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1. COSMOLOGY

1 Cosmology

Cosmology is the study of dynamics of the entire Universe as a single dynamical system.

1.A Cosmological Principle and dynamics

• The Universe is homogeneous: it is uniform on large scales.

• The Universe is isotropic: it looks the same for all observers on large scales.

This implies that the space-time metric is the same everywhere, which generates symmetries
and simplifies the solutions to general relativity equations.

Hubble Law:
We observe that

~v = H0~r (267)

where H0 ∼ 70 km/s/Mpc refers to the present-day Hubble factor. The specific form of this
law can be derived from the cosmological principles:
• Linearity (follows from isotropy):

Suppose ~v = f(~r).
Then from Observer A’s perspective

~v1 = f(~r1) and ~v2 = f(~r2)

and ~v1 − ~v2 = f(~r1)− f(~r2) .

From Observer B’s perspective

~v1 − ~v2 = f(~r1 − ~r2)

so we find that

f(~r1 − ~r2) = f(~r1)− f(~r2) .

This implies that f is linear since isotropy
requires that each observer sees the same
Hubble law.

Observer 
      A

r1, 
v1

Observer 
Br2, 

v2

r1-r2, 
v1-v2

• Uniqueness (follows from homogeneity):
f(...) is linear, so

f(~r) = H~r (268)

where H is a matrix.
We assume that it is non-diagonal, otherwise a special direction would be preferred
(since it introduces an axis), and H = H01. Then

f(~r) = H0~r . (269)
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1. COSMOLOGY

Dynamics of cosmological expansion:
Hubble’s law implies cosmological expansion. General relativity allows a detailed derivation
of the dynamics, but here we use Birkhoff’s theorem to get initial insight. Birkhoff’s theorem
states that the dynamics of a uniform expanding self-gravitating sphere is equivalent to a
section of the Universe as a whole.

Observer 
A

r1, 
v1

Observer 
Br2, 

v2

r1-r2, 
v1-v2

a

%

M(< a) =
4

3
πa3ρ

⇒ä = −GM(< a)

a2
= −4πGρ

a2
· 1

3
a3

(270)

We multiply each side by ȧ:

äȧ = −4πGρ

3
aȧ

= −4πGρ0

3
a3

0a
−2ȧ (since ρ = ρ0

a3
0

a3
) .

(271)

Since äȧ = d
dt

(
1
2
ȧ2
)
and a−2ȧ = d

dt

(
− 1
a

)
, we get:

d

dt

(
1

2
ȧ2

)
= −4πGρ0a

3
0

3

d

dt

(
−1

a

)
. (272)

Integrate
∫
dt on both sides:

1

2
ȧ2 =

4πGρ0a
3
0

3

1

a
+ κ̃ . (273)

Here, κ̃ is the integration constant, and we can use the density expression ρ0a
3
0 = ρa3 to

simplify our equation:
1

2
ȧ2 =

4πG

3
ρa2 + κ̃ . (274)

So the dynamics is given by (
ȧ

a

)2

=
8πG

3
ρ+

k̃

a2
. (275)

This is the Friedmann equation for Λ = 0. With a cosmological constant Λ, we have(
ȧ

a

)2

=
8πG

3
ρ+

k̃

a2
+

Λ

3
. (276)
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1. COSMOLOGY

Here, a is the scale factor such that
length l = l0

a
a0
. Also note that:(

ȧ

a

)2

=
ṙ

r
=
v

r
= H

(
H(t) ≡ ȧ

a

)
8πG

3
ρ is the matter/radiation density

κ̃

a2
is the curvature

Λ

3
is the cosmological constant

Since volume grows with the length cubed and the total mass in the universe is constant,
the matter density is proportional to a−3. The radiation density also decreases due to the
increasing volume but also decreases as the wavelengths are stretched, so radiation density
is proportional to a−4. The dark energy Λ is constant.

The plot above shows how the scale factor grows with time for several different types of
universes. Our current understanding of our universe is that it is described by the ΛCDM
model, where roughly 30% of the energy budget is matter, 70% is dark energy, and there
is a very small amount of radiation and no curvature. If there were positive or negative
curvature, we would get an open ore closed universe. There are also several toy universes
that are often useful to think about. A flat, dark energy-only universe is the de Sitter model
and a flat, matter-only universe is the Einstein-de Sitter model An empty universe has only
a curvature term, and is an open universe.

Dynamical evolution of the Universe:
Different terms in the Friedmann equation dominate at different times.

• radiation term ∝ a−4 =⇒ dominates at very early times

• matter term ∝ a−3 =⇒ dominates at early times

• curvature term ∝ a−2 =⇒ dominates at medium times

• Λ term ∝ constant =⇒ dominates at late times

Therefore, from the Friedmann equation, we can derive different regimes of the Universe:

• radiation regime
ȧ2 ∝ a−2

ȧ ∝ a−1

ada ∝ dt

=⇒ a ∝ t
1
2

H(t) = ȧ
a

= 1
2t

=⇒ t0 =
1

2

1

H0
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1. COSMOLOGY

• matter regime
ȧ2 ∝ a−1

ȧ ∝ a−
1
2√

ada ∝ dt

=⇒ a ∝ t
2
3

H(t) = ȧ
a

= 2
3t

=⇒ t0 =
2

3

1

H0

• curvature regime
ȧ2 ∝ constant
ȧ ∝ constant
da ∝ dt

=⇒ a ∝ t
H(t) = ȧ

a
= 1

t

=⇒ t0 =
1

H0

• Λ regime
ȧ2 ∝ a2 Λ

3

ȧ ∝ a
√

Λ
3

da
a
∝
√

Λ
3
dt

=⇒ a ∝ e
√

Λ
3
t =⇒ exponential growth

As the universe evolves, it
expands at different rates
depending on the regime
(radiation/matter/Λ).

1.B Dynamics derived with general relativity

Goal: use the field equation

Gµν =
8πG

c4
Tµν − Λgµν (277)

to derive the Friedmann equation.
Gµν : Einstein tensor; 1st and 2nd derivatives of the metric
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1. COSMOLOGY

Tµν : stress-energy tensor
gµν : metric (similar to Poisson’s equation 52Φ = 4πGρ+ Λ

3
with Φ replaced with curvature)

First we need to specify gµν and Tµν .

Metrics:
The space-time interval is

ds2 = gµνdx
µdxν . (278)

Some examples of spatial metrics:

• 2D-flat space in Cartesian coordinates:

Observer 
      A

r1, 
v1

Observer 
Br2, 

v2

r1-r2, 
v1-v2

a

%

ds2 =
(
dx dy

)(1 0
0 1

)(
dx
dy

)
= dx2 + dy2 (279)

• 2D-flat space polar coordinates:

Observer 
      A

r1, 
v1

Observer 
Br2, 

v2

r1-r2, 
v1-v2

a

%

ds2 =
(
dr dθ

)(1 0
0 r2

)(
dr
dθ

)
= dr2 + r2dθ2 (280)

• 2D-curved space:

Observer 
      A

r1, 
v1

Observer 
Br2, 

v2

r1-r2, 
v1-v2

a

%

ds2 =
(
dθ dϕ

)(R2 0
0 R2 sin2 θ

)(
dθ
dϕ

)
= R2(dθ2 + sin2 θdϕ) (281)

We can rewrite χ = Rθ, so

ds2 = dχ2 +R2 sin2 χ

R
dϕ2 . (282)

When R goes to infinity, we have

sin

(
χ

R

)
≈ χ

R
(283)

⇒ ds2 = dχ2 + χ2dϕ2 (284)

which is gives us flat space!

• 4D space time:

gµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (285)

and
ds2 = −c2dt2 + dx2 + dy2 + dz2 . (286)
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1. COSMOLOGY

Robertson-Walker metric:
The metric form follows from homogeneity and isotropy, and the field equations give us the
time evolution:

ds2 = −c2dt2 + a(t)
[
dχ2 + f 2

k (χ)
] (

dθ2 + sin2θdϕ2
)

(287)

and

fk(χ) =


k−1/2 sin (k1/2χ), closed k > 0

χ, flat k = 0

|k|−1/2 sinh (|k|1/2χ), open k < 0

(288)

with the units for k: [k] = 1
L2 .

Derivation of the Friedmann equations:
We have the stress energy tensor:

Tµν =

(
T00
∼= energy density T0j

∼= energy flux
Tj0 ∼= momentum density Tik ∼= stress tensor

)
(289)

The stress tensor Tik is force per unit area:(
Tii ∼= pressure Tik ∼= shear

)
(290)

Tµν has to be a perfect fluid with no shear or isotropic pressure:

Tµν = (ρc2 + p)uµuν −
p

c2
gµν (291)

In the rest frame of a comoving observer:

Tµν =


−ρc2 0 0 0

0 p 0 0
0 0 p 0
0 0 0 p

 (292)

To evaluateGµν , we take the derivative of the metric. We then plug this into the Einstein field
equations, which gives two independent equations. This leads to the Friedmann equations:(

ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+

Λc2

3

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3

. (293)

For relativistic bosons and fermions p = ρc2/3, and for non-relativistic particles p = 0.

Critical density and density parameters:
The critical density ρcrit is the density that gives a flat universe (k = 0) and is given by

ρcrit =
3H2(t)

8πG
(294)
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1. COSMOLOGY

with present-day value

ρcrit,0 =
3H2

0

8πG
≈ 1.8× 10−29h2 g/cm3 . (295)

For a sphere with radius a filled with the critical density, the gravitational potential is equal
to the specific kinetic energy:

G4
3
πρcrita

3

a
=
ȧ2

2
. (296)

This is the limiting case between an open and closed universe and leads to eternal expansion.

We define the cosmological density parameters in terms of the critical density:

Ωm(t) =
ρm(t)

ρcrit(t)

Ωr(t) =
ρr(t)

ρcrit(t)

Ωk(t) = −kc
2

H2

ΩΛ(t) =
Λc2

3H2
=

ρΛ(t)

ρcrit(t)
, ρΛ(t) =

Λc2

8πG

Ω(t) = Ωm(t) + Ωr(t)

(297)

The present-day values are:
Ωm,0 =

ρm,0
ρcrit,0

Ωr,0 =
ρr,0
ρcrit,0

Ωk,0 = −kc
2

H2
0

ΩΛ,0 =
ρΛ,0

ρcrit,0

Ω0 =
ρ0

ρcrit,0

(298)

so
ρm = Ωm,0ρcrit,0a

−3

ρr = Ωr,0ρcrit,0a
−4

ρk = Ωk,0ρcrit,0a
−2

ρΛ = ΩΛ,0ρcrit,0 .

(299)

We also often consider the baryon density parameter Ωb separately from the total matter
density, so the total matter density is the sum of the baryon and dark matter densities
Ωm = Ωdm + Ωb.
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1. COSMOLOGY

Our current measurements of these values are (from the Planck 2018 results)

Ωm,0 = 0.315± 0.007

Ωdm,0 = 0.264± 0.003

Ωb,0 = 0.0493± 0.0003

Ωk,0 = 0.0007± 0.0019

ΩΛ,0 = 0.6847± 0.0073

(300)

with H0 = 67.4 ± 0.5 km/s/Mpc. The radiation parameter Ωr,0 can be derived from the
measured temperature of the CMB and relating the photon and neutrino density to get
Ωr,0 ≈ 10−4. We discuss how to obtain these values from observations in Part III.

We can rewrite first Friedmann equation:

H2(t) =
8πG

3
(ρm + ρr + ρΛ)− kc2

a2

=
8πG

3
ρcrit,0[Ωm,0a

−3 + Ωr,0a
−4 + ΩΛ,0]− kc2

a2

(ρcrit,0 =
3H0

2

8πG
)

= H0
2

[
Ωm,0a

−3 + Ωr,0a
−4 + ΩΛ,0 −

kc2

a2H0
2

]
(− kc

2

H0
2 = Ωk,0 = 1− Ωr,0 − Ωm,0 − ΩΛ,0)

= H0
2
[
Ωr,0a

−4 + Ωm,0a
−3 + Ωk,0a

−2 + ΩΛ,0

]

(301)

So we find:
H2(a) = H0

2E2(a)

E2(a) = Ωr,0a
−4 + Ωm,0a

−3 + Ωk,0a
−2 + ΩΛ,0

(302)

which is a useful form of the Friedmann equation.

Notes:

• Radiation dominates in early times, then matter, then the cosmological constant.

• Matter-Λ equality occurs when ΩΛ = Ωm:

ΩΛ,0 =
Ωm,0

a3

=⇒a ≈ 1

2.3
, z ≈ 1.3 (z ≈ 1 is 6− 7 Gyr after the Big Bang) .

(303)

• Matter-radiation equality occurs when Ωr = Ωm:

Ωr,0a
−4 = Ωm,0a

−3 (304)

=⇒a ≈ 1

3700
, z = 3700 . (305)

• Observationally, Ωk,0 ≈ 0.
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