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• So
z � 1100 : MJ ≥ 1016 M�

z < 1100 : MJ . 105 M�
(396)

since after recombination, the photon pressure support is removed.

• Structure can only form after z ∼ 1000.

• if structure can only grow from z ∼ 1000, δ will be amplified by ∼ 103 (since matter
dominated growth is ∝ a). BUT: the CMB has δ ∼ 10−5 and 10−5×103 ∼ 10−2 today,
which is much less than what we observe in the low redshift universe. This theory of
structure growth is not sufficient.

• Solution: dark matter must have clumped before and baryons fall into dark matter
wells.

Cold dark matter:

• CDM is very cold, so it has a tiny velocity dispersion σ. This means that MJ is tiny
and collapse on all scales is possible.

• CDM does not interact with radiation, so it can grow before recombination.

Cold dark matter is needed to make structure formation work!

2.B Growth of linear perturbations

Full general relativity treatment can be used to study growth beyond the horizon scale.
Modes outside the horizon can always grow (no causal contact):

δ ∝

{
a ∝ t2/3, matter dominated
a2 ∝ t, radiation dominated

(397)

Once a mode enters the horizon, its growth changes (note that we have perturbations on
different length scales).
Baryons:
Baryons have a finite Jeans length before recombination:

λJ =
c√
Gρ̄

√
π

3
, (cs =

c√
3

) (398)

so modes with l < λJ have no growth. However, this is only if l is also within the horizon.

The growth of the physical horizon is (for Ω = 1):

lhorizon = a

∫ t

0

cdt

a(t)
=

{
2ct, radiation dominated; a ∝ t1/2

3ct, matter dominated; a ∝ t2/3

=


c√
Gρ̄

√
3

8π
, radiation dominated

c√
Gρ̄

√
3

2π
, matter dominated

(399)
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where we used
H2 =

8πGρ

3
(for ρ = ρcrit =

3H2

8πG
)

=


1

4t2
, radiation

4

at2
, matter

(400)

lhorizon < λJ : as soon as mode length l enters the horizon, it will oscillate! So before
recombination, perturbations can grow if l > lhorizon, otherwise they will oscillate.
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The horizon and Jeans mass grow as we have seen before: MJ ∼ 1016M� at z ∼ 1000, so all
modes smaller than 1016M� entered the horizon before recombination and therefore start to
oscillate and stop growing.

There is also another problem for those modes: Silk damping! Before decoupling, photons
do not free stream because of Thomson scattering off free electrons. The mean free path
gets large towards recombination. So:

- M < MJ ∼ 1016M� perturbations oscillate due to photon pressure.

- Photons can diffuse out of potential wells and take baryons with them (electrons
through Thomson scattering and protons through Coulomb interactions), which erases
perturbations.

The net effect is that all perturbations ∼ 1012M� (Silk mass) are damped and erased!

Cold dark matter:
Cold dark matter has essentially zero Jeans mass, so all modes can already grow. However,
for subhorizon modes in the radiation dominated epoch, δ ∼constant (stagnation). Because
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2. STRUCTURE FORMATION

the expansion rate is higher than the growth rate, we get:

expansion timescale: τHubble ≈
1√
Gρr

collapse timescale: τJeans ≈
1√
Gρm

(401)

and τHubble � τJeans if ρr � ρm. So modes entering the horizon during the radiation dom-
inated phase are frozen (but not damped through something like Silk damping). After
recombination, baryons can fall into CDM wells and grow.
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A mode that enters the horizon at thor after matter-radiation equality at teq will always
grow. Modes that enter the horizon during the radiation dominated regime will stagnate
until matter domination.

Cold dark matter is then the main driver of structure formation since it there is time for CDM
perturbations to grow large enough. Without CDM, structure formation is not possible.

2.C Statistical measures of structure

We see structure on different scales. We can use the power spectrum P (k) to describe this.
Reminder:

δ(~x) =

∫
d3k

(2π)3
δ̂(~k)e−i

~k·~x

δ̂(~k) =

∫
d3xδ(~x)e+i~k·~x

(402)

Variance and the power spectrum:
average:

〈δ〉 =

∫
d3xδ(~x) = 0 (403)

variance:
σ2 =

〈
δ2
〉
− 〈δ〉2 =

〈
δ2
〉
> 0〈

δ2
〉

=

∫
d3xδ2(~x) =

∫
d3k

(2π)3
|δ̂(~k)|2

(404)
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If we assume homogeneity and isotropy, ~k → k = |~k| and d3~k = 4πk2dk. Then we get:

σ2 =
1

2π2

∫
|δ̂(k)|2k2dk

=:
1

2π2

∫
P (k)k2dk

with P (k) = |δ̂(k)|2

(405)

Notes:

• P (k) and σ are functions of time since δ̂(k) grows (σ = Dσ0).

• The initial power spectrum is the primordial power spectrum set at the end of inflation.
The general form is

P (k) = Akn (406)
which is a power law and is scale-free. According to predictions from inflation, n ≈ 1.

Measuring P (k) and galaxy clustering:
If we assume galaxies trace the mass perturbations, what is the probability dP that we find
two galaxies in volumes dV1 and dV2 at a distance r from each other?

dP = n0(1 + δ(~x))dV1 · n0(1 + δ(~x+ ~r))dV2

= n2
0(1 + δ(~x)︸︷︷︸

=0

+ δ(~x+ ~r)︸ ︷︷ ︸
=0

+δ(~x)δ(~x+ ~r))dV1dV2

= n2
0(1 + ξ(r))dV1dV2

(407)

where δ(~x) and δ(~x + ~r) are zero on average and ~r → r due to isotropy. ξ is the two-point
correlation function and is related to P (k):

ξ(r) =

∫
d3~xδ(~x)δ(~x+ ~r)

=

∫
d3~x

∫
d3k

(2π)3
δ̂(~k)e−i

~k·~x
∫

d3k′

(2π)3
δ̂(~k′)e−i

~k′·(~x+~r)︸ ︷︷ ︸∫
d3k′
(2π)3

δ̂(~k′)e+i~k′·(~x+~r) (δ real)

=

(
1

(2π)3

)2 ∫
d3~x

∫ ∫
d3k d3k′ δ̂(~k)δ̂(~k′)e−i(

~k−~k′)·~xe−i
~k~r

using
1

(2π)3

∫
d3xei(

~k−~k′)·~x = δ(~k − ~k′)

=
1

(2π)3

∫
|δ̂(~k)|2ei~k·~rd3k

=
1

(2π)3

∫
|δ̂(k)|2ei~k·~rd3k where ~k → k from isotropy

=
1

(2π)3

∫
P (k)ei

~k·~rd3k

⇒ ξ(r) =
1

(2π)3

∫
P (k)ei

~k·~rd3k .

(408)
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Observationally:

ξ(r) ≈
(
r

r0

)−1.8

(409)

with r0 ≈ 5 h−1 Mpc for galaxies. Different objects have a different r0, and more massive
objects are more clustered, e.g. the cluster-cluster correlation function differs from the
galaxy-galaxy correlation function: ξcc ≈ 20ξgg.

2.D Form of the primordial power spectrum

There is no scale in the power spectrum P (k) = Akn. We want to know what n and A are.
Initially, fluctuations on different scales should have the same amplitude on different scales.

Power spectrum index:
Fluctuations on certain mass or length scales are (0 is large scale, kmax is the smallest scale):

σ2 ≈
∫ kmax

0

P (k)k2dk

=

∫ kmax

0

Akn+2dk ∝ kn+3
max

⇒ σ ∝ k
1
2

(n+3)
max or σ ∝ k

1
2

(n+3)

(410)

For mass, we get:
M ∝ R3 ∝ k−3 ⇒ k ∝M−1/3

⇒ σ ∝M− 1
6

(n+3)
(411)

So:

σ ∝

{
k

1
2

(n+3)

M− 1
6

(n+3)
(412)

Does this tell us something about n? Modes can always grow outside the horizon, but we
do not want “special" modes. All modes should therefore have the same σ, i.e. the same
strength/fluctuation amplitude, when they enter the horizon.

The horizon mass, i.e. the mass within the horizon, is:

Mh ∝ ρmr
3
h

ρm ∝ (1 + z)3 (413)

and

rh ∝

{
a2 = (1 + z)−2, radiation dominated

a3/2 = (1 + z)−3/2, matter dominated

⇒Mh ∝

{
(1 + zh)

−3, radiation dominated

(1 + zh)
−3/2, matter dominated

(414)
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