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The simplified Jeans equation is:
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where we’ve plugged in gravity as the force.

We have three limits we can look at:

• σ2
rr � σ2

t : nearly circular orbits

• σ2
rr � σ2

t : nearly radial orbits

• σ2
rr = σ2

t : isotropic orbits

We define the anisotropy parameter:

β = 1− σ2
t
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(184)

which gives us a useful form of the Jeans equation for observations:
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This depends only on radial components with uncertainty from β, assuming spherical sym-
metry and a steady-state system.

This can be simplified further to get mass estimates:
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where the last line can be measured with observations.

3.D Stability of stellar systems

The existence of equilibrium solutions to the collisionless Boltzmann equation does not assure
stability. Real stellar systems are subject to perturbations. What is important for stability?

42



3. MODELLING GALAXIES

Small scales: Jeans instability and random motions

Consider a nearly uniform distribution of stars with per-
turbations with respect to a static uniform background.
We can study the stability of this configuration by in-
specting the continuity and the Jeans equations.
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We first rewrite and simplify the Jeans equations:
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We can rewrite the number density n using ρ = mn and assume that σij is isotropic so the
pressure is P = ρσ2

ij = ρσij = mnσ2
ij. Then we can rewrite the Jeans equations as:

∂~v

∂t
+
(
~v · ~∇

)
~v = −~∇φ− 1

ρ
~∇P . (188)

Similarly, the continuity equation becomes:

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 . (189)

Note that we have dropped the¯ ’s (average value symbols) for simplicity in our
equations and ~v is referring to the average velocities at (~x, t). We will continue with this
convention in the following calculations.

Small perturbations:
For a small perturbation in a static uniform background, we have

ρ = ρ0 + ερ1(~x, t)

~v = ~v0 + ε~v1(~x, t)

P = P0 + εP1(~x, t)

φ = φ0 + εφ1(~x, t) .

(190)

We can choose φ0 = 0 and, since the background is static, ~v0 = ~0. ρ0 and P0 are both
nonzero constants. Note that this is not a physical set of conditions since Poisson’s equation
gives ∇2φ0 = 4πGρ0 so φ0 = 0 implies ρ0 = 0, but we continue with our calculations ignoring
this. This is known as the Jeans swindle.

We can plug this into the continuity equation:
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∂
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= 0 . (191)
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3. MODELLING GALAXIES

Performing derivatives on constants and neglecting terms of order ε2, this becomes:

ε
∂

∂t
ρ1 + ~∇ · (ερ0~v1) = 0

⇒∂ρ1

∂t
+ ρ0

~∇ · ~v1 = 0 .

(192)

We then plug this into the Jeans equation:(
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then
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We can write
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where vs is the sound speed, or the speed at which perturbations can propagate. Returning
to the previous equation, this gives us:
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We now combine the time derivative of the continuity with the Jeans equation:
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so
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Finally, we get a wave equation for ρ1:

∂2ρ1

∂t2
− 4πGρ0ρ1 − v2

s
~∇2ρ1 = 0 . (199)
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We use an ansatz for the solution of the form

ρ1 = C expi(
~k·~c−ωt) (200)

which gives the time evolution of perturbations. We plug this into the wave equation and
get

w2 = v2
sk

2 − 4πGρ0 . (201)

We have two solutions:

w2 > 0: the exponent is imaginary, so we get stable oscillating modes

w2 < 0: the exponent is real, so we get unstable growing or decaying modes

If w = 0:
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k

)2

=
πv2

s

Gρ0

. (202)

Jeans length and mass:
The Jeans length λJ is the maximum size a perturbation can be to remain stable. The Jeans
mass MJ is the corresponding mass enclosed within the Jeans length of a given substance.
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4

3
πρ0λ

3
J

. (203)

So we have stability for λ < λJ and M < MJ . Note that for collisional gas, the Jeans length
is determined by the sound speed vs and for collisionless dark matter and stars, the Jeans
length is determined by the pressure from the velocity dispersion σ.

Meaning of the Jeans length:
If perturbations can be crossed before collapse, pressure can stabilize the collapse.

The free-fall time is
tff ∼

1√
Gρ

(204)

and the perturbation crossing time is

tcross ∼
r

vs
. (205)

Then we get collapse if
tcross > tff
r
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>

1√
Gρ

⇒r2 >
v2
s

Gρ

(206)
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3. MODELLING GALAXIES

which is similar to the Jeans length result, differing only by a factor of π. So, random motion
and pressure can stabilize perturbations on small scales.

Large scales: Toomre instability and rotational motion.

Consider a rotating stellar disk where radial perturba-
tions can occur. We study the stability of this config-
uration by inspecting the centripetal and acceleration
forces. Note that mass and angular momentum are con-
served during the perturbation: ṁ = L̇ = 0.
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During the perturbation, R → R′ with R′ = R − dr. We want to know when this will
lead to collapse and when it will be stable. This is a competition between centripetal and
gravitational forces.

The change in gravitational acceleration is

ag =
GπR2Σ

R′2
, and πR2Σ is mass (Σ is surface density)
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=
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.

(207)

The change in centripetal acceleration, with rotational frequency of the patch Ω, is

L = ΩR2 = Ω′R′2 (since L̇ = 0)
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So
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Stability: the system is stable if |dag| < |dac|. So we need
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and the disk is stable if

Rrot >
2πGΣ

3Ω3
. (211)
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Full stability criterion: On small scales, we have stability if R < λJ and on large scales,
we have stability if R > Rrot. Small scales are stabilized by random motion and large scales
are stabilized by rotational motion. The system is unstable if λJ < R < Rrot. We can
combine the two criteria and get full stability when λJ ≥ Rrot. This gives us (adapting λJ
from an arbitrary 3D potential to a 2D disk):
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Ω
.

(212)

Note that the angular speed of the patch is only approximately Ω. It actually rotates with
epicyclic frequency κ, which is not too far off from Ω for real galaxies. We can relate κ to Ω
for a typical galactic disk:

κ2(Rg) =
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dΩ2

dr
+ 4Ω2
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(213)

and in galaxies with circular velocity that is approximately constant:

Ω =
vc
r
⇒ κ2 = 2Ω2 ⇒ κ =

√
2Ω . (214)

So for galaxies:
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Toomre finds
σcrit = 3.26

GΣ

κ
(216)

Toomre criterion Q:
We can write the stability criterion Q for rotating disks:

Q =
σ

σcrit

{
> 1 : stable
< 1 : unstable

(217)

Here we show Q as a function of radius from
the galactic center for the galaxy DLA0817
(the Wolfe Disk) from Neelemen et al. 2020.
The solid line shows Q assuming the gas den-
sity falls off exponentially. The points show
observed data, which underestimates Q likely
due to beam smearing which increases mea-
sured surface density.
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