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Luminosity-velocity relations:
We can relate properties of a galaxy to observables through several equations:

θ =
R

d
(apparent size)

F =
L

4πd2

v2 =
GM

R
.

(158)

Introducing surface brightness Σ

Σ =
F

θ2
=

L

4πd2
· d

2

R2

=
L

4π
· v4

G2M2

(159)

then
L =

v4

Σ4πG2(M/L)2
. (160)

If we assume, for a given class of galaxies, that the surface brightness and the mass-to-light
ratio are the same, then

L ∝ v4 . (161)

This introduces two important relations.

The Tully-Fischer relation is used for spiral galaxies and relates the maximum velocity in
the rotation curve vmax, which can be measured from HII spectra, and the luminosity:

L ∝ v4
max . (162)

The Faber-Jackson relation is used for ellipticals and relates the velocity dispersion σv to the
luminosity:

L ∝ σ4
v . (163)

Thus, we can get an estimate of the intrinsic luminosity of a galaxy be measuring stel-
lar velocities. The constant of proportionality is roughly L∗/(220 km/s)4, where L∗ is the
characteristic galaxy luminosity.

3.C Phase-space distribution function

We have described the individual orbits in a potential, but this is not sufficient to describe
galactic dynamics. We want information of the configuration of all particles. Each star is
described by its position ~x and velocity ~v, and we need to know this for all stars, i.e. how
stars are distributed in the 6D phase space (~x,~v).

We define a phase-space distribution function

f(~x,~v, t)d3 ~x d3~v (164)
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as the probability that at time t, a randomly chosen star has
(~x∗, ~v∗) ∈ ([~x, ~x+ d~x], [~v,~v + d~v]). This means that the function must be normalized for all
t, i.e. ∫

f(~x,~v, t)d3 ~x d3~v = 1 . (165)

Collisionless Boltzmann equation:
We want to describe the time evolution of f(~x,~v, t). Since probability cannot be destroyed,
the 6D continuity equation must hold.

We define the 6D phase-space vector

~w = (~x,~v) (166)

then
∂f

∂t
+

∂

∂ ~w

(
f ~̇w
)

= 0 . (167)

This is the same form as the standard 3D continuity equation. We can rewrite this by
expanding out ~w and using velocity ~v = ~̇x and acceleration ~a = ~̇v:

0 =
∂f

∂t
+

∂

∂ ~w

(
f ~̇w
)

=
∂f

∂t
+

∂

∂~x
(f~̇x) +

∂

∂~v
(f~̇v)

=
∂f

∂t
+

∂

∂~x
(f~v) +

∂

∂~v

(
f(−~∇φ)

)
=
∂f

∂t
+ ~v

∂f

∂~x
− ∂φ

∂~x

∂f

∂~v
.

(168)

This gives us the collisionless Boltzmann equation (CBE):

∂f

∂t
+ ~v

∂f

∂~x
− ∂φ

∂~x

∂f

∂~v
= 0 . (169)

Note that another way to see this is by writing out df
dt

= 0 and taking the limits lim~x→∞ = 0
and lim~v→∞ = 0.

General Jeans equations:
A solution to the collisionless Boltzmann equation is difficult to obtain, so we instead study
moments of the CBE and the phase-space distribution.

Moments of the phase-space density give us some average quantities of the system.

a) The first moment gives the density n of the system:

n =

∫
f d3~v . (170)
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b) The second moment gives the average velocity v̄i:

v̄i =
1

n

∫
vif d3~v . (171)

c) The third moment gives the velocity dispersion σ2
ij:

vivj =
1

n

∫
vivjf d3~v

σ2
ij = vivj − v̄iv̄j = (vi − v̄i)(vj − v̄j) .

(172)

We now examine moments of the collisionless Boltzmann equation more closely. We break
each integral into three terms to simplify each individually.

a) First moment: ∫
d3~v

(
∂f

∂t
+ ~v

∂f

∂~x
− ∂φ

∂~x

∂f

∂~v

)
= 0∫

d3~v
∂f

∂t︸ ︷︷ ︸+

∫
d3~v ~v

∂f

∂~x︸ ︷︷ ︸−
∫

d3~v
∂φ

∂~x

∂f

∂~v︸ ︷︷ ︸ = 0

1 2 3

(173)

1 :

∫
d3~v

∂f

∂t
=

∂

∂t

∫
d3~vf =

∂n

∂t

2 :

∫
d3~v ~v

∂f

∂~x
=

∂

∂~x

(∫
d3~v ~vf

)
=

∂

∂~x

(
n~̄v
)

=
∑
i

∂

∂xi
(nv̄i)

3 :

∫
d3~v

∂φ

∂~x

∂f

∂~v
=
∂φ

∂~x

∫
d3~v

∂f

∂~v
=
∂φ

∂~x
[f ]~v=+∞

~v=−∞ = 0

(174)

For the third term, we used the fact that phase-space distribution goes to 0 at ±∞ for
physical systems.

This gives us the 3D continuity equation:

∂n

∂t
+

∂

∂~x

(
n~̄v
)

= 0 . (175)

b) Second moment: ∫
d3~v vj

(
∂f

∂t
+ ~v

∂f

∂~x
− ∂φ

∂~x

∂f

∂~v

)
= 0∫

d3~v vj
∂f

∂t︸ ︷︷ ︸+

∫
d3~v vj~v

∂f

∂~x︸ ︷︷ ︸−
∫

d3~v vj
∂φ

∂~x

∂f

∂~v︸ ︷︷ ︸ = 0

1 2 3

(176)
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1 :

∫
d3~v vj

∂f

∂t
=

∂

∂t

∫
d3~v vjf =

∂

∂t
(nv̄j) =

∂n

∂t
v̄j + n

∂v̄j
∂t

= −v̄j
∑
i

∂

∂xi
(nv̄i) + n

∂v̄j
∂t

= n
∂v̄j
∂t
− v̄j

∑
i

∂

∂xi
(nv̄i)

using the continuity equation
∂n

∂t
= −

∑
i

∂

∂xi
(nv̄i)

to go from the first line to the second

2 :

∫
d3~v vj~v

∂f

∂~x
=

∫
d3~v vj

∑
i

vi
∂f

∂xi
=
∑
i

∂

∂xi

∫
d3~v vjvif︸ ︷︷ ︸

= nvjvi = n
(
σ2
ij + v̄iv̄j

)
=
∑
i

∂

∂xi

(
n
(
σ2
ij + v̄iv̄j

))
3 :

∫
d3~v vj

∂φ

∂~x

∂f

∂~v
=

∫
d3~v vj

∑
i

∂φ

∂xi

∂f

∂vi
=
∑
i

∂φ

∂xi

∫
d3~v vj

∂f

∂vi

((k, l, i) are permutations of (1, 2, 3))

=
∑
i

∂φ

∂xi

∫
dvk

∫
dvl

∫
dvi

(
vj
∂f

∂vi

)
︸ ︷︷ ︸
= [vjf ]vi=+∞

vi=−∞ −
∫

dvi
∂vj
∂vi

f

= 0−
∫

dviδijf

= −
∑
i

∂φ

∂xi

∫
dvk

∫
dvl

∫
dviδijf

= −
∑
i

∂φ

∂xi

∫
d3~vδijf

= −n ∂φ
∂xj

(177)

Plugging each term back in, we get

n
∂v̄j
∂t
− v̄j

∑
i

∂

∂xi
(nv̄i) +

∑
i

∂

∂xi

[
n
(
σ2
ij + v̄iv̄j

)]
+ n

∂φ

∂xi
= 0 (178)
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which we can rewrite

n
∂v̄j
∂t
− v̄j

∑
i

∂

∂xi
(nv̄i) +

∑
i

∂

∂xi
(nσ2

ij)+
∑
i

∂

∂xi
(nv̄iv̄j)︸ ︷︷ ︸+n

∂φ

∂xj
= 0

=
∑
i

(nv̄i)
∂

∂xi
v̄j +

∑
i

v̄j
∂

∂xi
(nv̄i)

(179)

where the two underlined terms cancel. This gives us

n
∂v̄j
∂t

+
∑
i

(nv̄i)
∂

∂xi
v̄j +

∑
i

∂

∂xi
(nσ2

ij) + n
∂φ

∂xj
= 0 . (180)

This is the Jeans equation, often written

∂v̄j
∂t

+
∑
i

v̄i
∂v̄j
∂xi

= − 1

n

∑
i

∂(nσ2
ij)

∂xi
− ∂φ

∂xj
(181)

Each term can be physically interpreted:

∂v̄j
∂t

: acceleration of fluid∑
i

v̄i
∂v̄j
∂xi

: kinematic viscosity/shear

− 1

n

∑
i

∂(nσ2
ij)

∂xi
: pressure

− ∂φ

∂xj
: gravity

(182)

Jeans equations in spherical systems:
We can convert to spherical coordinates and take velocity moments to give us the Jeans
equations in spherical coordinates. This is complicated!

To simplify, we take the radial Jeans equation and focus on steady-state symmetric systems.

Implications:

• ∂
∂t

= 0 since we have steady state

• v̄r = 0 otherwise we have net radial motion

• v̄θ = v̄φ = 0 or the symmetry is broken

• σ2
rφ = σ2

rθ = 0 or the symmetry is broken

• σ2
φφ = σ2

θθ ≡ σ2
t or the symmetry is broken.
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The simplified Jeans equation is:

1

n

∂

∂r
(nσ2

rr) +
2(σ2

rr − σ2
t )

r
= −∂φ

∂r
= −GM(< r)

r2
(183)

where we’ve plugged in gravity as the force.

We have three limits we can look at:

• σ2
rr � σ2

t : nearly circular orbits

• σ2
rr � σ2

t : nearly radial orbits

• σ2
rr = σ2

t : isotropic orbits

We define the anisotropy parameter:

β = 1− σ2
t

σ2
rr

(184)

which gives us a useful form of the Jeans equation for observations:

1

n

∂

∂r
(nσ2

rr) +
2βσ2

rr

r
= −GM(< r)

r2
. (185)

This depends only on radial components with uncertainty from β, assuming spherical sym-
metry and a steady-state system.

This can be simplified further to get mass estimates:

M(< r) = −r
2

G

(
1

n

∂

∂r
(nσ2

rr) +
2βσ2

rr

r

)
= −rσ

2
rr

G

(
r

nσ2
rr

∂

∂r
(nσ2

rr) + 2β

)
= −rσ

2
rr

G

(
r

n

dn

dr
+

r

σ2
rr

dσ2
rr

dr
+ 2β

)
= −rσ

2
rr

G

(
d lnn

d ln r
+

d lnσ2
rr

d ln r
+ 2β

)
(186)

where the last line can be measured with observations.

3.D Stability of stellar systems

The existence of equilibrium solutions to the collisionless Boltzmann equation does not assure
stability. Real stellar systems are subject to perturbations. What is important for stability?
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