0 + �ρ1 

then 
∂~v1 1 ~ ~� = −�rφ1− r (�P1) . 
∂t ρ0 + �ρ1| {z } (194) 

~ rP1≈ � 
ρ0 

We can write � � 
∂P1 ∂P1 ∂ρ1~ rP1 = = 
∂~x ∂ρ ∂~x| {z ρ } 0 (195) 

2 vs 

where vs is the sound speed, or the speed at which perturbations can propagate. Returning 
to the previous equation, this gives us: 

∂~v1 vs 
2 

~ ~� = −�rφ1 − � rρ1
∂t ρ0 

2 (196)
∂~v1 v ~ s ~⇒ = −rφ1 − rρ1 . 
∂t ρ0 

We now combine the time derivative of the continuity with the Jeans equation: � �∂2ρ1 ∂ ~ + ρ0r · ~v1 = 0 
∂t2 ∂t � � 
∂2ρ1 ∂~v1~⇒ + ρ0 r · = 0 (197)∂t2 ∂t | {z } 

2v ~ s ~ = −r 2φ1 − r 2ρ1
ρ0 

so � 
2 � 

∂2ρ1 v ~ s ~ + ρ0 −r 2φ1 − r 2ρ1 = 0 . 
∂t2 ρ0 | {z } (198) 

= 4πGρ1 (from Poisson0 s Equation) 

Finally, we get a wave equation for ρ1: 

∂2ρ1 2 ~− 4πGρ0ρ1 − vs r 2ρ1 = 0 . (199)
∂t2 
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We use an ansatz for the solution of the form 

k·~c−ωt)ρ1 = C exp i(
~ (200) 

which gives the time evolution of perturbations. We plug this into the wave equation and 
get 

w 2 = vs 
2k2 − 4πGρ0 . (201) 

We have two solutions: 

w2 > 0: the exponent is imaginary, so we get stable oscillating modes 

w2 < 0: the exponent is real, so we get unstable growing or decaying modes 

If w = 0: � �2
2π πvs 

2 

λ2 
J = = . (202)

k Gρ0 

Jeans length and mass: 
The Jeans length λJ is the maximum size a perturbation can be to remain stable. The Jeans 
mass MJ is the corresponding mass enclosed within the Jeans length of a given substance. 

πv2 πσ2 

λ2 = s = J Gρ0 Gρ0 . (203) 
MJ =

4 
πρ0λ

3 
J3 

So we have stability for λ < λJ and M < MJ . Note that for collisional gas, the Jeans length 
is determined by the sound speed vs and for collionless dark matter and stars, the Jeans 
length is determined by the pressure from the velocity dispersion σ. 

Meaning of the Jeans length: 
If perturbations can be crossed before collapse, pressure can stabilize the collapse. 

The freefall time is 
1 

tff ∼ √ (204)
Gρ 

and the perturbation crossing time is 

r 
tcross ∼ . (205)

vs 

Then we get collapse if 
tcross > tff 

r 1 
vs 
> √ 

Gρ (206) 
2v ⇒r 2 > s 

Gρ 
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which� is� similar� to� the� Jeans� length� result,� differing� only� by� a� factor� of� π.� So,� random� motion�
and� pressure� can� stabilize� perturbations� on� small� scales.�

Large� scales:� Toomre� instability� and� rotational� motion.�

Consider� a� rotating� stellar� disk� where� radial� perturba-
tions� can� occur.� We� study� the� stability� of� this� config-
uration� by� inspecting� the� centripetal� and� acceleration�
forces.� Note� that� mass� and� angular� momentum� are� con-

˙served� during� the� perturbation:� ṁ = L = 0.�

r! !=-!/2 !=!/2
"r

êr

ê"

Rg

r

"eff(r,0)

Rg

b
l

R galactic 
center

sun

d

Guiding 
Center

overdensity

non-rotating 
static system

R

rotating 
non-static system

#

During� the� perturbation,� R → R′ with� R′ = R − dr.� We� want� to� know� when� this� will�
lead� to� collapse� and� when� it� will� be� stable.� This� is� a� competition� between� centripetal� and�
gravitational� forces.�

The� change� in� gravitational� acceleration� is�

GπR2Σ
ag = , and πR2Σ is mass (Σ is surface density)

R′2
(207)

dag −2GπR2Σ⇒ = .
R′3dR′

The� change� in� centripetal� acceleration,� with� rotational� frequency� of� the� patch� Ω,� is�

L = ΩR2 = Ω′R′2 (since L̇ = 0)
( )2 (208)R⇒Ω′ = Ω .
R′

So�
R′2Ω′2 R4

ac = = R′Ω′2 = Ω2

R′ R′3
(209)

dac −3Ω2R4

⇒ = .
dR′ R′4

Stability:� the� system� is� stable� if� |dag| < |dac|.� So� we� need�

2πGR2Σ 3Ω2R4

<
R′3 R′4

2πGΣ R (210)⇒ < R
3Ω2 R′︸︷︷︸(

≈ 1

and� the� disk� is� stable� if�
2πGΣ

Rrot >
3Ω3

. (211)�
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Full� stability� criterion:� On� small� scales,� we� have� stability� if� R < λJ and� on� large� scales,�
we� have� stability� if� R > Rrot.� Small� scales� are� stabalized� by� random� motion� and� large� scales�
are� stabilized� by� rotational� motion.� The� system� is� unstable� if� λJ < R < Rrot.� We� can�
combine� the� two� criteria� and� get� full� stability� when� λJ ≥ Rrot.� This� gives� us� (adapting� λJ

from� an� arbitrary� 3D� potential� to� a� 2D� disk):�

σ2π 2πGΣ≥
8 GΣ 3Ω2

(212)
4 GΣ⇒σcrit ≥ √ .
3 Ω

Note� that� the� angular� speed� of� the� patch� is� only� approximately� Ω.� It� actually� rotates� with�
epicyclic� frequency� κ,� which� is� not� too� far� off� from� Ω for� real� galaxies.� We� can� relate� κ to� Ω
for� a� typical� galactic� disk:� ( )(

dΩ2

κ2(Rg) = r + 4Ω2 (213)
Rgdr

and� in� galaxies� with� circular� velocity� that� is� approximately� constant:�
√vc

Ω = ⇒ κ2 = 2Ω2 ⇒ κ = 2Ω . (214)
r

So� for� galaxies:� √(
4 GΣ 32 GΣ

σcrit ≥ √ √ =
3 κ2/ 2 ︸ ︷︷3︸(κ

.
(215)�

3.26

Toomre� finds�
GΣ

σcrit = 3.26
κ

(216)�

Toomre� criterion� Q:�
We� can� write� the� stability� criterion� Q for� rotating� disks:�

{(
σ > 1 : stable

Q = (217)
< 1 : unstableσcrit

Here� we� show� Q as� a� function� of� radius� from�
the� galactic� center� for� the� galaxy� DLA0817�
(the� Wolfe� Disk)� from� Neelemen� et� al.� 2020.�
The� solid� line� shows� Q assuming� the� gas� den-
sity� falls� off� exponentially.� The� points� show�
observed� data,� which� underestimates� Q likely�
due� to� beam� smearing� which� increases� mea-
sured� surface� density.�

&Ytended %ata Figure 7b. /eeleman, M., 1rochasLa, +.9., ,aneLar, /. et al. Code used to generate Linematic models: mneeleman, and +. 9avier 
A cold, massive, rotating disL galaYy �.� billion years after the Big Bang. 47� 1rochasLa. iMneeleman/Rubefit: Small %ocumentation Updatesw. 
/ature ���, 2��o272 	2020
. https://doi.org/�0.�03�/s������020�227��y ;enodo, February ��, 202�. https://doi.org/�0.�2��/[enodo.��3��07.

https://ui.adsabs.harvard.edu/abs/2020Natur.581..269N/abstract
https://doi.org/10.5281/zenodo.4534407
https://doi.org/10.1038/s41586-020-2276-y
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3. MODELLING GALAXIES 

3.E Stellar population synthesis 

So far, we have only viewed stars as massive particles without other features. But: 

• Stars are constantly born at a star formation rate (SFR) ψ(t) 

• Stars are born with a certain mass spectrum. This is the initial stellar mass function 
(IMF) φ(m) 

• Stars emit light with fux at di˙erent wavelengths Fλ. 

The galactic spectrum is a superposition of stellar spectra. Adding the stellar spectra taking 
into account ψ(t) and φ(m) allows us to constrain the initial mass function and star formation 
rate of galaxies. We can use this to learn about the stellar population and galaxy evolution. 

Star formation rate: 
The units of star formation rate are usually [ψ] = M /yr. For the Milky Way, ψ(t) ∼ 3M /yr 

dm 
(t) = 

dt 
. (218) 

There are a few observational indications for the star formation rate: 

• Far infrared (FIR) emission from dust around young stars: 

SFRFIR LFIR∼ 
M /yr 5.8 × 109L 

(219) 

• Hα emission from HII regions around young stars: 

SFRHα LHα∼ 
M /yr 1.3 × 1041erg/s 

(220) 

• Ultraviolet (UV) radiation from young stars: 

SFRUV LUV∼ 
M /yr 7.2 × 1027erg/s 

(221) 

We also have theoretical models, for example, the exponential model 

−t/τ(t) ∝ e . (222) 

For a given galaxy, the star formation rate depends on the density and temperature of the 
gas. When gas is cold and dense, it is able to collapse into stars. The star formation rate 
can be roughly approximated by dividing the gas mass by the free-fall time. 
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Torrey, 1., M. 7ogelsberger, et al. ./RA4. ���, no. �	20��
: ���7���07. ª OYford M.3. ,rumhol[ et al 200� Ap+ ��� ��0. ª ANerJDBn AstronoNJDBM 4oDJety 	AAS
. All rights
University 1ress. All rights reserved. This content is eYcluded from our Creative reserved. This content is eYcluded from our Creative Commons license. For more 

The� above� plot� on� the� left� is� from� Torrey� et� al.� 2019� shows� a� phase� diagram� of� gas� in� the�

information, see https://ocw.mit.edu/help/faR�fair�use/Commons license. For more information, see https://ocw.mit.edu/help/faR�fair�use/

IllustrisTNG� simulations� at� z = 0 and� is� split� into� various� phases� of� the� ISM.� Darker� regions�
show� a� higher� gas� mass,� and� the� percentages� show� the� total� fraction� of� gas� mass� in� each�
phase.� The� condensed� material� is� in� the� lower� right� corner,� and� stars� form� along� the� thin�
line.� The� plot� to� the� right� is� from� Krumholz� et� al.� 2009� shows� the� star� formation� rate� surface�
density� as� a� function� of� gas� surface� density.� Each� point� is� a� different� galaxy,� compiled� from�
several� sources� (different� colors).�

The� star� formation� rate� of� a� galaxy� depends� primarily� on� the� molecular� gas� within� a� galaxy�
rather� than� the� total� gas.� However,� it� can� be� difficult� to� predict� what� fraction� of� a� galaxy’s�
gas� is� in� the� molecular� phase.� This� fraction� depends� on� the� total� gas� density,� metallicity,�
and� clumping� on� small� scales.� To� get� more� precise� predictions� for� star� formation,� it� is� also�

Over� cosmic� history,� the� star� forma-
tion� rate� (across� all� galaxies)� started�
low� and� increased,� peaked� at� z ≈ 2,�
and� has� been� decreasing� since.�

necessary� to� consider� events� such� as� supernovae� and� shocks.�

Initial� stellar� mass� function:�
φ(m)dm is� the� relative� number� of� stars� born� with� masses� in� (m,m + dm).� Note� that� the�
units� are� [φ] = mass−2,� the� number� of� stars� formed� per� mass� interval� per� total� mass.� This�

Figure � by Madau, 1., and M. %icLinson. �Cosmic Star�Formation )istory.� 
Annu. Rev. Astron. Astrophys. 20��. �2:���o��. ª Annual 3eviews. All 49rights reserved. This content is eYcluded from our Creative Commons 
license. For more information, see https://ocw.mit.edu/help/faR�fair�use/ 

https://ui.adsabs.harvard.edu/abs/2019MNRAS.484.5587T/abstract
https://ui.adsabs.harvard.edu/abs/2009ApJ...699..850K/abstract
https://www.annualreviews.org/content/journals/10.1146/annurev-astro-081811-125615
https://mitocw.zendesk.com/hc/en-us/articles/4414756000539-What-is-the-Code-of-Best-Practices-in-Fair-Use-for-OpenCourseWare
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is normalized so Z mh 

mφ(m)dm = 1M (223) 
ml 

ml ∼ 0.08M since hydrogen fusion can’t occur in stars lower than this and mh ∼ 100M 
since the Eddington limit prevents stars larger than this. 

Example: 
M∗ is the total mass of newly formed stars. Then the total number dN(m) and total mass 
dM(m) of stars born in (m, m + dm) are 

M∗ 
dN(m) = φ(m)dm 

M 
(224)

M∗ 
dM(m) = mφ(m)dm . 

M 

The initial mass function is often assumed to 
follow the Salpeter mass function: 

φ(m) ∝ m −1+x , x = 1.35 . (225) 

There are other forms, like the Chabrier func-
tion, although the form of the initial mass 
function is uncertain since it depends on re-
lating luminosity and mass and we observe 
the present day mass function, not the initial 
mass function. 

Stellar spectra: 
The stellar spectrum of a star is given by its luminosity L, e˙ective temperature Teff , and 
chemical composition z. The evolution of a star in the (L, Teff ) plane (stellar evolutionary or 
HR diagram track) only depends on the initial mass and initial metallicity. Once the initial 
mass and metallicity are known, one can calculate a stellar spectrum. 

From the Stefan-Boltzmann law L = 4πR2σTeff
4 , we can see that L and T are linearly related 

on the (logarithmic) HR diagram through R: 

log(L) = 2 log(R) + 4 log(T ) . (226) 

Stars along the R = 1 line form the main sequence. 

Initial mass function plot by JohannesBuchner on Wikimedia Commons. License CC-BY-SA. © JohannesBuchner 2015. All rights reserved. This content is 
excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 

50 

https://en.wikipedia.org/wiki/File:Plot_of_various_initial_mass_functions.svg
https://mitocw.zendesk.com/hc/en-us/articles/4414756000539-What-is-the-Code-of-Best-Practices-in-Fair-Use-for-OpenCourseWare


3. MODELLING GALAXIES
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This� comes� from� assuming� that� the� lifetime� of� a� star� depends� on� how� much� fuel� it� has� (its�

Stars� move� in� the� HR� diagram� as� they� age� and� go�
through� the� stellar� stages� (main� sequence,� red� giant,�
white� dwarf,� etc.).�
Time� spend� on� the� main� sequence� is�

. (227)τMS ∝ M−3

mass)� and� how� fast� it� burns� that� fuel� (rate� of� energy� burning,� luminosity)�

τMS ∝ M
. (228)

L

From� the� observed� mass� luminosity� relationship,� L ∝ M4 so�

τMS ∝ M ∝ M ∝ M−3 . (229)
M4

For� low� mass� stars� (M < 0.7 M ),� L ∝ M3 so� τMS ∝ M−2.�
L

Population� synthesis:�
A� galaxy� spectrum� is� a� superposition� of� stellar� spectrum:�

∫(t
Lcp ′Lλ = λ (t− t′, Z(t′))ψ(t′)dt . (230)�

0

We� can� measure� time� from� t′ that� the� stars� formed� so� τ = t− t′ and� τ0 = t′.� ψ(t′) is� the� star�
formation� rate� at� t′.� Lλ is� the� luminosity� at� λ per� unit� stellar� mass� of� all� stars� of� a� coeval�
population� of� age� τ with� initial� metallicity� Z(τ0):�

∫(
Lcp φ(m)

λ (τ, Z(τ0)) = Lλ(m,Z(τ0), τ) dm (231)
M

where� Lλ is� the� luminosity� at� wavelength� λ of� a� star� with� initial� mass�m and� initial� metallicity�
Z(τ0) at� time� τ .�

A� few� notes:�

• Lλ(t) is� a� convolution� of� φ, ψ, and� Lλ.�

• φ and� ψ are� not� known� precisely.�

• There� are� sophisticated� codes� available� to� numerically� iterate� to� figure� out� φ and� ψ:�

–� assume� an� initial� mass� function� φ
–� impose� a� star� formation� rate� ψ
–� run� convolution�
–� compare� with� data� (can� break� some� degeneracies� with� spectral� features)�
–� adjust� SFR� and� IMF� and� repeat.�
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3.F� Chemical� evolution� of� galaxies�

We� have� used� stellar� population� synthesis� to� constrain� the� initial� mass� function� and� the� star�
formation� rate.� Chemical� evolution� can� also� be� used� to� learn� about� the� baryonic� history� of�
a� galaxy.� We� use� heavy� elements� as� a� chronometer.� The� general� chemical� evolution� follows:�

• t = 0:� no� heavy� elements�

• stellar� nucleosynthesis� generates� heavy� elements�

• supernovae� eject� heavy� elements� into� the� interstellar� medium�

• heavy� elements� are� incorporated� into� new� stars.�

The� metallicity� Z of� a� star� is�

mass of heavy elements
Z = (232)

total mass

and� is� often� quoted� as� a� fraction� of� the� solar� metallicity� Z/Z with� Z ≈ 0.02.�
[ ]( [ ](

The� abundance� X
Y

of� elements� is� a� comparison� between� two� elements� X and� Y ,� e.g.� Fe
H

.�
We� report� it� as� the� fraction� of� the� log� of� the� solar� abundance:

[ ] (( )(
X nx/ny

= log (233)
Y (nx/ny)

[ ]( [ ](
so� X = 0 means� the� star� has� the� same� abundance� as� the� sun,� X = −1 means� the� star

Y [ ]( Y
1 X 1has� of� the� solar� abundance,� = −2 means� the� star� has� of� the� solar� abundance,� etc.�
10 Y 100

Note� that� the� metallicity� measures� by� mass� and� abundance� measures� by� number.�

Modelling� chemical� evolution:�
ψ is� the� star� formation� rate�

M is� the� total� mass�
E is� the� gas� ejection� rate�

Ms is� the� mass� in� stars�
EZ is� the� ejection� rate� of� metals� from�

Mg is� the� mass� in� gas� stars,� supernovae,� etc.�
f is� the� gas� inflow� rate�

Zff is� the� infalling� metals� per� time�
e is� the� gas� outflow� rate�

ZMg is� the� mass� of� metals� in� gas�
M = Ms +Mg

dM
= f − e

dt
dMg

= ψ − E (234)dt
dMg

= −ψ + E + f − e
dt

d(ZMg)
= −Zψ + EZ + Zff − Ze

dt
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This forms a complete chemical model. We can fgure out individual terms and then solve. 
We will use some approximations for an analytical solution. Z ∞ 

E(t) = (m − wm)ψ (t − τMS(m)) φ(m)dm (235) 
mt 

mt: Main sequence turno˙ mass. This is the lowest mass of stars dying at time t. 

m − wm: The ejected mass; wm is the remnant mass. 

τm(m): Main sequence lifetime at mass m. 

ψt−τm(m)φ(m): Birth rate of stars of mass m at time t − τm(m), which is the death rate 
at time t. Z ∞ 

Ez(t) = [(m − wm)Z(t − τMS(m)) + mρZm] ψ(t − τMS(m))φ(m)dm (236) 
mt 

(m − wm)z(t − τMS(m)): mass of metals that at time t − τMS(m) were locked in a star 
of mass m and are now ejected with the envelop at time t. 

mρZm: new metals produced by a star of mass m. (Note: some elements get destroyed, 
for example lithium has a ρzm < 0.) 

Instantaneous recycling approximation: (IRA) 
We assume that the mass and elements of stars are returned to the interstellar medium 
without delay and the ejecta are fully mixed immediately. This only works for massive 
enough stars, m > mlim. 

ψ(t − τm(m)) ≈ ψ(t) (237) 

then Z ∞ 

E(t) ≈ ψ(t) [m − wm] φ(m)dm = ψ(t)R . (238) 
mlim 

Stars below mlim never lose mass while stars greater than mlim immediately lose mass. This 
is because massive stars get o˙ the main sequence so quickly (τMS ∝ M−3) so this process is 
essentially instantaneous, τMS ≈ 0. R is the returned mass per star formed: Z ∞ 

R = (m − wm)φ(m)dm . (239) 
mlim 

Then Z ∞ 

Ez(t) ≈ [(m − wm)Z(t) + mρZm] φ(m)dm 
mlim Z ∞ (240)

= ψ(t)Z(t)R + ψ(t) mρZmφ(m)dm 
mlim 

= ψ(t)Z(t)R + (1 − R)yψ(t) 
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where y is the mass of produced metals per remnant mass (white dwarfs, neutron stars, etc.) Z ∞1 
y = mρZmφ(m)dm . (241)

1 − R mlim 

This gives us the equations of chemical evolution in the instantaneous recycling approxima-
tion: 

M = Ms + Mg 

dM 
= f − e 

dt 
dMs 

= (1 − R)ψ(t)
dt (242)
dMg 

= −(1 − R)ψ(t) + f − e 
dt 

d(ZMg) 
= −zψ + RZ(t)ψ(t) + (1 − R)yψ(t) + Zf f − Ze 

dt 
= (1 − R)(−Z + y)ψ + Zf f − Ze 

We can combine the last two equations for dMg and d(ZMg ) to get
dt dt 

Mg 
dZ 

= (1 − R)yψ(t) + (Zf − Z)f + Ze . (243)
dt 

Closed-box model: 
The simplest evolution model is to assume a closed box (f = e = 0) containing only gas 
(Mg(0) = M, Ms(0) = 0 with zero metallicity (Z(0) = 0)). The equations then simplify: 

M = Ms + Mg 

dM 
= 0 

dt 
dMs 

= (1 − R)ψ(t)
dt 
dMg (244) 

= −(1 − R)ψ(t)
dt 

d(ZMg) 
= (1 − R)(−Z + y)ψ 

dt 
dZ 

Mg = (1 − R)yψ(t) . 
dt 

We can divide dMg by Mg 
dZ to get

dt dt 

1 dMg 1 
= − (245)

Mg dZ y 

and integrate � � Z 
Mg (t) Mg(t) 

Z(t) dZ Z(t)
ln(Mg) = ln = − = − 

M M 0 y y� � (246)
M ⇒Z(t) = y ln 

Mg(t) 
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so we have: � � 
Mg(t = 0)

Z(t) = y ln (247)
Mg(t) 

which is the metallicity of gas as a function of only Mg(t). 

Metallicity of stars: 
In the closed box model, stars and gas must contain all the metals ever produced. Z Zt ∞ 

ZsMs + ZMg = 0mρZmψ(t
0)φ(m)dmdt (248) 

0 0 

where Zs is the average metallicity of stars and the right side of the equation represents the 
mass of all metals injected into the interstellar medium until time t. Then Z t 

¯ZsMs + ZMg = (1 − R)yψ(t0)dt0 ≈ (1 − R)yψ(t)t . (249) 
0 

We can integrate our equation 
dMs 

= (1 − R)ψ(t) (250)
dt 

to get the mass 
Ms = (1 − R)ψ̄(t)t (251) 

¯which matches the second equality in equation above. This makes sense since ψ(t) is the 
total stellar mass and (1 − R) subtracts the remnants. We can substitute u = Mg/M to get 

Mg u 
Zs = y − Z = y − Z . (252)

M − Mg 1 − u 

So we fnally get � � 
1 

gas : Z(s) = y ln 
u(t) 

(253)
u(t)

stars : Zs(t) = y − Z(t)
1 − u(t) 

where u is the gas fraction Mg/M and M is constant for the closed box model. As u → 
0, Zs → y, which gives the typical metallicity of stars. This must be less than or equal to 
the typical yield. 

G-dwarf problem: 
We want to measure the metallicity distribution of G stars. These stars have not evolved 
much and are still on the main sequence. Their age is so high that they formed from a 
very low metallicity gas, since Z(0) = 0. We can use the closed box result to predict their 
metallicity distribution. However, we cannot use an average Zs since we are looking for a 
distribution. 
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3. MODELLING GALAXIES

We� apply� the� closed-box� model:�

Ms(≥ u) 1− u
Ms(≥ u) = (1− u)M ⇒ = (254)

Ms,0 1− u0

where� Ms(≥ u) is� the� mass� of� stars� formed� while� the� gas� fraction� was� ≥ u and� ...0 refer� to�
present-day� values.�

Then� the� stellar� mass� fraction� Ms(≥ u)/M was� made� from� gas� with� Z ≤ y ln(1/u) and� we�
−Z/y and� u0

−Z0/y:can� rewrite� the� stellar� mass� fraction� using� u = e = e

(≤ Z) 1− e−Z/y 1− u
Z/Z0Ms 0= = . (255)

Ms,0 1− u0 1− u0

Then� we� can� get� the� fraction� of� stellar� mass� with� metallicity� ≤ Z:�

(≤ Z) 1− u
Z/Z0Ms 0f(≤ Z) = = . (256)

Ms,0 1− u0

However,� the� model� does� not� agree� well� with� the� data�
because� the� model� is� incomplete� (infalls,� variations� in�
the� IMF,� etc.).�

3.G� Active� galaxies� (AGN)�

AGN� is� Active� Galactic� Nucleus.�
Definition:�

• Galaxies� whose� total� luminosity� is� dominated� by� radiation� not� produced� in� stars.� Stars�
produce� near-UV,� optical,� and� near-IR� light� in� blackbodies.� Other� sources� may� emit�
radio� or� X-ray� light.�

• The� energy� generation� is� associated� with� a� point-like� source� at� the� nucleus� of� the� galaxy�
(∼ black� hole� with� mass� 106 − 109M ).�

AGN� types:�

• Radio� galaxies:�
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3. MODELLING GALAXIES 

– high radio luminosity Lradio ≥ 1018L 

– radio emission from two external regions 
(radio lobes) 

– energized by jets 
(particle acceleration Ee ∼ 1012 eV 

– ∼ 50% E0/S0 galaxies, ∼ 50% quasars 

– synchrotron emission of electrons 

• Quasars/QSO: 
– Quasar (quasi-stellar radio source): 

optical point source with radio jet 

– QSO (quasi-stellar object): 
like a quasar but no radio emission 

– Quasars and QSO’s are similar phenom-
ena, 90% of optically found QSO’s are 
radio quiet, ∼ 10% are radio loud 

– mostly found in elliptical galaxies 

– Lquasar ∼ 1045−48 erg/s 

– synchrotron jets between 0.1 pc-1 Mpc 

– maximum space density ∼ z = 2 − 3 

• BL Lac objects: 

– quasar with enhanced continuum 
emission 

– highly variable 

– extremely luminous 

– highly polarized 

– jet pointing towards observer 

• Seyfert galaxies: 

Hercules A galaxy 
NASA, ESA, S. Baum and C. O'Dea (RIT), R. Perley and W. 
Cotton (NRAO/AUI/NSF), and the Hubble Heritage Team 
(STScI/AURA). Used with permission. 

Einstein Cross gravitational lens 
J.Rhoads, S.Malhotra, I.Dell'Antonio (NOAO)/WIYN/ 
NOIRLab/NSF. License CC-BY. 

Markarian 501 galaxy 
Sloan Digital Sky Survey on Wikimedia Commons. License CC-BY. 
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3. MODELLING GALAXIES 

– spiral galaxies 

– bright unresolved nuclei (less luminous 
than quasars) 

– L ≈ 1042 − 1045 erg/s 

Spanish Dancer galaxy 

Structure of AGN physics: 
Sizes: changes of state of the emission region propagate at maximum speed c. Variability 
means state change: 

Δtvariablec ∼ remission (257) 

In the radio/optical band: 
Δtvariable ∼ 1 − 10 days 

remission ∼ 10−3 − 10−2 pc 

At TeV energies: 
Δtvariable ∼ 1 day 

remission ∼ 10−3 pc 

We can compare this to the Schwarzschild radius for a black hole with mass M•: 

2GM•
Rs = 

c2 
(258) 

which gives a size for various masses: 

M• = 106M → Rs = 10−7 pc 

M• = 107M → Rs = 10−6 pc (259) 
M• = 109M → Rs = 10−4 pc 

which gives the variability in the vicinity of a supermassive black hole. 

We can consider various possible energy sources for the observed variability: 

• Stars: N∗ = 3 × 108 O-type stars in the central region to get the necessary luminosity 
(O stars have luminosity of ∼ 105.5L ), but this leads to a stellar density that is too 
high and would be unstable. 

• Supernovae: the energy of a supernova is ESN ∼ 1052 erg, so we would need 1010 super-
novae within 10−3 pc in 107 years. This would require producing 1010 stars continually, 
which has the same problem as the source being stars (too dense and unstable). 

• We need accretion onto a supermassive black hole to create the luminosity. 

Spanish dancer galaxy : NASA, ESA, Hubble; Processing & 58
Copyright: Leo Shatz © Leo Shatz. All rights reserved. This 
content is excluded from our Creative Commons license. For 
more information, see https://ocw.mit.edu/help/faq-fair-use 

https://apod.nasa.gov/apod/ap190702.html
https://apod.nasa.gov/apod/ap190702.html
https://apod.nasa.gov/apod/ap190702.html
https://mitocw.zendesk.com/hc/en-us/articles/4414756000539-What-is-the-Code-of-Best-Practices-in-Fair-Use-for-OpenCourseWare
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3. MODELLING GALAXIES 

Accretion onto supermassive black holes (SMBH): 
Idea: a supermassive black hole (M• ∼ 106 − 109.5M ) accretes 10−4 − 10 M / yr. Jets and 
nonthermal radiation are created by the accretion disk (gravitational energy is converted to 
thermal energy and radiation). 

The radiative eÿciency of this process is 
16
1 , so the luminosity of the accretion disk is ap-

proximately given by: 
1 

Lacc ≈ mc 2˙ (260)
16 

which means that 1 g of material produces approximately 106 kwh. We can compare the 
eÿciency of an accretion disk (

16
1 ) to the eÿciency of hydrogen burning, which is 0.007 (so 

LH−burning ≈ 0.007 ṁc2). 

The Eddington luminosity is the maximum possible AGN luminosity, which is reached when 
the radiation pressure exceeds the gravitational acceleration per area. This comes from 
processes like Thomson scattering. The radiation pressure is given by 

Pγ = 
E 
= 
hν 

. (261) 
c c 

We can write the momentum per time (equivalent to force) as L/c, so the pressure is force 
per area 

Ptotal = 
L

. (262)
4πr2c 

We fnd where the radiative force on a fully ionized plasma (i.e. the force on an e−) exceeds 
the gravitational force on a proton for a black hole of mass M•: 

Frad > Fgrav 

L GM•mp (263)
σT > 

4πr2c r2 

where σT is the Thomson cross section, so the radiative force on an electron is Frad = σT Ptotal. 
This gives the Eddington luminosity 

4πcGM•mp M• 
= 1.3 × 1038Ledd = erg/s . (264)

σT M 

To achieve AGN luminosities, the SMBH must be massive enough to to be blown apart. 

This leads to the Eddington accretion rate, which is the maximal possible accretion rate 
possible for an accretion disk. This is reached for when Lacc exceeds Ledd: 

Lacc > Ledd 

1 M• (265)
2 > 1.3 × 1038˙ erg/smc 

16 M 

so ṁ edd occurs when the two are equal: 

ṁ edd = 5 × 10−10 M• M
. (266)

M yrs 
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An accretion disk is formed when gas spirals in from large distances until the innermost stable 
orbit (ISCO). Viscous processes in the disk lead to heating to temperatures T ∼ 108 K. This 
is highly eÿcient in releasing energy. 

Unifed model of AGN: 
Di˙erent AGN types are manifestations of the same phenomenon: 

• SMBH at the center with M• ∼ 106 − 1010M 

• An accretion disk extending to ∼ 100 − 1000rs emits the X-ray, UV, optical, and TeV 
radiation 

• Jets are made of radio synchrotron radiation from strong magnetic felds 

• A dust torus from ∼ 1 pc to ∼ 50 − 100 pc produces IR emission 

• Broad line region (BLR) formed from clouds of thick gas within ∼ 0.1 − 1 pc (velocities 
are faster near the black hole, v ∼ 104 km/s 

• Narrow line region (NLR) formed from clouds of thin gas within ∼few pc (farther away 
from the black hole, v ∼ 100 − 1000 km/s. Slower velocities leads to less broadening 
of lines scattered in the clouds, hence narrow line region). 

 

Zero Age 
Main Sequence

log(L)

log(Teff)

Giant Branch closed box
f(≤z)

log(z/z )

data

-1 0

f

e

jet

disk
dust 
torus

BLR

NLR

The observed manifestation depends on the viewing angle and the accretion rate. For exam-
ple, BL Lac objects have a line of sight directly down the jet and a high accretion rate. 
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Part II 

Cosmology and Structure Formation 

Image: TNG Simulations. Used with permission. 
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1. COSMOLOGY 

Cosmology 

Cosmology is the study of dynamics of the entire Universe as a single dynamical system. 

1.A Cosmological Principle and dynamics 

• The Universe is homogeneous: it is uniform on large scales. 

• The Universe is isotropic: it looks the same for all observers on large scales. 

This implies that the space-time metric is the same everywhere, which generates symmetries 
and simplifes the solutions to general relativity equations. 

Hubble Law: 
We observe that 

~v = H0 ~r (267) 

where H0 ∼ 70 km/s/Mpc refers to the present-day Hubble factor. The specifc form of this 
law can be derived from the cosmological principles: 
• Linearity (follows from isotropy): 

Suppose ~v = f(~r). 
Then from Observer A’s perspective 

~v1 = f(~r1) and ~v2 = f(~r2) 

and ~v1 − ~v2 = f(~r1) − f(~r2) . 

From Observer B’s perspective 

~v1 − ~v2 = f(~r1 − ~r2) 

so we fnd that 
Observer 

      A

r1, 
v1

Observer 
B

r2, 
v2

r1-r2, 
v1-v2

f(~r1 − ~r2) = f(~r1) − f(~r2) . 

This implies that f is linear since isotropy 
requires that each observer sees the same 
Hubble law. 

• Uniqueness (follows from homogeneity): 
f(...) is linear, so 

f(~r) = H~r (268) 

where H is a matrix. 
We assume that it is non-diagonal, otherwise a special direction would be preferred 
(since it introduces an axis), and H = H01. Then 

f(~r) = H0 ~r . (269) 
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1. COSMOLOGY 

Dynamics of cosmological expansion: 
Hubble’s law implies cosmological expansion. General relativity allows a detailed derivation 
of the dynamics, but here we use Birkho˙’s theorem to get initial insight. Birkho˙’s theorem 
states that the dynamics of a uniform expanding self-gravitating sphere is equivalent to a 
section of the Universe as a whole. 

Observer 
      A

r1, 
v1

Observer 
B

r2, 
v2

r1-r2, 
v1-v2

a

%

4 
M(< a) = πa3ρ 

3 (270)
GM(< a) 4πGρ 1 ⇒ä = − = − · a 3 

a2 a2 3 

We multiply each side by ȧ : 

4πGρ 
äȧ = − aȧ 

3 
3 (271)

4πGρ0 a 
= − a0

3 a −2 ȧ (since ρ = ρ0
0 ) . 

3 a3 � � � � 
d 1 2 −2 ˙ d 1Since äȧ = ȧ and a a = , we get:
dt 2 dt a � � 

3 � � 
d 1 2 4πGρ0a0 d 1 

ȧ = − − . (272)
dt 2 3 dt a R 

Integrate dt on both sides: 
1 4πGρ0a

3 1 
ȧ 2 = 0 + κ̃ . (273)
2 3 a 

Here, κ̃ is the integration constant, and we can use the density expression ρ0a03 = ρa3 to 
simplify our equation: 

1 4πG 
ȧ 2 = ρa2 + κ̃ . (274)
2 3 

So the dynamics is given by � �2 ˜ȧ 8πG k 
= ρ + 

2 
. (275)

a 3 a 

This is the Friedmann equation for Λ = 0. With a cosmological constant Λ, we have � �2 ˜ȧ 8πG k Λ 
= ρ + + . (276)

2a 3 a 3 
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Since volume grows withe length cubed and the total mass in the universe is constant, 
the matter density is proportional to a−3 . 

Here, a is the scale factor such that 
alength l = l0 a0 
. Also note that: � �2

ȧ ṙ v 
� � 

ȧ 
= = = H H(t) ≡ 

a r r a 
8πG 

ρ is the matter/radiation density 
3 
κ̃ 
is the curvature 

2a 
Λ 
is the cosmological constant 

3 

The radiation density also decreases due to the 
increasing volume but also decreases as the wavelengths are stretched, so radiation density 
is proportional to a−4 . The dark energy Λ is constant. 

The plot above shows how the scale factor grows with time for several di˙erent types of 
universes. Our current understanding of our universe is that it is described by the ΛCDM 
model, where roughly 30% of the energy budget is matter, 70% is dark energy, and there 
is a very small amount of radiation and no curvature. If there were positive or negative 
curvature, we would get an open ore closed universe. There are also several toy universes 
that are often useful to think about. A fat, dark energy-only universe is the de Sitter model 
and a fat, matter-only universe is the Einstein-de Sitter model An empty universe has only 
a curvature term, and is an open universe. 

Dynamical evolution of the Universe: 
Di˙erent terms in the Friedmann equation dominate at di˙erent times. 

• radiation term ∝ a−4 =⇒ dominates at very early times 

• matter term ∝ a−3 =⇒ dominates at early times 

• curvature term ∝ a−2 =⇒ dominates at medium times 

• Λ term ∝ constant =⇒ dominates at late times 

Therefore, from the Friedmann equation, we can derive di˙erent regimes of the Universe: 

• radiation regime 
ȧ 2 ∝ a−2 

1 1 
2ȧ ∝ a−1 =⇒ a ∝ t 
1 

=⇒ t0 = 
ȧ 1 2 H0ada ∝ dt H(t) = 
a = 

2t 
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1. COSMOLOGY

• matter� regime�
ȧ2 ∝ a−1

2 1
=⇒ a ∝ t

2
3 =⇒ t0 =ȧ ∝ a−

1
2

3H0√ ȧ 2ada ∝ dt H(t) =
a
=

3t

• curvature� regime�
ȧ2 ∝ constant

1a ∝ t
=⇒ =⇒ t0 =ȧ ∝ constant

H(t) =
a
ȧ = 1 H0da ∝ dt t

• Λ regime�
ȧ2 ∝ a2 Λ√3

Λ √
ȧ ∝ a =⇒ 3

Λ t =⇒ exponential� growth�a ∝ e3√(
da ∝ Λdt
a 3

As� the� universe� evolves,� it�
expands� at� different� rates�
depending� on� the� regime�
(radiation/matter/Λ).�

1.B� Dynamics� derived� with� general� relativity�

Goal:� use� the� field� equation�

Gµν =
8πG

Tµν − Λgµν (277)
4c

to� derive� the� Friedmann� equation.�
Gµν :� Einstein� tensor;� 1st and� 2nd derivations� of� the� metric�
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Observer 
      A

r1, 
v1

Observer 
B

r2, 
v2

r1-r2, 
v1-v2

a

%

• 2D-fat space polar coordinates: 

Observer 
      A

r1, 
v1

Observer 
B

r2, 
v2

r1-r2, 
v1-v2

a

%

• 2D-curved space: 

Observer 
      A

r1, 
v1

Observer 
B

r2, 
v2

r1-r2, 
v1-v2

a

%

We can rewrite χ = Rθ, so 

Tµν : stress-energy tensor 
gµν : metric (similar to Poisson’s equation 52Φ = 4πGρ + Λ

3 with Φ replaced with curvature) 

First we need to specify gµν and Tµν . 

Metrics: 
The space-time interval is 

ds 2 = gµν dx
µdx ν . (278) 

Some examples of spatial metrics: 

• 2D-fat space in Cartesian coordinates: 

� �� � 
2 

� � 1 0 dx 2ds = dx dy = dx 2 + dy (279)
0 1 dy 

� �� �� � 1 0 dr 
ds 2 = dr dθ 2 = dr 2 + r 2dθ2 (280)

0 r dθ 

� �� �� � R2 0 dθ 
ds 2 = dθ dϕ = R2(dθ2 + sin2 θdϕ) (281)

0 R2 sin2 θ dϕ 

ds 2 = dχ2 + R2 sin2 χ 
dϕ2 . (282)

R 

When R goes to infnity, we have � � 
sin 

χ ≈ 
χ 

(283)
R R 

2 + χ2dϕ2⇒ ds = dχ2 (284) 

which is gives us fat space! 

• 4D space time: ⎛ ⎞ 
−1 0 0 0 ⎜ ⎟0 1 0 0 

gµν = ⎜ ⎟ (285)⎝ ⎠0 0 1 0 
0 0 0 1 

and 
ds 2 = −c 2dt2 + dx 2 + dy 2 + dz 2 . (286) 
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Robertson-Walker metric: 
The metric form follows from homogeneity and isotropy, and the feld equations give us the 
time evolution: � � � � 

ds 2 = −c 2dt2 + a(t) dχ2 + fk 
2(χ) dθ2 + sin2θdϕ2 (287) 

and 

fk(χ) = 

⎧⎪⎨ ⎪⎩ 
k−1/2 sin (k1/2χ), closed k > 0 

χ, flat k = 0 (288) 
|k|−1/2 sinh (|k|1/2χ), open k < 0 

with the units for k: [k] = 
L 
1 
2 . 

Derivation of the Friedmann equations: 
We have the stress energy tensor: � �∼ ∼T00 = energy density T0j = energy flux (289)Tµν = ∼ ∼Tj0 = momentum density Tik = stress tensor 

The stress tensor Tik is force per unit area: �∼ ∼= pressure = shear (290)Tii Tik 

Tµν has to be a perfect fuid with no shear or isotropic pressure: 

Tµν = (ρc
2 + p)uµuν − 

p 
2 
gµν (291)

c 

In the rest frame of a comoving observer: 

Tµν = 

⎛ ⎜⎜⎝ 
−ρc2 0 0 0 
0 p 0 0 
0 0 p 0 
0 0 0 p 

⎞ ⎟⎟⎠ (292) 

To evaluate Gµν , we take the derivative of the metric. We then plug this into the Einstein feld 
equations, which gives two independent equations. This leads to the Friedmann equations: 

�� 
� �2 2ȧ 8πG kc2 Λc 

= ρ − + 
2a 3 a 3 

ä 4πG 3p Λc2 

= − ρ + + 
2a 3 c 3 

. (293) 

For relativistic bosons and fermions p = ρc2/3, and for non-relativistic particles p = 0. 

Critical density and density parameters: 
The critical density ρcrit is the density that gives a fat universe (k = 0) and is given by 

3H2(t)
ρcrit = (294)

8πG 
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with present-day value 

3H2 
0 ≈ 1.8 × 10−29h2 3ρcrit,0 = g/cm . (295)

8πG 

For a sphere with radius a flled with the critical density, the gravitational potential is equal 
to the specifc kinetic energy: 

G4 3 2 
3 πρcrita ȧ 

= . (296) 
a 2 

This is the limiting case between an open and closed universe and leads to eternal expansion. 

We defne the cosmological density parameters in terms of the critical density: 

ρm(t)
Ωm(t) = 

ρcrit(t) 
ρr(t)

Ωr(t) = 
ρcrit(t) 
kc2 (297)

Ωk(t) = − 
H2 

Λc2 ρΛ(t) Λc2 

ΩΛ(t) = = , ρΛ(t) = 
3H2 ρcrit(t) 8πG 

Ω(t) = Ωm(t) + Ωr(t) 

The present-day values are: 
ρm,0

Ωm,0 = 
ρcrit,0 
ρr,0

Ωr,0 = 
ρcrit,0 

kc2 

Ωk,0 = − (298)
H2 
0 

ρΛ,0
ΩΛ,0 = 

ρcrit,0 
ρ0

Ω0 = 
ρcrit,0 

so 
−3ρm = Ωm,0ρcrit,0a 
−4ρr = Ωr,0ρcrit,0a 
−2 (299)

ρk = Ωk,0ρcrit,0a 

ρΛ = ΩΛ,0ρcrit,0 . 

We also often consider the baryon density parameter Ωb separately from the total matter 
density, so the total matter density is the sum of the baryon and dark matter densities 
Ωm = Ωdm + Ωb. 
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Our current measurements of these values are (from the Planck 2018 results) 

Ωm,0 = 0.315 ± 0.007 

Ωdm,0 = 0.264 ± 0.003 

Ωb,0 = 0.0493 ± 0.0003 (300) 
Ωk,0 = 0.0007 ± 0.0019 

ΩΛ,0 = 0.6847 ± 0.0073 

with H0 = 67.4 ± 0.5 km/s/Mpc. The radiation parameter Ωr,0 can be derived from the 
measured temperature of the CMB and relating the photon and neutrino density to get 
Ωr,0 ≈ 10−4 . We discuss how to obtain these values from observations in Part III. 

We can rewrite frst Friedmann equation: 

8πG kc2 

H2(t) = (ρm + ρr + ρΛ) − 
23 a 

8πG kc2 

= ρcrit,0[Ωm,0a −3 + Ωr,0a −4 + ΩΛ,0] − 
23 a 

3H0
2 

(ρcrit,0 = ) � 8πG � (301) 
2 kc2 

= H0 Ωm,0a −3 + Ωr,0a −4 + ΩΛ,0 − 2 a2H0 

kc2 

(− 2 = Ωk,0 = 1 − Ωr,0 − Ωm,0 − ΩΛ,0)
H0 � � 

= H0
2 Ωr,0a −4 + Ωm,0a −3 + Ωk,0a −2 + ΩΛ,0 

So we fnd: 
H2(a) = H0

2E2(a) 
(302)

E2(a) = Ωr,0a −4 + Ωm,0a −3 + Ωk,0a −2 + ΩΛ,0 

which is a useful form of the Friedmann equation. 

Notes: 

• Radiation dominates in early times, then matter, then the cosmological constant. 

• Matter-Λ equality occurs when ΩΛ = Ωm: 
Ωm,0

ΩΛ,0 = 
a3 

(303)
1 

=⇒a ≈ , z ≈ 1.3 (z ≈ 1 is 6 − 7 Gyr after the Big Bang) . 
2.3 

• Matter-radiation equality occurs when Ωr = Ωm: 
−4 −3Ωr,0a = Ωm,0a (304) 

=⇒a ≈ 
1 

, z = 3700 . (305)
3700 

• Observationally, Ωk,0 ≈ 0. 
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1.C Observational cosmology 

Goal: relate the cosmological parameters to observations. 

Redshift: 
Redshift z is defned by the di˙erence in observed wavelength and emitted wavelength of 
light: 

λobs λobs − λem 
= 1 + ≡ 1 + z (306)

λem λem 

In cosmology, this is due to the expansion of space. Light travels from the source at 
(tem, aem, zem) to the observer at (tobs, aobs, zobs). 

Observer 
      A

r1, 
v1

Observer 
B

r2, 
v2

r1-r2, 
v1-v2

a

%

B A

Observer at &obs

λobs 'tobs =
λobs
c

B A

Source at &em

λem 'tem = λem
c

observation, z=0 emission, z>0

The spatial hypersurface can shrink or expand depending on a(t), so λobs is not necessarily 
equal to λem. Photons always travel along the shortest path, so for light we have: 

ds = 0 ⇒ cdt = a(t)dχ (307) Z χobs Z tobs cdt 
Pulse A : dχ = 

Pulse B : 

χemZ χobs 
dχ = 

a(t)temZ tobs+δtobs cdt 
= 
Z tobs 

... + 
Z tobsδtobs 

... − 
Z tem+δtem 

(308) 
χem 

≈ 

tem+δtemZ tobs cdt a(t) tem 

cδtobs 
+ − 

cδtem 

tobs tem 

tem 
a(t) a(tobs) a(tem) 

then 
cδtobs 

= 
cδtem ⇒ 

λobs 
= 
aobs (309)

a(tobs) a(tem) λem aem 

so 
aobs 

= 1 + z . (310) 
aem 

For a0 = 1 (observing today) we have: 

1 
= 1 + z 

a 
(311)

1 
a = . 

1 + z 
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1. COSMOLOGY

energy of photonsNote:� the� change� of� luminosity� L =
time

is� affected� “twice"� by� expansion� since�

λobs δtobs aobs
= =

λem δtem aem ( )2 ( )2 (312)
hνobs hνem aem aem⇒Lobs = = = Lem .
δtobs δtem aobs aobs

If� aobs = 1, zobs = 0 and� aem = a, zem = z,� we� have�
( )2

1
Lobs = Lem

1 + z
(313)

Lem⇒ Lobs = .
(1 + z)2

Distance� measures:�
Question:� what� is� the� distance� between� a� source� at� (z, t, a) and� an� observer?�
In� static� Euclidean� space,� we� can� measure� a� unique� distance� in� different� ways.� For� a� source�
with� luminosity� L and� size� l,� we� have:�

• luminosity� distance� DL:� F = L
4πDL

2

• angular� diameter� distance� DA:� ϕ = l
DA

Note� that� DL �= DA in� expanding� space!�

Comoving� distance:�
Comoving� coordinates� move� with� space� as� it� expands.�

∫(tobs cdt
χ(tem, tobs) =

a(t)tem

(for light, ds = 0 ⇒ adχ = cdt) (314)∫ ∫(aobs aobsda c da
= χobs = c =em aa˙ H0 a2E(a)aem aem

The� comoving� distance� is� not� measurable� through� observations,� but� it� is� useful� theoretically.�
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1. COSMOLOGY 

We also defne a function that depends on the curvature k of space that is helpful in writing 
the metrics: ⎧ 

1 √ 
√ sin(χ ⎪ k⎨ k), k > 0 

fk(χ) = χ, k = 0 (315) 
1⎪p⎩ |k| p

sinh(χ |k|, k < 0 

Angular diameter distance: 
The angular diameter distance DA is defned such that 

ϕ = 
l 

(316)
DA 

for an object that has angular size ϕ. Then the endpoints of l have the same (χ, θ, t): � � 
fk χ

obs ϕl = aem em 

1 � � (317)
χobs = ϕfk em1 + z 

&obs
em( l

observer
emission

&obs
em

observer

emission

so 
1 � 

χobs 
� 

DA = fk em . (318)
1 + z 

Luminosity distance: 
The luminosity distance DL is defned such that 

F = 
L

. (319)
4πDL 

2 

&obs
em( l

observer
emission

&obs
em

observer

emission

Furthermore, we can relate the observed and emitted luminosities 

Then the observed surface, for aobs = 1, is � � � � 
χobs χobs4πa2 f 2 = 4πfk . (320)obs k em em 

1 1 
Lobs = Lem = L 

(1 + z)2 (1 + z)2 

(321)L L ⇒F = = 
(χem (χem 24πfk 

2 
obs) (1 + z)2 4π [f 2 ) (1 + z)]k obs 
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1. COSMOLOGY 

so � � 
χobsDL = (1 + z)fk em . (322) 

This also gives us the relation 

DA =
1 

DL (323)
(1 + z)2 

so DA ≈ DL if z � 1. 

Notes: 
• The simplest Einstein-de Sitter case is: 

ΩΛ,0 = Ωκ,0 = Ωr,0 = 0, Ωm,0 = 1� � 
2c 1 1 ⇒ DA = 1 − √ 
H0 1 + z 1 + z (324)� � 
2c 1 

DL = (1 + z) 1 − √ 
H0 1 + z 

For z � 1: � � �� 
2c 1 

DA ≈ DL ≈ 1 − 1 − z (325)
H0 2 

c 
= z (326)
H0 

Furthermore: Z Z 1 c aobs da c da 
χobs = = (327)em H0 a2E(a) H0 a2E(a)aem aem 

(328) 

For E(a) ≈ 1 and a ≈ 1 − z: Z 1 

χobs em ≈ 
c 1

da (329)
H0 (1 − z)2 

aem 

= 
c 1 

(1 − a) (330)
H0 (1 − z)2 

≈ 
c 1 

z (331)
H0 (1 − z)2 

c ≈ z (332)
H0 

= χobsSo we get DA = DL em for z << 1, i.e. agreement for low z. 

• The general fat case is: k = 0 ⇒ fk(χ) = χ. 
c 1 

= χobsDA emH0 1 + z Z 
c 1 aobs da 

= (333)H0 1 + z aem 
a2E(a)Z 1 c 1 da 

= 
H0 1 + z aem 

a2E(a) 
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1. COSMOLOGY

1
2dz

Since� a = 1 and� da = − 1 2
dz,� then

1+z 1+z

∫(z
DA =

c 1
[Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩΛ,0]

− (334)
1 + zH0 0

So� generally� for� Ωκ,0 = 0 (i.e.� flat):�
∫(

DA =
c 1 z

[Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩΛ,0]
− 1

2 (335)dz
H0 1 + z 0∫(zc

(1 + z) [Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩΛ,0]
− 1

2dz . (336)DL =
H0 0

To� the� left� is� a� plot� com-
paring� the� angular� diame-
ter,� luminosity,� and� comov-
ing� distances� for� a� flat� uni-
verse� with� Ωm = 0.315 and�
H0 = 67.4 km/s/Mpc.� By�
z ∼ 1,� there� is� a� significant�
difference� between� the� dis-
tance� measures.�

Comoving� volume� element:�
We� want� to� measure� the� number� of� objects� in� a� given� angle� dΩ on� the� sky� in� a� redshift�
range� (z, z + dz).� What� is� the� comoving� number� density� of� those� objects,� i.e.� what� is� the�
corresponding� comoving� volume?�

In� general:�
V = dAdr (337)�
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1. COSMOLOGY 

where dA is area and dr is depth. So 

dVχ = (DA 
2dΩ)(1 + z)2 · dχ (338)| {z } |{z} 

proper area comoving depth| {z } 
comoving area 

Aproper = a 2Acomoving (339) 

⇒ Acomoving =
1 
Aproper = (1 + z)2Aproper (340)
2a 

dχ = c dz , so
H0 E(z) 

dVχ = (DA 
2dΩ)(1 + z)2 c 1 

dz (341)
H0 E(z) 

and fnally: 
c (1 + z)2DA 

2 

dVχ = dΩdz . (342)
H0 E(z) 

Plug in DA = 
1+
1 
z fκ(χ): 

c fκ 
2(χ)

dVχ = dzdΩ (343)
H0 E(z) 

= fk 
2(χ)rdΩ

dχ 
dz . (344)

dz 

1.D Infation 

So far, dynamics have been described by the Friedmann equations with some mass-energy 
content of the Universe: Ωm, Ωr, Ωk, ΩΛ. Is this suÿcient to explain all data? 

Problems: 

• Horizon problem: 
ρr ∝ (1 + z)4 and ρr ∝ T 4 ⇒ T ∝ (1 + z) (345) 

The Universe cools and at some zrecomb, it consists of neutral hydrogen atoms (recom-
bination). We get the balancing equation 

H+ + e H0 + χ (346) 

where χ = 13.6 eV is the ionization energy. We also have: 

number density of free e− 

x = 
number density of protons � � (347)
nb baryon number density Ωb,0h

2 

≈ 5 × 10−10η = = 
nγ photon number density 0.01 
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1. COSMOLOGY 

which we use in the Saha equation: � �3/2 
χ 

kB T 
1 − x kBT − 

2 
≈ 3.84η 

2 
e (348)

x mec 

With χ = 13.6 eV corresponding to ∼ 105 K (1 eV≈ 104 K), we would expect x < 1 for 
T < 105 K. However, there are many more photons than baryons, which leads to x < 1 
only for T ≈ 3000 K. This gives zrecomb ≈ 1090 (for Ωb,0 = 0.045, T0 = 2.73 K). 

After this time, photons can escape or free stream, and we can observe them as the 
Cosmic Microwave Background. The CMB is very uniform: Δ 

T
T ≤ 10−5 (note that 

CMB maps are typically logarithmic). 

Why is this a problem? 
Horizons are the largest causally connected regions by light rays. 

The comoving horizon size is: Z t cdt 
ds = 0 (light) =⇒ cdt = a(t)dχ =⇒ χhorizon = (349) 

0 a(t) 

So we have Z a=(1+z)−1 
cda 

χhorizon(z) = . (350)
a0
2H(a) 

For a fat radiation dominated universe: 
c c 1 

lhorizon = aχhorizon = = p (351)
H(z) 1 + zH0 Ωr,0 

fat matter dominated: Z Z(1+zeg )−1 (1+z)−1 
cda cda 

lhorizon = a( + ) 
0 a2H(a) (1+zeq )−1 a2H(a)| {z } 

largest contribution comes from matter dominated phase (352) 
2c 2c a 2c 1 ≈ = p √ = p
H(z) H0 Ωm,0 1 + z H0 Ωm,0 (1 + z) 

Apply this to zrecomb: 

ρr,0(1 + zrecomb)4 

3 
2 

∼ 5 × 10−2 ⇒ matter dominated regime
ρm,0(1 + zrecomb)3 

(353)
2c − 1 

(1 + z)−
3 
2⇒lhorizon = Ω 

H0 

2 
m,0 

Angular size of horizon: 

lhorizon
ϕhorizon = 

DA 
DA : Angular diameter distance (354) 
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1. COSMOLOGY 

1 
fκ(χ

obs 1 
χobsDA = ) = (for flat universe) em em1 + z 1 + zZ z � �−c 1 1 

2 dz= 
1 + z H0 0 

Ωm,0(1 + z)3 

� �!z 
2c 1 −√= 

H0(1 + z)Ωm0� 1 
2 1 + z (355)� 0 

2c 1 
1 − √= 1 

2 
m0 | 1 + z{zH0 (1 + z) Ω| {z } } 

≈1,z�1≈z,z�1 

2c 1 ≈ 
H0 Ω 

1 

m0z 

This gives us the angular size of the horizon at recombination: r 
1 

ϕhorizon,recomb ≈ ∼ 1.7◦ (356)
zrecomb 

Or more generally: p
ϕhorizon,recomb ≈ 1.7◦ Ωm,0 . (357) 

2 

This is much smaller than the full sky, so how can the CMB be so uniform? 

• Flatness problem: 
At high z, Λ is irrelevant in the Friedmann equations, so: � � 

8πG kc2 kc2 

H2(a) = ρ − = H2(a) Ω(a) − , ρ = ρm + ρr (358)
3 a2 a2H2(a) 

Thus, deviation from fatness Ω(a) = 1 is: 

kc2 

|Ω(a) − 1| = . (359)
a2H2(a) 

Since a ∝ t2/3 in matter dominated times and a ∝ t1/2 during radiation dominated 
times, we have: ( 

t, radiation dominated 
|Ω(t) − 1| ∝ (360)

2/3t , matter dominated 

Thus, any small deviation Ω(tearly) 6= 1 at early times quickly blows up! Ω(tearly) must 
therefore be very close to 1, which leads to a “fne-tuning problem." 

• Monopole problem: 
General unifed theories predict many magnetic monopoles, but this is not observed. 
The number density must decrease. 

• Seeds of structure formation problem: 
What seeds the perturbations that become the large structures we observe? 
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1. COSMOLOGY

Infation:� basic� ideas:�

• Flatness� problem:�

If� kc2 decreased� with� time� for� a� short� period,� then� Ω(a)
a2H2(a)

would� be� driven� towards� Ω(a) = 1.�

• Horizon� problem:�
kc2 cIf� shrinks,� then� χ ∝ also� shrinks.�

a2H2(a) aH(a)

!obs
em" l

observer
emission

!obs
em

observer

emission

comoving 
horizon before

causally 
connected region

comoving 
horizon after

V0

V(#)

##0

reheating

slow roll 
inflation

⇒ can� explain� smoothness� within� the� observable� universe.�

So� decreasing�
horizon:�

1
aH(a)

seems� to� solve� two� problems!� The� conditions� for� a� shrinking� comoving�
(( )d c

< 0
dt

d
aH(()(c

dt ȧ
< 0

(361)�
cä−
ȧ2

< 0

⇒ ä > 0

We� need� some� period� of� accelerated� expansion.� We� can� look� at� the� second� Friedmann�
equation� (e.g.� for� acceleration):�

ä 4πG 3p Λc2
= − (ρ+ ) +

2a 3 c 3
(at early times, Λ = 0)

4πG 3p
= − (ρ+ )

c2 (362)3
ρc2⇒ p < − ← we need sufficiently negative pressure
3

p 1⇒ < −
ρc2 3

This� also� solves� the� monopole� and� seed� problem!� Rapid� expansion� would� decrease� the� density�
of� monopoles� and� blow� up� tiny� perturbations.� All� problems� are� then� solved.�
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1. COSMOLOGY 

Note that Λ
3 
c2 actually corresponds to a negative pressure term. To see this more clearly, we 

combine both Friedmann equations to derive the energy conservation equation: 

d
(ρc2 a 3) + p 

d
(a 3) = 0 

dt dt
p (363) 

⇒ ρ̇ = −3H(a)(ρ + )
2c 

And for Λ with ρΛ = constant (= ρ): 

ρ + 
p 
2 
= 0 ⇒ p = −ρc2 (364)

c 

So the equation of state parameter is 

p 1 
w = = −1 < − (365)

ρc2 3 

where w = −1/3 is needed for accelerated expansion as shown above. Thus, Λ leads to 
accelerated expansion and therefore a shrinking comoving horizon. Once Λ dominates in the 
Friedmann equation: � �2 

H2(a) = H0
2ΩΛ = 

ȧ 

√ 
a (366) 

ΩΛH0t⇒a ∝ e 

which is exponential growth. 

Infation: 
Λ has all the features we want, but it: 

• acts too late 

• is constant, i.e. even if it acted early enough, it would not stop infation! 

How do we get all this in the early universe? We look at a homogeneous scalar feld (infation): 

L =
1 
∂µφ∂

µφ − V (φ) (367)
2 

which leads to the energy-momentum tensor: 

φ̇2T00 = ρc2 =
1 

+ V (φ) 
Tµν = ∂µφ∂ν φ − gµν L ⇒ 2 (368)

1 
φ̇2 − V (φ)Tii = p = 
2 

To get w < −1/3, we require: � � 
1 1 1˙ ˙φ − V (φ) < − φ + V (φ)
2 3 2 

ρc2 (369) 
p < − 

3 
⇒ φ̇2 < V (φ) 
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1. COSMOLOGY 

i.e. the feld must be moving slowly during infation. Thus, the potential should be fat and 
have a minimum to stop infation. Furthermore: � � 

8πG 1 
φ̇2Friedmann equation : H2 = + V (φ)

3 2� � p
Energy conservation : ρ̇ = −3H(a) ρ + 

2c 
dV˙φ ¨+ ˙ρc˙ 2 = φ φ 
dφ 

1 p 1 
φ2with ρ = ˙ + V (φ) and 

2 
= φ̇ − V (φ)

2 c 2� � � � 
dV 1 1 ⇒φ̇φ ¨+ φ̇ = −3H(a) φ̇2 + V (φ) − 3H(a) φ̇2 − V (φ)
dφ 2 2 

¨ ⇒φ +
dV 

= −3H(a)φ̇ 
dφ 

dV¨ ˙⇒ φ + 3H(a) φ = −| {z } dφ 
Hubble drag 

(370) 
and we get the feld evolution equation. In a static universe, H = 0, and there is no Hubble 
drag. d

d 
V
φ is how fast energy is extracted from infation. 

Slow roll conditions: 
We approximate 

H2 ≈ 
8πG 

V (φ) (371)
3 

which is ≈ V0 and roughly constant during the slow roll, leading to exponential growth. We 
also have 

3Hφ̇ ≈ − 
dV 

(with φ ¨ ≈ 0) (372)
dφ 

which is equivalent to: 
φ̇2 � V 

and (373)
d dV dV˙ ¨ φ2 � ⇒ φ � 
dt dt dφ 

This can be rewritten in slow roll parameters: � 
V 0 
�2

1 
� : = � 1 

24πG V� � (374)
V 001 

η : = � 1 
8πG V 

As long as these conditions are valid, infation will go on. The slow roll potential is: 
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1. COSMOLOGY 

&obs
em( l

observer
emission

&obs
em

observer

emission

comoving 
horizon before

causally 
connected region

comoving 
horizon after

V0

V())

))0 
(minimum)

reheating

slow roll

inflation

Since 

During reheating, the in-
fation feld decays through 
coupling to ordinary matter 
(“reheat universe"). 

8πG 8πG 
H2 = V (φ) ≈ V0 (375)

3 3 
during infation, large values of φ0 and V0 lead to more infation (longer slow roll). 

1.E Basic story of cosmology 

Main ingredients: 

• metric (geometry) 

• Friedmann equations (dynamics) 

• distances (connection to observations) 

• horizons (evidence for infation) 

Emerging story 

a) t = 0: Big Bang 

b) t ∼ 10−34 s: infation 

c) T decreases as T ∝ (1 + z) 

d) z ≈ 3200: transition from radiation to matter domination 

e) z ≈ 1100: recombination 

f) Structure formation is nonlinear. First stars and galaxies... 

g) z ≈ 0.33: transition from matter to Λ domination 
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2. STRUCTURE FORMATION

The� first� five� stages� here� are� optically� thick� to� photons,� while� later� is� optically� thin� and�
potentially� observable.�

Image: /ASA / WMA1 Science Team. Image is in the public domain.

Structure formation

So� far,� we� have� assumed� a� uniform� cosmology.� We� now� add� perturbations� to� study� the�
growth� of� structure.�

2.A� Linear� perturbation� theory�

There� are� small� perturbations� at� early� times.� The� Universe� consists� of� matter� (dark� matter�
and� baryons)� and� radiation.� Λ and� curvature� are� unimportant� early� on.�

Basic� equations:�

• non-relativistic� matter� (dark� matter,� baryons)� is� important� in� the� matter-dominated�
regime:�

∂ρ �continuity equation : +∇ · (ρ�v) = 0
∂t

�∂�v ∇p (376)� �momentum equation : + (�v · ∇)�v = − +∇φ
∂t ρ
�Poisson’s� equation:� ∇2φ = 4πGρ

• relativistic� matter� (radiation)�

( )∂ρ p�continuity equation : +∇ · (ρ+ )�v = 0
∂t c2

�∂�v ∇p� �momentum equation : + (�v · ∇)�v = − p +∇φ (377)
∂t ρ+ 2c

3p�Poisson’s� equation:� ∇2φ = 4πG(ρ+
2
)

c
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2. STRUCTURE FORMATION 

Notes: 

• non-relativistic 

– Dark matter follows the collisionless Boltzmann equation; 1st/2nd equations only 
hold for moments (Jeans equation). 

– For dark matter, there is no well-defned velocity feld ~v(~x, t) due to multistream. 
~v(~x, t) is just an average. 

– Nevertheless, it recovers the correct growth rate for large scales > λJ when pres-
sure can be neglected. 

• relativistic 

– gravitational source terms include pressure terms. 

– For pure radiation: p = ρc 
3 

2 
. 

This leads to the perturbation equation where some small perturbation δ evolves in a smooth 
background density ρ̄: 

Δρ ρ − ρ̄ 
δ = = . (378)

ρ̄ ρ̄ 

Perturbation equations: ! 
2 ~ 2δv rsnon-relativistic: δ ̈+ 2Hδ̇ = 4πGρδ̄ + 
2a ! (379)
2 ~ 2δ32 vs rrelativistic: δ ̈+ 2Hδ̇ = πGρδ̄ + 

3 a2 

where 
δ = δ(~x, t) 

~x : comoving coordinates 
~r : a~x physical coordinates 

∂ ~ r = (380)∂~x⎧ 
cs, non-relativistic baryons⎪⎨ 

vs = σ, non-relativistic dark matter 
c⎪⎩√ , relativistic radiation 
3 

Fourier representation: 
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2. STRUCTURE FORMATION 

For comoving coordinate ~x and comoving wave number ~k: Z 
d3k ˆ −i~k·~xδ(~x, t) = δ(~k, δ)e 
(2π)3 Z (381) 

+i~k·~xδ̂(~k, t) = d3xδ(~x, t)e 

and we get � 
2 � 
v k2˙ snon-relativistic: δ ¨̂ + 2Hδ̂ = δ̂ 4πGρ̄ − 
2a� � (382)

˙ 32 vˆ ˆ ˆ srelativistic: δ ¨+ 2Hδ = δ πGρ̄ − 
2k 
2

2 

. 
3 a 

Growing modes: 
For a static background, H = 0 and: 

ˆ ˆδ ¨+ w0
2δ = 0 (383) 

with ⎧ ⎪vs 
2k2 ⎨ 
2 
− 4πGρ,̄ non-relativistic 

w 2 = a (384)0 ⎪vs 
2k2 32⎩ − πGρ,̄ relativistic 
2a 3 

For physical wave number k̃ = k/a, we get oscillation for: ⎧ √ 
2 πGρ̄ ⎪ , non-relativistic⎨ 

˜ q vs 
k ≥ k̃ 

J = 
32 √ (385)

πGρ̄⎪ 3⎩ , relativistic 
vs 

and growth (no oscillations) for modes with lengths l = 2˜ 
π greater than λJ : k 

2π vs
l ≥ λJ = ∝ √ (386)

k̃J πGρ̄ 

where k̃ = k/a is in physical units. We can make this more general for H =6 0 and neglecting 
the pressure terms for l ≥ λJ and we get: 

ˆ ˆ ρˆδ ¨+ 2Hδ˙ = 4πG δ̄, non-relativistic 
(387)32ˆ ˆδ ¨+ 2Hδ˙ = πGρ̄δ,̂ relativistic 

3 

Now for Ω = 1, we have the critical density as the background density for the radiation and 
matter dominated regime: 

3H2 

ρ̄ = ρcrit = (388)
8πG 

84 



2. STRUCTURE FORMATION 

such that 
3 

δ ¨̂ + 2Hδ̂˙ = H2δ,̂ matter dominated Ω = 1 
2 (389) 

ˆ ˆ = 4H2 ̂δ ¨+ 2Hδ˙ δ, radiation dominated Ω = 1 

Now: 

ȧ 
H = = 

a 

⎧⎪⎨ ⎪⎩ 
2 
, matter dominated 

3t (390)
1 
, radiation dominated 

2t 

We now assume δ̂(~k, t) ∝ tn . Then: 

n 22 matter dominated+ − = 0,n 
(391)3 3 

n 2 − 1 = 0, radiation dominated 

2 
n = −1, , matter dominated 

⇒ 3 (392) 
n = −1, +1, radiation dominated 

that correspond to negative decaying modes, which are unimportant since the perturbations 
vanish, and positive growing modes. This gives us: ( 

a, matter dominated 
δ̂  ∝ 2 (393) 

a , radiation dominated 

In general, we write δ = Dδ0 or δ̂ = Dδ̂  
0 where D is the growth factor such that D(z = 0) = 1. 

Growth of baryons vs. cold dark matter: 
Growth of perturbations occurs for λ > λJ or M > MJ 

4
3 π ̄= ρλ3 

J . 
Baryons: 

• Until recombination, there is strong coupling between photons and electrons. 

• Before recombination 
2 cs = 

∂p 
,

∂ρ
p = 

1 
ρc2 ,
3 

(radiation) 
(394)c ⇒cs = √ . 

3 

• After recombination 

2 cs = 
∂p 
,

∂ρ
p = 

ρ 
mkT 

, T = 2.71 K(1 + z), (ideal gas) 
(395)r 

kT ⇒cs = ≈ 5 km/s 
m 
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• So 
≥ 1016 Mz � 1100 : MJ (396) 

z < 1100 : MJ . 105 M 

since after recombination, the photon pressure support is removed. 

• Structure can only form after z ∼ 1000. 

• if structure can only grow from z ∼ 1000, δ will be amplifed by ∼ 103 (since matter 
dominated growth is ∝ a). BUT: the CMB has δ ∼ 10−5 and 10−5 × 103 ∼ 10−2 today, 
which is much less than what we observe in the low redshift universe. This theory of 
structure growth is not suÿcient. 

• Solution: dark matter must have clumped before and baryons fall into dark matter 
wells. 

Cold dark matter: 

• CDM is very cold, so it has a tiny velocity dispersion σ. This means that MJ is tiny 
and collapse on all scales is possible. 

• CDM does not interact with radiation, so it can grow before recombination. 

Cold dark matter is needed to make structure formation work! 

2.B Growth of linear perturbations 

Full general relativity treatment can be used to study growth beyond the horizon scale. 
Modes outside the horizon can always grow (no causal contact):( 

a ∝ t2/3 , matter dominated 
δ ∝ (397) 

a 2 ∝ t, radiation dominated 

Once a mode enters the horizon, its growth changes (note that we have perturbations on 
di˙erent length scales). 
Baryons: 
Baryons have a fnite Jeans length before recombination: r 

c π c 
λJ = √ , (cs = √ ) (398)

Gρ̄ 3 3 

so modes with l < λJ have no growth. However, this is only if l is also within the horizon. 

The growth of the physical horizon is (for Ω = 1): (Z 
cdt 1/2t 2ct, radiation dominated; a ∝ t 

lhorizon = a = 
0 a(t) 3ct, matter dominated; a ∝ t2/3 ⎧ r 

(399)⎪√ 
c 3 

radiation dominated⎨ ,
Gρ̄ 8π 

= r ⎪⎩√ 
c 3 

, matter dominated 
Gρ̄ 2π 
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where we used 
H2 8πGρ 

3 
(for ρ ρcrit 

3H2 

8πG
) ⎧ ⎪⎨ ⎪⎩ 

1 
4t2 

, radiation 

4 
at2 

, matter 

(400) 

horizon < λJ : as soon as mode length l enters the horizon, it will oscillate! So before 
recombination, perturbations can grow if l > lhorizon, otherwise they will oscillate. 

&obs
em( l

observer
emission

&obs
em

observer

emission

comoving 
horizon before

causally 
connected region

comoving 
horizon after

V0

V())

))0

(minimum)

reheating

slow roll

inflation

log(t)

log(')

radiation 
dominated

matter 
dominated

mode enters 
horizon

recombination

∝t, a2 ∝t2/3, a
oscillations

∝t2/3, a

log(t)

log(')

radiation 
dominated

matter 
dominated

mode enters 
horizon

recombination

∝t, a2 ∝t2/3, a
oscillations

∝t2/3, a

�

�

�

�

l

2. 

= == 

= 

The horizon and Jeans mass grow as we have seen before: MJ ∼ 1016M at z ∼ 1000, so all 
modes smaller than 1016M entered the horizon before recombination and therefore start to 
oscillate and stop growing. 

There is also another problem for those modes: Silk damping! Before decoupling, photons 
do not free stream because of Thomson scattering o˙ free electrons. The mean free path 
gets large towards recombination. So: 

- M < MJ ∼ 1016M perturbations oscillate due to photon pressure. 

- Photons can di˙use out of potential wells and take baryons with them (electrons 
through Thomson scattering and protons through Coulomb interactions), which erases 
perturbations. 

The net e˙ect is that all perturbations ∼ 1012M (Silk mass) are damped and erased! 

Cold dark matter: 
Cold dark matter has essentially zero Jeans mass, so all modes can already grow. However, 
for subhorizon modes in the radiation dominated epoch, δ ∼constant (stagnation). Because 
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2. STRUCTURE FORMATION 

the expansion rate is higher than the growth rate, we get: 

1
expansion timescale: τHubble ≈ √ 

Gρr (401) 
collapse timescale: τJeans ≈ √ 

1 

Gρm 

and τHubble � τJeans if ρr � ρm. So modes entering the horizon during the radiation dom-
inated phase are frozen (but not damped through something like Silk damping). After 
recombination, baryons can fall into CDM wells and grow. 
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A mode that enters the horizon at thor after matter-radiation equality at teq will always 
grow. Modes that enter the horizon during the radiation dominated regime will stagnate 
until matter domination. 

Cold dark matter is then the main driver of structure formation since it there is time for CDM 
perturbations to grow large enough. Without CDM, structure formation is not possible. 

2.C Statistical measures of structure 

We see structure on di˙erent scales. We can use the power spectrum P (k) to describe this. 
Reminder: Z 

d3k −i~k·~xδ(~x) = δ̂(~k)e 
(2π)3 Z (402) 

+i~k·~xδ̂(~k) = d3xδ(~x)e 

Variance and the power spectrum: 
average: Z 

hδi = d3xδ(~x) = 0 (403) 

variance: 
σ2 = δ2 − hδi2 = δ2 > 0 Z Z 

d3k (404)
δ2 = d3xδ2(~x) = |δ̂(~k)|2 

(2π)3 
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If we assume homogeneity and isotropy, ~k → k = |~k| and d3~k = 4πk2dk. Then we get: Z 
1 

σ2 |δ̂(k)|2k2dk= 
2π2 Z 

(405)=: 
1 

P (k)k2dk 
2π2 

with P (k) = |δ̂(k)|2 

Notes: 

• P (k) and σ are functions of time since δ̂(k) grows (σ = Dσ0). 

• The initial power spectrum is the primordial power spectrum set at the end of infation. 
The general form is 

P (k) = Akn (406) 
which is a power law and is scale-free. According to predictions from infation, n ≈ 1. 

Measuring P (k) and galaxy clustering: 
If we assume galaxies trace the mass perturbations, what is the probability dP that we fnd 
two galaxies in volumes dV1 and dV2 at a distance r from each other? 

dP = n0(1 + δ(~x))dV1 · n0(1 + δ(~x + ~r))dV2 

= n 20(1 + δ(~x) + δ(~x + ~r)+δ(~x)δ(~x + ~r))dV1dV2|{z} | {z } (407) 
=0 =0 

= n0
2(1 + ξ(r))dV1dV2 

where δ(~x) and δ(~x + ~r) are zero on average and ~r → r due to isotropy. ξ is the two-point 
correlation function and is related to P (k): Z 

d3ξ(r) = ~xδ(~x)δ(~x + ~r) Z Z Z 
d3k d3k0 ˆ −i~k·~x ˆ −i~k0·(~x+~r)= d3 ~x δ(~k)e δ(~k0)e 
(2π)3 (2π)3 | {z }R 

d3k0 +i~k0 x+~δ̂(~k0)e ·(~ r) (δ real)
(2π)3 � �2 Z Z Z 

1
d3 −i(~k−~k0)·~x −i~k~r = ~x d3k d3k0 δ̂(~k)δ̂(~k0)e e 

(2π)3 Z 
1 i(~ k0)·~ ~using d3 xe k−

~ x = δ(~k − k0) (408)(2π)3 Z 
1 i~ 

= |δ̂(~k)|2 e k·~rd3k 
(2π)3 Z 
1 

= |δ̂(k)|2 e i
~k·~rd3k where ~k → k from isotropy 

(2π)3 Z 
1 i~k·~rd3k= P (k)e 

(2π)3 Z 
1 i~k·~rd3k⇒ ξ(r) = P (k)e . 

(2π)3 
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Observationally: � �−1.8 
r 

ξ(r) ≈ (409) 
r0 

with r0 ≈ 5 h−1 Mpc for galaxies. Di˙erent objects have a di˙erent r0, and more massive 
objects are more clustered, e.g. the cluster-cluster correlation function di˙ers from the 
galaxy-galaxy correlation function: ξcc ≈ 20ξgg. 

2.D Form of the primordial power spectrum 

There is no scale in the power spectrum P (k) = Akn . We want to know what n and A are. 
Initially, fuctuations on di˙erent scales should have the same amplitude on di˙erent scales. 

Power spectrum index: 
Fluctuations on certain mass or length scales are (0 is large scale, kmax is the smallest scale): Z kmax 

σ2 ≈ P (k)k2dk 
0Z kmax (410)

Akn+2dk ∝ kn+3 = max 
0 
1 (n+3) 1 (n+3)2⇒ σ ∝ k or σ ∝ k 2max 

For mass, we get: 
M ∝ R3 ∝ k−3 ⇒ k ∝ M−1/3 

(411)1 
6
(n+3)⇒ σ ∝ M− 

So: (
k 
1 
2
(n+3) 

(412)σ ∝ 1 
6
(n+3)M− 

Does this tell us something about n? Modes can always grow outside the horizon, but we 
do not want “special" modes. All modes should therefore have the same σ, i.e. the same 
strength/fuctuation amplitude, when they enter the horizon. 

The horizon mass, i.e. the mass within the horizon, is: 

Mh ∝ ρmr 
3 
h (413)

ρm ∝ (1 + z)3 

and ( 
a 2 = (1 + z)−2 , radiation dominated 

rh ∝ 
a 3/2 = (1 + z)−3/2 , matter dominated ( (414)
(1 + zh)

−3 , radiation dominated 
⇒ Mh ∝ 

(1 + zh)
−3/2 , matter dominated 
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σ grows: 
σ ∝ δ( 

a 2 = (1 + z)−2 , radiation dominated (415)
σ ∝ 

a 3/2 = (1 + z)−1 , matter dominated 

We now fnd σ of the horizon mass, i.e. the fuctuation strength once this mode enters. 

• radiation dominated case: � �2
1 + zp

σ(zh) = σ(zp) ∝ σ(zp)(1 + zh)
−2 (416)

1 + zh 

where zh is the redshift once mass M is within the horizon, and zp is the redshift at 
the end of infation. Then 

σ(zp) ∝ M− 1 
6
(n+3) 

Mh = M ∝ (1 + zh)
−3 ⇒ (1 + zh)

−2 ∝ M2/3 

so we fnd: 

(417) 

σ(zh) ∝ M− 1 
6
(n+3)M2/3 = M−( 1 n−4+ ) (418)2 6 

• matter dominated case 
This follows the same calculation, so we get the same result and the fuctuation of a 
mode once it enters the horizon is: 

σ(zh) ∝ M−( 1 
2
+ n−4 

6
) (419) 

Now, we do not want “special" modes, so σ(zh) should not depend on n! We get n ≈ 1 
according to the Harrison-Zel’dovich spectrum. 

Power spectrum amplitude: 
n can be calculated with theory from infation, but the amplitude comes from observations. 
We measure the number of fuctuations in galaxy surveys within a sphere of 8 Mpc/h, or σ8. 
The fuctuations in galaxies are not exactly the fuctuations in mass: 

σ8,gal = bσ8,mass (420) 

where b is the bias of the galaxy clustering compared to the mass fuctuations. Observation-
ally, σ8,gal ≈ 1. From WMAP and SDSS, we have: 

n = 0.953 ± 0.016 
(421)

σ8 = 0.756 ± 0.035 

Transfer function: 
We found that modes entering the horizon during the radiation dominated phase do not grow 
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(stagnation).� The� primordial� power� spectrum� is� therefore� modified� by� the� transfer� function:�

P0(k) = (Ak)T 2(k),(
1,

1 � L0 (422)kT (K) ≈  1 1( , � L0
k2 k

where� L0 is� the� comoving� horizon� at� zequality.�

2.E� Nonlinear� evolution:� spherical� collapse�

For� δ � 1,� we� can� use� linear� perturbation� theory,� but� for� δ ∼ 1,� nonlinear� evolution� begins�
and� halos� form.� This� requires� simulations.�

Halos:�

• A� distribution� of� dark� matter� as� a� collection� of� nearly� spherical� overdense� clouds� to�
form� halos.�

• We� study� the� dynamics� of� spherical,� homogeneous� overdensities� for� a� basic� understand-
ing.� This� is� the� spherical� collapse� model.�

Spherical� collapse� model:�
We� consider� an� overdense� sphere� in� an� Einstein-de� Sitter� cosmology.� The� overdensity� will�
eventually� reach� a� maximum� radius� and� then� collapse� to� a� virialized� halo� because� the� gravity�
within� the� overdensity� is� stronger.�

P0(k)

k0=1/L0 k

a
R

−3/2H = H0a Friedmann� equation� for� Einsten-de� Sitter�
a

x =
ata

ata is� the� scale� factor� at� maximum� expansion� (423)�
R

y =
Rta

radius� in� units� of� maximum� radius�

We� can� simplify:�

−3/2
τ = Htat (with� Hta = H0ata )

dx 1 ȧ H′ −1/2⇒ x = = = x = x
dτ Hta ata Hta (424)�

−3/2 −3/2H H0a a
(using� = = = x−3/2 for� the� final� equality)−3/2 −3/2Hta H0a ata ta

So�
′ −1/2x = x (425)�
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We use the Newtonian equation of motion for the radius R: 

GM 4π G¨ R = − = − 
3 
ρtaRta

3 

R2 R2| {z } (426) 
enclosed mass stays the same 

We can rewrite this: 
3H2 

ρta = ta ξ (427)
8πG 

where ξ is the overdensity parameter, which is the overdensity of the halo with respect to 
the background at turnaround (ξ > 1 for overdensities). Then using τ and y, we have: 

ξ 
y 00 = − (428)

2y2 

with the boundary conditions 
y 0|x=1 = 0 (429) 
y|x=0 = 0 

and we can solve the equations: 
0 −1/2 x = x 

00 3 (430) 
y = − 

22y 

Then we get an implicit solution for x: 

20 −1/2 ⇒ 3/2 (431)x = x τ = x 
3 

So � � 
3 

τ 2/3 x = 
2 � �2/3 (432)

dx 2 3 
τ −1/3 −1/2 = = x 

dt 3 2 

We also have r p 
y 0 = ± ξ 

1 − 1 (433) 
y 

using the frst boundary condition. We also use the + before turnaround and the − after. 
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Then p � �1/2 
! 

dy0 d 1 
= ± ξy0 − 1 

dτ dy y � �−1/2p 
= ± ξy0 

1

2 y 
1 − 1 (−y −2) !� �−1/2 (434)ξ 1 1 

= − ±√ y 0 − 1 
2y2 ξ y � � r ��−1pξ 1 

= − y 0 ± ξ − 1 
2y2 y| {z } 

=1 

Integrating before turnaround and using the second boundary condition gives us an implicit 
solution for y: � �p1 1 π 

τ = arcsin(2y − 1) − y − y2 + . (435)
ξ 2 4 

At turnaround: 
2 

x = 1 = y, τ = 
3⎛ ⎞ 

2 1 ⎜1 π ⎟ 1 π ⇒ = √ ⎝ arcsin(1) + ⎠ = (436)3 ξ 2 | {z } 4 ξ 2 
π/2 � �2

3π ⇒ ξ = 
4 

so we get the overdensity parameter ξ. 

At collapse: 
We assume symmetry, so we get collapse at τ = 4

3 . Then � �2/3 � �2/3 � �2/3
3 3 4 

xc = τ 2/3 = = 41/3 (437)
2 2 3 

Collapse parameters: 

• Linearly extrapolated values: 
at early times, y � 1, so � � 

8 3y
τ ≈ y 3/2 1 + . (438)

9π 10 

The overdensity inside the halo relative to the background is: � � 
x 

Δ = ξ. (439) 
y 
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Note here that ξ is the overdensity at turnaround, and we want to fnd Δ at collapse. 
The background density is proportional to x−3 , and the halo density is proportional to 
y−3 . We also know that x = y = 1 at turnaround, where Δ = ξ. Now � � � � 

2 2 8 3y3/2 ⇒ 3/2 ≈ 3/2τ = x x y 1 + 
3 3 9π 10 � �3/2 � � 

x 3 8 3y⇒ = 1 + 
y 2 9π 10 � �3 � �2 � �2 
x 4 3y (440)⇒ = 1 + 
y 3π 10| {z } | {z } 

=1/ξ ≈(1+ 3y )� �3 

5 

x 3y⇒Δ = ξ = 1 + 
y 5 

linear density contrast (assuming y � 1): 
3y

δ = Δ − 1 = (441)
5 

– The linearly extrapolated density contrast at turnaround is: 
ata δ 3y

δta = δ = = (442) 
a x 5x 

since linear perturbations δ grow like the scale factor. Now � �−2/3 � �2/3
1 3τ 3π 1 
= ≈ (443) 

x 2 4 y 

using the lowest order in y. We can then insert this into δta and get: � �2/3
3 3π 

δta = ≈ 1.06 (444)
5 4 

– The linearly extrapolated density contrast at collapse is: � �2/3 
ac 3 3π 

δc = δta = xcδta = 4
1/3δra = ≈ 1.69 (445) 

ata 5 2 

So the halo can be considered collapsed when its density contrast expected from lineary 
theory has reached δc. If we draw a density feld as a function of one-dimensional space, 
we can identify which overdensities will collapse at a given time: 

P0(k)

k0=1/L0 k

a
R

time
'c

x

'(x)

'c

collapsing overdensities

x

'(x)
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• Nonlinear values: 
We now look at the potential energy of a halo: 

at turnaround: E = Vta (no kinetic energy) 

at collapse: E = Tc + Vc =
1 
Vc (virial theorem: 2Tc + Vc = 0) (446)2 

1 ⇒Vra = E = Vc ⇒ Vc = 2Vta
2 

Since potential energy is proportional to 1 
r and y = 1 at turnaround, we know that 

y = 1
2 at virialization. Then we get the overdensity at this time: � �3 � �3 � �2

41/3xc 3π 
ΔV = ξ = 1 ξ = 32ξ = 32 = 18π2 ≈ 178 (447) 

y 
2 

4 

A halo in virial equilibrium is expected to have a mean density of ∼ 178 higher than 
the background. This is why masses and radii of halos are often quoted as M200, which 
is the mass enclosed in a sphere of radius R200 with an average density 200 times the 
mean or critical density of the Universe. 

2.F Press-Schechter mass function 

We want to know the halo mass function, i.e. the number density of a given mass of halos 
at a given redshift. 

Analytic derivation: 
We consider a halo of mass M . The characteristic length scale is then R(M) = R: 

4π
R3ρc(z)Ωm(z) = M 

3 � �1/3 (448)
3M ⇒R(M) = 

4πρc(z)Ωm(z) 

Halos of mass M are then forming if the smoothed density feld δ̄  crosses δc = 1.69: Z 
δ̄(~x) = d3yδ(~x)WR(|~x − ~y|) (449) 

where WR is the window function. 

The variance on the scale R(M) is: Z ∞ 

σR 
2 =

1 
k2dkP (k)Ŵ 

R(k) . (450)
2π 0 

Infation produces a Gaussian random feld, so the probability of fnding a smoothed density 
contrast δ̄(~x) at a given point in space ~x is: 

δ̄2(~x)1 − 
2σ2 (z)

Rp(δ̄(~x), z) = p e (451)
2πσR 

2 (z) 
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where σR(z) is the linearly evolved σR : σR(z) = σRD(z) for growth factor D. 

The Press-Schechter idea is that the probability of fnding the fltered density contrast at 
or above the linear density contrast for spherical collapse, δ̄  > δc, is equal to the fraction of 
volume flled with halos of mass M : Z ∞ � � 

F (M, z) = dδp¯ (¯ 
1
erfc √ 

δc 
. (452)δ, z) = 

2δc 2σR(z) 

The distribution of halos over mass M is simply ∂F (M,z) . To calculate this, we need:
∂M 

2σ2 D2(z)−√ −√ 

∂ − 
dσR(z) ∂ 

= 
dσR ∂ 

. (453)
∂M dM ∂σR(z) dM ∂σR 

Using 
d 
d 
x erfc(x) = −√2 

π e
−x2 , we get: � � �� 

∂F (M, z) 
= 
dσR ∂ 1 

erfc √ 
δc 

∂M dM 

dσR 

∂σR � 
1 

2 

δc 

2D(z)σR � 
2 − 

δ2 
c 

! 
R= e 

dM 2 2D(z)σR 
2 π 

(454)
δ2 
cdσR δc − 

2σ2 D2(z)= √ e R 

dM 2πσR 
2 D(z) 

δ2 
c1 δc d ln(σR) − 

2σ2 D2(z)= √ e R 

2π σRD(z) dM 

so 

∂F (M, z)
dM = fraction of volume flled with halos of mass [M, M + dM ]. (455)

∂M 

We must convert ∂F to an actual halo mass function. We convert to comoving number 
∂M 

density by dividing by the mean volume M/ρc(z)ΩM (z) occupied by mass M halos: 

δ2 
c∂F (M, z) 1 ρc(z)ΩM (z)δc d ln(σR) − 

2σ2 1 
D2(z)= √ e R (456)

∂M 2π σRD(z) dM M 

However, we need a fudge factor for the mass function to work. We require Z 1 ∂F (M, z)
dM = 1 (457)

∂M 0 

since ∂F is a volume fraction. But we get 1 using ∂F (M,z) above! We therefore add a factor
∂M 2 ∂M 

of two: r 
δ2 
c2 ρc(z)ΩM (z)δc d ln(σR) − 1 

2σ2 D2(z)
RN(M, z) = e . (458)

π σRD(z) dM M 
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See� Problem� Set� 6� for� a� description� of� the� Extended� Press-Schechter� formalism� that� explains�
the� fudge� factor.�

Here� we� show� the� mass�
function� for� several� theoret-
ical� models� from� Press� and�
Schechter� 1973,� Sheth,� Mo,�
and� Tormen� 2002,� Jenk-
ins� et� al.� 2002,� and� Tin-
ker� et� al.� 2008.� The�
lines� are� fairly� similar,� al-
though� the� Press-Schechter�
deviates� slightly� more� from�
the� other� models.�
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Part III 

CMB, BBN, and Thermal History of the 
Universe 

Image: NASA. Image is in the public domain. 
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1. THE COSMIC MICROWAVE BACKGROUND 

So far, we have mostly discussed the late-time evolution of the Universe (except infation). 
We now study the early phases. 

The Cosmic Microwave Background 

1.A Basic picture of the CMB 

At z ∼ 1000, photons decouple from matter (previously coupled due to Thomson scattering). 
At that time, the dark matter has already formed dark matter potential wells, which leads 
to perturbations in baryons. This leads to temperature fuctuations in the CMB δT 

T ∼ 10−5 

(note: without dark matter, we would expect δT 
T ∼ 10−3). This leads to anisotropies in the 

CMB. 

Primary anisotropies: 
These are anisotropies caused by porperties of the CMB. 

• Large scales: 

– 

P0(k)

k0=1/L0 k
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time
'c

x

'(x)

'c

collapsing overdensities

x

'(x)

ˠ Dark matter potential wells lead to gravitational redshift 
and gravitational time delay. Photons were scattered 
earlier (and then delayed), so they were higher temper-
ature. 

Both e˙ects (gravitational redshift and time delay) always happen together. This 
is the Sachs-Wolfe e˙ect. 

– Doppler e˙ect due to the peculiar motion of electrons. 

• On scales larger than the horizon, baryons follow dark matter, leading to higher tem-
peratures in dark matter wells. 

• On scales smaller than the horizon, baryons feel radiation pressure. This leads to 
baryonic acoustic oscillations (BAO). 

• On very small scales, the imperfect coupling between photons and electrons leads to 
di˙usion. Fluctuations are smeared out and damped on scales ≤ 50 . This is called Silk 
damping. 

Secondary anisotropies: 
These impact the measurements of the CMB due to e˙ects on photons as the travel from 
the CMB to us. 

• Thomson scattering of CMB photons: the Universe was reionized by the frst stars, 
galaxies, and quasars between z ∼ 1000 and z ∼ 6. These photons then experience 
Thomson scattering with free electrons as they travel through space. The scattering is 
isotropic, so it results in an overall reduction of CMB anisotropies. 
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1. THE COSMIC MICROWAVE BACKGROUND 

• Integrated Sachs-Wolfe e˙ect: photons experience gravitational potential and time 
delays as they travel through structures in the Universe. 

• Gravitational lensing from structures in the Universe. 

• 
Sunyaev-Zel’dovich (SZ) e˙ect: CMB photons passing 
through the hot intergalactic medium of galaxies Thom-
son scatter with electrons. This reduces the intensity for 
lower frequencies and increases the intensity for large 
frequencies, resulting in a shift in the spectrum. 
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1.B Describing anisotropies and the fuctuation spectrum: 

We focus now on understanding the primary anisotropies. We have three main e˙ects: 

• Large scales: Sachs-Wolfe and Doppler e˙ects roughly compensate each other. The 
photons then provide an imprint of the dark matter distribution. 

• Smaller scales: Baryonic acoustic oscillations of the photon-baryon plasma. 

• Smallest scales: Silk damping due to photon di˙usion. 

We need to quantify the temperature fuctuations on the sky. We decompose the fuctuations 
into spherical harmonics: X 

T (~θ) = (~almY m θ)l (459) 
l,m 

where ~θ = (θ, ϕ) and alm are the complex coeÿcients Z 2π Z π 

alm = dϕ dθ sin θT (θ, ϕ)Y m∗ (θ, φ)l1 
(460) 

0 0 

since Z 2π Z π 

dϕ ∗ dθ sin θY m1 (θ, ϕ)Y m2 (θ, ϕ) = δl1l2l1 l2 
δm1m2 . (461) 

0 0 

We defne the power spectrum: 
Cl = |alm|2 (462) 

averaging over m. We often plot l(l + 1)Cl and defne this as the amplitude of fuctuations 
on the angular scale θ ∼ π

l = 180 
l 

◦ . l = 1 is the dipole anistropy due to the motion of Earth 
and l = 2 is the quadrupole anisotropy. 

Fluctuations on large scales: 
At z = zrec ∼ 1000, there is a characteristic scale the horizon with angle: p

ϕhorizon,rec ≈ 1.7◦ Ωm,0 (463) 
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1. THE COSMIC MICROWAVE BACKGROUND

so� for� a� flat� universe:� ϕhorizon,rec ≈ 1.7◦.� Then� for� θ � 1.7◦,� large-scale� effects� dominate�
(Sachs-Wolfe� and� Doppler)� and� there� are� no� baryonic� acoustic� oscillations.� Then� Cl re-
flect� the� matter� power� spectrum� P (k) on� large� scales.� For� P (k) ∝ k (Harrison-Zel’dovich�
spectrum),� l(l + 1)Cl is� approximately� constant� for� l � 180◦ ≈ 100.

1.7◦

Fluctuations� on� small� scales:�
For� θ � 1.7◦,� physical� effects� can� act.�

√
The� baryon-photon� fluid� has� a� sound� speed� of� cs ≈ c/ 3.� Then� the�
largest� wavelengths� such� that� the� wave� can� have� half� an� oscillation�
(compression)� until� zrec, trec is:�

c
λmax = treccs = trec√ . (464)
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The� sound� horizon� is� √1 times� smaller� than� the� horizon.� The� angular� scale� is� then�
3

1.7◦
θ1 ≈ √ ∼ 1◦

3 (465)�
l1 ≈ 200

so� we� can� expect� the� first� peak� in� l(l + 1)Cl there� since� baryons� are� compressed.� Adiabatic�
compression� and� the� Doppler� effect� lead� to� temperature� fluctuations� on� that� scale.�

The� second� peak� occurs� for� scales� for� which� one� full� oscillation� is� possible� and� so� forth:�
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Peaks� happen� at� stationary� points� of� oscillations.� We� can� draw� the� power� spectrum:�
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from� the� first� peak:�
extent� of� the� first� peak� does� not� strongly� depend� on� Ωk,� but� the� angular�

scale/angular� diameter� distance� is� sensitive� to� Ωk.�

universe,� the� angular� size� of� the� sound� horizon�
smaller,� and� the� first� peak� will� move� to� larger� l.�
universe,� it� will� appear� larger,� so� l will� be� lower�

for� the� first� peak.�

l
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horizon
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baryons high 
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1. THE COSMIC MICROWAVE BACKGROUND

1.C� Cosmology� with� the� CMB�

We� can� derive� the� cosmological� parameters�
Ωk,Ωm, and� Ωb from� the� first� and� second�
peaks� of� the� power� spectrum.�

• Derive� Ωk

The� actual�

In� an� open�
will� appear�
In� a� closed�

• Derive� Ωm from� the� first� peak:�
A� naive� assumption� might� lead� us� to� believe� that� more� matter� means� more� gravity� and�
so� bigger� peaks.� However,� the� timing� effect� is� more� important!�

Consider� two� values� of� Ωm (Ω1 > Ω2).� For� larger� Ωm,� the� universe� is� younger� for� a�
given� redshift� (e.g.,� zrec).�
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2. THERMAL HISTORY OF THE UNIVERSE 

l
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Note: based on the frst peak, we get Ωm 

Ω1 > Ω2 leads to t1 < t2, so there’s not as much 
time to form structures and we get a smaller peak! 

and Ωk, so also ΩΛ (assuming fat universe)! 

• Derive Ωb from the second peak: 
Ωb is degenerate with Ωm, so we need the second peak. This can also be derived from 
Big Bang nucleosynthesis. 

The idea is that a higher baryon mass is like adding mass to a spring (“baryon loading"). 
More mass causes a deeper fall: 
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With more loading, the mass falls deeper but rebounds to the same position. Thus, 
odd peaks are associated with compression, i.e. how deep the baryons fall into the 
well. Those peaks get enhanced with more baryons, so the second peak is compressed 
compared to the frst peak. We can therefore constrain Ωb with the ratio of the two 
peaks. 

Thermal history of the Universe 

The main idea is that the Universe was very hot in the beginning since T ∝ (1 + z). For 
a particle with mass mx and temperature such that kT & mxc

2 , we have creation and 
annihilation reactions. Once T falls low enough, we get freeze-out and the reactions stop, 
freezing the abundance of those particles. (Note: 1eV = 1.1605 × 104 kB K ⇒ 1 eV ↔ 104 K.) 
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2. THERMAL HISTORY OF THE UNIVERSE 

We frst discuss in some more depth the freeze-out of dark matter, which happens around 
10 − 100 GeV. We then briefy discuss the remaining thermal history for temperatures below 
∼ 16 GeV (standard model physics). Big Bang nucleosynthesis will be discussed in the next 
chapter. 

2.A Thermal history of dark matter 

Where does dark matter come from? At early times (T > 1012 K ∼= 100 GeV), we have 
kT ≥ mxc

2 for leading dak matter candidates. For non-relativistic particles in equilibrium: � �3/2
mkT − mc 2 

kT neq = g e . (466)
2π~2 

We have equilibrium between creation and annihilation: 

x + x̄ 2γ . (467) 

For creation rate ψ and annihilation rate n2hσvi, where hσvi is the velocity averaged cross 
section for annihilation, we have: 

ψ = n 2eqhσvi . (468) 
2 −mc2/kT At late times, kT falls below mc , so e → 0. If annihilation continues to happen, 

no particles will be left since new particles cannot be created at low temperatures, which 
would leave no relic abundance. However, the annihilation rate n2hσvi also goes down since 
n ∝ a−3 . If there’s no creation or annihilation: !� �−3

dnc a
comoving: = 0 nc = n 

dt a0 

dn ȧ (469)
= −3 n 

dt a 
dn ⇒ + 3Hn = 0 
dt 

Thus, annihilation will stop and then there will be a relic abundance. The abundance 
equations with reactions is: 

dnc � � 
= −hσvi n 2 

c − n 2 
c,eq (470)

dt 
so the reactions drive nc towards the equilibrium value. 

There are two competing timescales: the expansion of the Universe and the mean interaction 
timescale. We can rewrite the above equation: "� #�2

dadnc 2 nc 
= −hσvin − 1 

da dt c,eq nc,eq|{z} 
ȧ � � 

ȧ (471)H = 
a "� #�2 

a dnc hσvinc,eq nc 
= − − 1 . 

nc,eq da H nc,eq 
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2. THERMAL HISTORY OF THE UNIVERSE

There� are� two� timescales� in� this� equation:� τ = 1/H and� τcoll = 1/(neq〈σv〉).� Then�
[(( ])2

a dnc τH nc
= − − 1 . (472)

nc,eq da τcoll nc,eq

We� have� two� regimes� that� give� us� two� solutions:�

• At� early� times,� τcoll � τH ⇒ nc ≈ nc,eq.�

• At� late� times,� τcoll � τh ⇒ nc ≈ constant� ≈ nc,eq(zfreeze).�

At� redshift� zfreeze,� we� have� τcoll ∼ τH ,� so� particles� freeze� out� of� equilibrium� and� the� comoving�
number� density� stays� fixed.�

From� observed� relic� abundances,� we� get� m and� σ at� the� electroweak� scale,� which� is� predicted�
for� WIMPs!� This� is� known� as� the� WIMP� miracle.� So� far,� however,� nothing� has� been� detected.�

Hot� and� cold� dark� matter:�
Are� particles� moving� relativistically� (hot� dark� matter)� or� non-relativistically� (cold� dark� mat-
ter)� at� freeze-out?� Particles� become� non-relativistic� when:�

3kT (tnr) ≈ mc2 . (473)�

There� are� two� cases:�

• tnr > tfreeze ⇒ hot� relic� and� hot� dark� matter�

• tnr < tfreeze ⇒ cold� relic� and� cold� dark� matter�

Hot� dark� matter:�
Consider� an� analogy� to� the� Jeans� length,� the� free-streaming� length:�

√(
λ = v

π
. (474)

Gρ
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pressed.� But� particles� slow� down� due� to� expansion:�

vpec v −Hd ⇒ v ∝ a−1

and� the� particle� becomes� non-relativistic� once� mc2 ∼ 3kT (relic� time� and� temperature),�

t ∼ 2× 1012s

((
mc2

2 keV

)−2

lh ∼ cth ∼ 60 Mpc

((
mc2

3 keV

)−1

so� hot� dark� matter� erases� all� structures� below� lh due� to� free-streaming.�

Cold� dark� matter:�
Cold� dark� matter� is� already� non-relativistic� at� freeze-out,� so� structures� can� grow.�
some� free-streaming� scale,� but� it� is� much� smaller.�

nc

nc,eq

freeze-out

increasing 
 <!v>

relic 
abundance

time 
1/T

P(k)

primordial 
!k

!k-3

for CDM
HDM

impact of 
transfer function T(k)

2. THERMAL HISTORY OF THE UNIVERSE

This� wipes� out� structures� on� small� scales!� Since� v ≈ c,� scales� below� the� horizon� are� sup-

= (475)�

so:�

(476)�

It� still� has�

Hot� dark� matter� would� not� be� captured� by� small�
potential� wells,� so� it� needs� large� potential� wells� to�
form� structures.� This� leads� to� top-down� structure�
formation,� where� large� large� structures� form� first�
and� fragment� into� smaller� structures.� Cold� dark�
matter� can� form� small� halos� that� merge� into� larger�
ones� in� bottom-up� formation.�

2.B� Thermal� history� of� the� Universe� and� other� particles�

• T ∼ 1019 GeV, t ∼ 10−43 s:�
quantum� gravity� regime�

• T ∼ 1016 GeV, t ∼ 10−38 s:�
GUT� phase� transition:� strong� and� electroweak� interactions� are� indistinguishable� at�
earlier� times�
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3. BIG BANG NUCLEOSYNTHESIS 

• T ∼ 1012 GeV, t ∼ 10−30 s: 
Peccei-Quinn phase transition, if PQ mechanism is the correct explanation for the 
strong CP problem 

• T ∼ 10s − 100s GeV, t ∼ 10−8 s: 
WIMPs freeze out 

• T ∼ 100 − 300s MeV, t ∼ 10−5 s: 
quark-hadron phase transition: quarks and gluons frst become bound into neurons 
and protons 

• T ∼ 0.1 MeV − 10 MeV, t ∼ seconds − minutes: 
Big Bang nucleosynthesis (BBN): neutrons and protons frst combine to form D, 4He, 
3He, and 7Li nuclei 

• T ∼ keV, t ∼ 1 day: 
photons fall out of equilibrium, and the number density of photons is conserved 

• T ∼ 3 eV, t ∼ 104−5 yrs: 
matter-radiation equality: energy density is dominated by photons at earlier times 

• T ∼ eV, t ∼ 400, 000 yrs: electrons and protons combine to form hydrogen 

• T ∼ 10−3 eV, t ∼ 109 yrs: 
frst stars and galaxies form 

• T ∼ 10−4 eV, t ∼ 1010 yrs: 
today 

Big Bang nucleosynthesis 

Once protons and neutrons become available, they can fuse into elements. This allows 
detailed predictions about the abundance of the frst stars. 

Proton/neutron reactions: 
After n, p production from the gluon-gluon plasma: 

n + νe p + e − 

(477) 
n + e + p + ν̄ e 

with weak interactions mediated by neutrinos and � �3/2
mkT − mc 2 

kT neq = g e . (478)
2π~ 

Protons and neutrons have gn = gp = 2, so � �3/2 
nn mn 

2(mm−mp)c 
kT = e − . (479)

np mp 
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So before freeze-out of the above reactions, we have: 
nn 

np 

− 1.29 MeV 
≈ e kT . (480) 

Weak interactions stop once neutrinos freeze out, T ∼ 0.8 MeV, t ∼ 1 s: 
nn 

np 

−1.29/0.8 ≈ 0.2 ,≈ e (481) 

a 5-to-1 ratio. Now nucleosynthesis starts. 

Deuteron fusion: 
We have the strong reaction: 

p + n D + γ (482) 

with the binding energy of deuteron approximately 2.22 MeV. At the time of neutrino freeze-
out, the temperature is already smaller than 2.22 MeV, but there are so many more photons 
than baryons. The high energy tail of photons is still suÿcient to destroy deuteron, so we 
need kB T � 2.22 MeV to eÿciently form deuteron! (The deuteron fusion bottleneck means 
that 4He fusion afterwards is quick.) 

The time delay needed for the temperature to drop below 2.22 MeV causes neutrons to decay 
through β-decay before they can fuse to deuteron. Without fusion to deuteron, all neutrons 
would be gone! 

Note: If we assume the deuteron fusion is instantaneous, what helium/baryon mass fraction 
(Y ) would we get? 
All neutrons would fuse into 4He: 

• think of a group of 12 nucleons: 10p + 2n (5:1 ratio, see above) 

• all neutrons fuse into 4He, so we get one 4He atom and eight free protons 

• 
⇒ Y = 

4 
=
4 ≈ 0.33 (483)

4 + 8 12 
but we observe 0.24, which is lower due to β-decay. 

We now do the precise calculation: 

• p + n D + γ never freezes out. It stops once all neutrons are used up. We can use 
the Saha equation to fnd the abundance: � �3/2 � �−3/2 

2.22 MeVnD gD mD kT 
kT = e (484)

npnn gpgn mpmn 2π~2 

where gp = gn = 2 (2 spin confgurations) and gD = 3 (3 spin confgurations: ↑↑, ↓↓, ↑↓). 
We also know mp = mn = mD/2, so: � �−3/2 

2.22 MeVnD mnkT 
kT = 6 e (485)

π~2npnn 
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• Protons always outnumber neutrons, so defne the time of deuteron fusion is the time 
when half the neutrons have fused into deuteron: nD = nn. Then from the Saha 
equation: � �−3/2 

nD mnkT 2.22 MeV 
kT = 1 = 6np e (486)

π~2nn 

We now want to know when this happens. We can relate np to the temperature to 
calculate the corresponding temperature and time. We can relate np to nb, which we 
can relate to nγ through the fxed baryon-to-photon ratio η. 

nb = np + nn =
6 
np (487)
5 

since nn = 0.2np = 1
5 np. Then, for a black-body, !� �3 
np 5 5 5 kT 
= ⇒ np = ηnγ = η 0.24 (488)

nb 6 6 6 ~c 

so we get: � �3 � �−3/2
5 kT mnkT 2.22 MeV 

kT 1 = 6 η · 0.24 e 
6 ~c π~2 � 

π~2 �3/2 
2.22 MeV 

= η e kT 
0.24 · 5 (kT )2 

1.25 )~c)2 mnkT � �3/2
kT 2.22 MeV 

= η π3/2 · 1.25 e| {z } 2 
kT 

mnc (489)
5.5 · 1.25 = 6.9 � �3/2

kT 2.22 MeV 
kT ≈ 6.9η e 

mnc2 

(fducial η ∼ 5 × 10−10)� �3/2
kT 2.22 MeV 

kT ≈ 3.4 × 10−9 e 
2mnc 

So we get 
T ≈ 8 × 108 K, t ≈ 200 s (490) 

for the time of deuteron fusion! 

• We lose neutrons through β-decay with a half-life t1/2 = 890 s. After 200 s, 

nn ≈ 0.15 < 0.2 (491) 
np 

so we get a helium-to-baryon ratio: 

4nHe 2nn 2nn
Y = = = (492)

4nHe + nH 2nn + (np − nn) np + nn 

110 



3. BIG BANG NUCLEOSYNTHESIS 

since nHe = nn/2 (every 4He nucleus has 2n) and nH = np − nn (since 4He nucleus has 
equal number of protons and neutrons), leaving us with 

2(nn/np)
Y = ≈ 0.25 (493)

1 + (nn/np) 

Notes: 

• Large Ωb leads to larger η, so deuteron can form earlier and there is less neutron decay. 
This leads to a larger nn/np, so Y increases with Ωb. 

• Measurements of 4He and D allow us to determine η and Ωb. Deuteron abundance is 
a sensitive measure for Ωb, and can be found with the Lyman-α forest relatinh line 
strength of H and D. 
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1. THE LYMAN-α FOREST

So� far,� we� have� gone� through� the� basic� concepts� of� the� early� universe,� galaxies,� and� structure�
formation.� We� have� built� the� basis� to� discuss� some� more� advanced� topics.�

The Lyman-α forest

1.A� Basics�

The� lyman-α forest� is� the� absorption� spectrum� of� quasars.� Quasars� are� very� bright� from�
accretion� onto� supermassive� black� holes� so� can� be� observed� out� to� very� high� redshifts.� They�
can� therefore� probe� gas� between� the� quasar� and� us� along� the� line� of� sight� through� their�
absorption� lines.�

The� quasar� emits� at� 1216 Å� from� the� hydrogen� n = 2 to� n = 1 transition.� This� emission�
line� is� redshifted� as� it� travels� through� space.� The� light� also� passes� through� neutral� hydrogen�
clouds,� which� absorb� at� 1216Å,� and� these� absorption� lines� are� also� redshifted� as� the� light�
continues� to� travel� through� space.� By� the� time� the� light� reaches� Earth,� there� is� a� series�
of� absorption� lines� redshifted� from� 1216 Å,� so� the� absorption� lines� are� observed� at� different�
wavelengths.�

By� observing� quasar� spectra� passing� through� the� intergalactic� medium� (IGM),� we� can� use�
the� lyman-α forest� to� probe� the� density,� ionization,� temperature,� chemistry,� and� structure�
of� the� IGM.� Below� are� a� few� examples� of� quasar� spectra.� At� higher� redshift,� there� are� more�
opportunities� for� the� light� to� pass� through� neutral� hydrogen� clouds.�
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1. THE LYMAN-α FOREST 

Notes: 

• Identify lines in general through doublets: µ0II (λ = 2795Å, 2802Å...) 

• Lyman-α forest is only visible if it extends to shorter wavelengths then the observed 
Lyα emission line at (1 + zem)1216 Å. Photons emitted with 1216Å(1 + zem < λ) < 
1216Å will have at some point along the line of sight have the right rest frame wave-
length (1216Å) to be absorbed. 

• There are three cases for HI along the line of sight 

– column density NH . 1017 cm−2 gives narrow lines, i.e. the forest 

– column density NH & 1017 cm−2 are lyman-limit systems, i.e. photons with λ . 
912Å = 13.6eV in the rest frame are completely absorbed as the light moves 
through the cloud 

– column density NH & 1032 cm−2 are damped Ly-α systems, i.e. absorption lines 
become very broad. 

The Gunn-Peterson Test: 
We can use quasar absorption spectra as a hint about reinoization and determining how 
baryons are distributed in the universe and in which state. The key idea is that neutral 
hydrogen along the line of sight leads to absorption, so if there is a signifcant amount of 
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1. THE LYMAN-α FOREST

neutral� hydrogen� then� a� quasar� spectrum� should� be� totally� absorbed.� When� the� redshift� is�
high� enough� so� that� the� hydrogen� is� almost� all� neutral,� the� high-wavelength� region� of� the�
spectrum� will� be� almost� totally� absorbed.� This� is� called� the� Gunn-Peterson� trough.�

What� is� observed?�

For� z � 6 we� see� supression�
due� to� lots� of� neutral� hydro-
gen� along� the� line� of� sight.�

For� z � 6,� we� see� little� sup-
pression� due� to� little� neu-
tral� hydrogen� along� the� line�
of� sight.�

This� implies� that� hydrogen� above� z ≈ 6 is� mostly� neutral� and� mostly� ionized� below� z ≈ 6.�

115�



1. THE LYMAN-α FOREST

1.B� A� quantitative� approach� to� Lyman-α

We� now� look� in� more� detail� at� the� absorption� process:�

F (λobs) = F (λem(1 + z))e−τ (494)�

where� τ is� the� optical� depth,� which� we� need� to� calculate.�

Photons� en� route� through� a� neutral� HI� cloud� hit� atoms� in� the� ground�
state� which� then� transition� to� an� excited� state� (n = 1 → 2, n = 1 →
2, ...n = 1 → ionized).� Each� transition� has� a� frequency� dependent�
cross-section.� The� atoms� then� settle� back� to� the� ground� state� and�
a� photon� is� emitted� in� some� other� direction� within� the� solid� angle�
4π.�

From� atomic� physics,� we� know� that�

πe2
σ(ν) = fφ(ν − ν0) (495)�

mec

where� f is� the� oscillator� strength� (i.e.� the� probability� for� absorption)� and� φ is� the� Voigt�∫(
profile� with� φdν = 1.� For� the� Lyman-α transition,� σ(ν) = 10−2 cm2φ(ν − ν0) with� units�
cm2Hz−1.�

The� proper� length� dl can� be� related� to� redshift� (taking� only� the� magnitude� and� ignoring�
signs):�

da c da c da da
dl = cdt = c = = = (1 + z)c (496)

ȧ a ˙ a H Ha/a

and� since� a = 1/(1 + z) then� d
d
a
z
= 1/(1 + z)2 so�

1 dz cdz
dl = c = (497)

1 + z H(z) (1 + z)H(z)

giving� ( √( )−1

dl =
cdz

= c H0(1 + z) ΩM,0(1 + z)3 + ΩΛ dz . (498)
(1 + z)H(z)
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For the matter dominated regime (z & 1), we get 

cdz 
. (499)dl = p 5 

2H0 ΩM,0(1 + z) 

Then the optical depth is Z z c 0)0 nHI(z 0) − ν0)τν = σ0 dz φ(ν(1 + z (500)1 5 
0 (1 + z0)2 

M,0 
2H0Ω 

and we can assume that φ, which has a Gaussian shape, is very narrow so is approximately 
a delta function Z z c 0)0 nHI(z 0) − ν0)≈ σ0 dz δ(ν(1 + z1 5 

(1 + z0)2 2H0Ω 0 
M,0 (501)

nHI(z) c 1 
= σ0 1 ν0

3 
(1 + ) 2z2 

M,0H0Ω 
cand using λ0 = 
ν0 
, we get 

nHI(z)λ0 (502)τν (z) = σ0 
31 

2H0Ω (1 + z) 2M,0 

where σ0 = 10−2 cm2 and z is the redshift when λ(1+ z) = λ0, i.e. when absorption happens. 
This gives the optical depth for one frequency, so is necessary to evaluate at many frequencies 
to get the optical depth for di˙erent parts of a spectrum. 
As an example, we can evaluate τν (z = 3) assuming hydrogen is uniformly distributed and 
neutral. Using 

H0 = 70 km/s/Mpc = 2.3 × 10−18 s −1 � �3
ρcritΩb,0 −3 1 + z −3 nHI = (1 + z)3 ∼ 10−5 cm ≈ 10−5 cm at z = 3 
mH 4 (503) 

λ0 = 1216 Å 
σ0 = 10−2 cm 2 

we get τLyα ∼ 105 , but we observe that τ ∼ 1. 

The are a couple possible solutions to this discrepancy. It could be that gas isn’t in inter-
galactic space. However, we know that this is not the case since we have observed it. The 
other option is that the gas isn’t neutral. To bring τLyα(z = 3) down to ∼ 1, we need to 
have the neutral hydrogen fraction XHI ≡ nHI ∼ 10−5 . 

nH 

Ionization: 
How does the hydrogen get ionized? 
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Ionization can occur in hot temperatures. We can estimate the temperature from absorption 
line widths: 

Δv ∼ 20 km/s 
1 
mv 2 ∼ kT r2 

(504)
2kT ⇒20 km/s ∼ 
m 

⇒T ∼ 30, 000 K ∼ 3eV 

which is not enough to ionize hydrogen. 

Another option is photoionization. Integrated light from galaxies and quasars emit Γ ∼ 10−12 

ionizing photons per second. The ionization rate is then ΓnHI, and the ionization timescale 

We can compare this with the recombination rate RnHIIne where R = 4.3 × 10−13 T 

is 
nHI ∼ 1012 s ∼ 30, 000 yr 
nHIΓ 

(505) � �−0.7 

104 K 
which gives the recombination timescale 

nHII ∼ 2 × 1017 s ∼ 3 × 106 yr (506)
RnenHII 

so recombination is much slower than ionization and photoionization is plausible. 

To establish the predicted ionization fraction, we fnd equilibrium by setting the ionization 
and recombination timescales equal: 

RnHIIne = ΓnHI (507) 

and assume that nHII ∼ ne ∼ nH and nHI � nHII so 

Rn2H = XHInHΓ (508) 

which gives a neutral fraction of 

XHI ≈ 
RnH ∼ 5 × 10−6 . (509)
Γ 

So at the present day, the ionization fraction is very small. However, it took a while between 
recombination and the present day for ionizing sources to form and begin emitting radiation 
to ionize the neutral gas. Once they formed, the gas was ionized over a period of time. 
Before recombination, the gas was mostly ionized in the hot universe. Exactly how and when 
reionization occurred is an active area of research that is being probed by both telescopes 
like HERA and simulations like THESAN. 
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