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where dA is area and dr is depth. So

dVχ = (DA
2dΩ)︸ ︷︷ ︸

proper area

(1 + z)2

︸ ︷︷ ︸
comoving area

· dχ︸︷︷︸
comoving depth

(338)

Aproper = a2Acomoving (339)

⇒ Acomoving =
1

a2
Aproper = (1 + z)2Aproper (340)

dχ = c
H0

dz
E(z)

, so

dVχ = (DA
2dΩ)(1 + z)2 c

H0

1

E(z)
dz (341)

and finally:

dVχ =
c

H0

(1 + z)2DA
2

E(z)
dΩdz . (342)

Plug in DA = 1
1+z

fκ(χ):

dVχ =
c

H0

f 2
κ(χ)

E(z)
dzdΩ (343)

= f 2
k (χ)rdΩ

dχ

dz
dz . (344)

1.D Inflation

So far, dynamics have been described by the Friedmann equations with some mass-energy
content of the Universe: Ωm,Ωr,Ωk,ΩΛ. Is this sufficient to explain all data?

Problems:

• Horizon problem:
ρr ∝ (1 + z)4 and ρr ∝ T 4 ⇒ T ∝ (1 + z) (345)

The Universe cools and at some zrecomb, it consists of neutral hydrogen atoms (recom-
bination). We get the balancing equation

H+ + e
 H0 + χ (346)

where χ = 13.6 eV is the ionization energy. We also have:

x =
number density of free e−

number density of protons

η =
nb
nγ

=
baryon number density

photon number density
≈ 5× 10−10

(
Ωb,0h

2

0.01

) (347)
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which we use in the Saha equation:

1− x
x2
≈ 3.84η

(
kBT

mec2

)3/2

e
− χ
kBT (348)

With χ = 13.6 eV corresponding to ∼ 105 K (1 eV≈ 104 K), we would expect x < 1 for
T < 105 K. However, there are many more photons than baryons, which leads to x < 1
only for T ≈ 3000 K. This gives zrecomb ≈ 1090 (for Ωb,0 = 0.045, T0 = 2.73 K).

After this time, photons can escape or free stream, and we can observe them as the
Cosmic Microwave Background. The CMB is very uniform: ∆T

T
≤ 10−5 (note that

CMB maps are typically logarithmic).

Why is this a problem?
Horizons are the largest causally connected regions by light rays.

The comoving horizon size is:

ds = 0 (light) =⇒ cdt = a(t)dχ =⇒ χhorizon =

∫ t

0

cdt

a(t)
(349)

So we have

χhorizon(z) =

∫ a=(1+z)−1

0

cda

a2H(a)
. (350)

For a flat radiation dominated universe:

lhorizon = aχhorizon =
c

H(z)
=

c

H0

√
Ωr,0

1

1 + z
(351)

flat matter dominated:

lhorizon = a(

∫ (1+zeg)−1

0

cda

a2H(a)
+

∫ (1+z)−1

(1+zeq)−1

cda

a2H(a)
)︸ ︷︷ ︸

largest contribution comes from matter dominated phase

≈ 2c

H(z)
=

2c

H0

√
Ωm,0

a√
1 + z

=
2c

H0

√
Ωm,0

1

(1 + z)
3
2

(352)

Apply this to zrecomb:

ρr,0(1 + zrecomb)4

ρm,0(1 + zrecomb)3
∼ 5× 10−2 ⇒ matter dominated regime

⇒lhorizon =
2c

H0

Ω
− 1

2
m,0(1 + z)−

3
2

(353)

Angular size of horizon:

ϕhorizon =
lhorizon

DA

DA : Angular diameter distance (354)
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DA =
1

1 + z
fκ(χ

obs
em ) =

1

1 + z
χobs

em (for flat universe)

=
c

1 + z

1

H0

∫ z

0

[
Ωm,0(1 + z)3

]− 1
2 dz

=

(
2c

H0(1 + z)Ωm0
1
2

[
− 1√

1 + z

])z

0

=
2c

H0 (1 + z)︸ ︷︷ ︸
≈z,z�1

Ω
1
2
m0

[
1− 1√

1 + z

]
︸ ︷︷ ︸

≈1,z�1

≈ 2c

H0

1

Ω
1
2
m0z

(355)

This gives us the angular size of the horizon at recombination:

ϕhorizon,recomb ≈
√

1

zrecomb

∼ 1.7◦ (356)

Or more generally:
ϕhorizon,recomb ≈ 1.7◦

√
Ωm,0 . (357)

This is much smaller than the full sky, so how can the CMB be so uniform?

• Flatness problem:
At high z, Λ is irrelevant in the Friedmann equations, so:

H2(a) =
8πG

3
ρ− kc2

a2
= H2(a)

[
Ω(a)− kc2

a2H2(a)

]
, ρ = ρm + ρr (358)

Thus, deviation from flatness Ω(a) = 1 is:

|Ω(a)− 1| = kc2

a2H2(a)
. (359)

Since a ∝ t2/3 in matter dominated times and a ∝ t1/2 during radiation dominated
times, we have:

|Ω(t)− 1| ∝

{
t, radiation dominated

t2/3, matter dominated
(360)

Thus, any small deviation Ω(tearly) 6= 1 at early times quickly blows up! Ω(tearly) must
therefore be very close to 1, which leads to a “fine-tuning problem."

• Monopole problem:
General unified theories predict many magnetic monopoles, but this is not observed.
The number density must decrease.

• Seeds of structure formation problem:
What seeds the perturbations that become the large structures we observe?
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Inflation: basic ideas:

• Flatness problem:

If kc2

a2H2(a)
decreased with time for a short period, then Ω(a)

would be driven towards Ω(a) = 1.

• Horizon problem:
If kc2

a2H2(a)
shrinks, then χ ∝ c

aH(a)
also shrinks.

&obsem( l
observer

emission

&obsem
observer

emission

comoving 
horizon before

causally 
connected region

comoving 
horizon after

V0

V())

))0

reheating

slow roll 
inflation

⇒ can explain smoothness within the observable universe.

So decreasing 1
aH(a)

seems to solve two problems! The conditions for a shrinking comoving
horizon:

d

dt

( c

aH

)
< 0

d

dt

( c
ȧ

)
< 0

−cä
ȧ2

< 0

⇒ ä > 0

(361)

We need some period of accelerated expansion. We can look at the second Friedmann
equation (e.g. for acceleration):

ä

a
= −4πG

3
(ρ+

3p

c2
) +

Λc2

3
(at early times, Λ = 0)

= −4πG

3
(ρ+

3p

c2
)

⇒ p < −ρc
2

3
← we need sufficiently negative pressure

⇒ p

ρc2
< −1

3

(362)

This also solves the monopole and seed problem! Rapid expansion would decrease the density
of monopoles and blow up tiny perturbations. All problems are then solved.
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Note that Λc2

3
actually corresponds to a negative pressure term. To see this more clearly, we

combine both Friedmann equations to derive the energy conservation equation:

d

dt
(ρc2a3) + p

d

dt
(a3) = 0

⇒ ρ̇ = −3H(a)(ρ+
p

c2
)

(363)

And for Λ with ρΛ = constant (= ρ):

ρ+
p

c2
= 0 ⇒ p = −ρc2 (364)

So the equation of state parameter is

w =
p

ρc2
= −1 < −1

3
(365)

where w = −1/3 is needed for accelerated expansion as shown above. Thus, Λ leads to
accelerated expansion and therefore a shrinking comoving horizon. Once Λ dominates in the
Friedmann equation:

H2(a) = H2
0 ΩΛ =

(
ȧ

a

)2

⇒a ∝ e
√

ΩΛH0t

(366)

which is exponential growth.

Inflation:
Λ has all the features we want, but it:

• acts too late

• is constant, i.e. even if it acted early enough, it would not stop inflation!

How do we get all this in the early universe? We look at a homogeneous scalar field (inflation):

L =
1

2
∂µφ∂

µφ− V (φ) (367)

which leads to the energy-momentum tensor:

Tµν = ∂µφ∂νφ− gµνL ⇒
T00 = ρc2 =

1

2
φ̇2 + V (φ)

Tii = p =
1

2
φ̇2 − V (φ)

(368)

To get w < −1/3, we require:

1

2
φ̇− V (φ) < −1

3

(
1

2
φ̇+ V (φ)

)
p < −ρc

2

3

⇒ φ̇2 < V (φ)

(369)
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i.e. the field must be moving slowly during inflation. Thus, the potential should be flat and
have a minimum to stop inflation. Furthermore:

Friedmann equation : H2 =
8πG

3

[
1

2
φ̇2 + V (φ)

]
Energy conservation : ρ̇ = −3H(a)

(
ρ+

p

c2

)
ρ̇c2 = φ̇φ̈+ φ̇

dV

dφ

with ρ =
1

2
φ̇2 + V (φ) and

p

c2
=

1

2
φ̇− V (φ)

⇒φ̇φ̈+ φ̇
dV

dφ
= −3H(a)

(
1

2
φ̇2 + V (φ)

)
− 3H(a)

(
1

2
φ̇2 − V (φ)

)
⇒φ̈+

dV

dφ
= −3H(a)φ̇

⇒ φ̈+ 3H(a)︸ ︷︷ ︸
Hubble drag

φ̇ = −dV

dφ

(370)
and we get the field evolution equation. In a static universe, H = 0, and there is no Hubble
drag. dV

dφ
is how fast energy is extracted from inflation.

Slow roll conditions:
We approximate

H2 ≈ 8πG

3
V (φ) (371)

which is ≈ V0 and roughly constant during the slow roll, leading to exponential growth. We
also have

3Hφ̇ ≈ −dV

dφ
(with φ̈ ≈ 0) (372)

which is equivalent to:
φ̇2 � V

and

d

dt
φ̇2 � dV

dt
⇒ φ̈� dV

dφ

(373)

This can be rewritten in slow roll parameters:

ε : =
1

24πG

(
V ′

V

)2

� 1

η : =
1

8πG

(
V ′′

V

)
� 1

(374)

As long as these conditions are valid, inflation will go on. The slow roll potential is:
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slow roll

inflation During reheating, the in-
flation field decays through
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(“reheat universe").

Since
H2 =

8πG

3
V (φ) ≈ 8πG

3
V0 (375)

during inflation, large values of φ0 and V0 lead to more inflation (longer slow roll).

1.E Basic story of cosmology

Main ingredients:

• metric (geometry)

• Friedmann equations (dynamics)

• distances (connection to observations)

• horizons (evidence for inflation)

Emerging story

a) t = 0: Big Bang

b) t ∼ 10−34 s: inflation

c) T decreases as T ∝ (1 + z)

d) z ≈ 3200: transition from radiation to matter domination

e) z ≈ 1100: recombination

f) Structure formation is nonlinear. First stars and galaxies...

g) z ≈ 0.33: transition from matter to Λ domination
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2. STRUCTURE FORMATION

The first five stages here are optically thick to photons, while later is optically thin and
potentially observable.

2 Structure formation

So far, we have assumed a uniform cosmology. We now add perturbations to study the
growth of structure.

2.A Linear perturbation theory

There are small perturbations at early times. The Universe consists of matter (dark matter
and baryons) and radiation. Λ and curvature are unimportant early on.

Basic equations:

• non-relativistic matter (dark matter, baryons) is important in the matter-dominated
regime:

continuity equation :
∂ρ

∂t
+ ~∇ · (ρ~v) = 0

momentum equation :
∂~v

∂t
+ (~v · ~∇)~v = −

~∇p
ρ

+ ~∇φ

Poisson’s equation: ~∇2φ = 4πGρ

(376)

• relativistic matter (radiation)

continuity equation :
∂ρ

∂t
+ ~∇ ·

(
(ρ+

p

c2
)~v
)

= 0

momentum equation :
∂~v

∂t
+ (~v · ~∇)~v = −

~∇p
ρ+ p

c2

+ ~∇φ

Poisson’s equation: ~∇2φ = 4πG(ρ+
3p

c2
)

(377)
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