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Observationally:

ξ(r) ≈
(
r

r0

)−1.8

(409)

with r0 ≈ 5 h−1 Mpc for galaxies. Different objects have a different r0, and more massive
objects are more clustered, e.g. the cluster-cluster correlation function differs from the
galaxy-galaxy correlation function: ξcc ≈ 20ξgg.

2.D Form of the primordial power spectrum

There is no scale in the power spectrum P (k) = Akn. We want to know what n and A are.
Initially, fluctuations on different scales should have the same amplitude on different scales.

Power spectrum index:
Fluctuations on certain mass or length scales are (0 is large scale, kmax is the smallest scale):

σ2 ≈
∫ kmax

0

P (k)k2dk

=

∫ kmax

0

Akn+2dk ∝ kn+3
max

⇒ σ ∝ k
1
2

(n+3)
max or σ ∝ k

1
2

(n+3)

(410)

For mass, we get:
M ∝ R3 ∝ k−3 ⇒ k ∝M−1/3

⇒ σ ∝M− 1
6

(n+3)
(411)

So:

σ ∝

{
k

1
2

(n+3)

M− 1
6

(n+3)
(412)

Does this tell us something about n? Modes can always grow outside the horizon, but we
do not want “special" modes. All modes should therefore have the same σ, i.e. the same
strength/fluctuation amplitude, when they enter the horizon.

The horizon mass, i.e. the mass within the horizon, is:

Mh ∝ ρmr
3
h

ρm ∝ (1 + z)3 (413)

and

rh ∝

{
a2 = (1 + z)−2, radiation dominated

a3/2 = (1 + z)−3/2, matter dominated

⇒Mh ∝

{
(1 + zh)

−3, radiation dominated

(1 + zh)
−3/2, matter dominated

(414)
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σ grows:
σ ∝ δ

σ ∝

{
a2 = (1 + z)−2, radiation dominated

a3/2 = (1 + z)−1, matter dominated
(415)

We now find σ of the horizon mass, i.e. the fluctuation strength once this mode enters.

• radiation dominated case:

σ(zh) = σ(zp)

(
1 + zp
1 + zh

)2

∝ σ(zp)(1 + zh)
−2 (416)

where zh is the redshift once mass M is within the horizon, and zp is the redshift at
the end of inflation. Then

σ(zp) ∝M− 1
6

(n+3)

Mh = M ∝ (1 + zh)
−3 ⇒ (1 + zh)

−2 ∝M2/3
(417)

so we find:
σ(zh) ∝M− 1

6
(n+3)M2/3 = M−( 1

2
+n−4

6
) (418)

• matter dominated case
This follows the same calculation, so we get the same result and the fluctuation of a
mode once it enters the horizon is:

σ(zh) ∝M−( 1
2

+n−4
6

) (419)

Now, we do not want “special" modes, so σ(zh) should not depend on n! We get n ≈ 1
according to the Harrison-Zel’dovich spectrum.

Power spectrum amplitude:
n can be calculated with theory from inflation, but the amplitude comes from observations.
We measure the number of fluctuations in galaxy surveys within a sphere of 8 Mpc/h, or σ8.
The fluctuations in galaxies are not exactly the fluctuations in mass:

σ8,gal = bσ8,mass (420)

where b is the bias of the galaxy clustering compared to the mass fluctuations. Observation-
ally, σ8,gal ≈ 1. From WMAP and SDSS, we have:

n = 0.953± 0.016

σ8 = 0.756± 0.035
(421)

Transfer function:
We found that modes entering the horizon during the radiation dominated phase do not grow
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(stagnation). The primordial power spectrum is therefore modified by the transfer function:

P0(k) = (Ak)T 2(k),

T (K) ≈


1,

1

k
� L0

1

k2
,

1

k
� L0

(422)

where L0 is the comoving horizon at zequality.

2.E Nonlinear evolution: spherical collapse

For δ � 1, we can use linear perturbation theory, but for δ ∼ 1, nonlinear evolution begins
and halos form. This requires simulations.

Halos:

• A distribution of dark matter as a collection of nearly spherical overdense clouds to
form halos.

• We study the dynamics of spherical, homogeneous overdensities for a basic understand-
ing. This is the spherical collapse model.

Spherical collapse model:
We consider an overdense sphere in an Einstein-de Sitter cosmology. The overdensity will
eventually reach a maximum radius and then collapse to a virialized halo because the gravity
within the overdensity is stronger.

P0(k)

k0=1/L0 k

a
R

H = H0a
−3/2 Friedmann equation for Einsten-de Sitter

x =
a

ata

ata is the scale factor at maximum expansion

y =
R

Rta

radius in units of maximum radius

(423)

We can simplify:

τ = Htat (with Hta = H0a
−3/2
ta )

⇒ x′ =
dx

dτ
=

1

Hta

ȧ

ata

=
H

Hta

x = x−1/2

(using
H

Hta

=
H0a

−3/2

H0a
−3/2
ta

=
a−3/2

a
−3/2
ta

= x−3/2 for the final equality)

(424)

So
x′ = x−1/2 (425)
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