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Massachusetts Institute of Technology

Department of Physics


Physics 8.942 Fall 2001


Problem Set #10 
Due in class Thursday, December 4, 2001. 

1. Zel’dovich Approximation 
The Zel’dovich approximation is to write the trajectories of pressureless matter (dark 
matter, or baryons on scales larger than the Jeans length) as 

q, τ ) = � ψ (��x (� q + D+(τ ) � q ) , (1) 

where � q ) is determined by the initial conditions and D+(τ ) is the zero-pressure linear ψ (�
growing mode growth factor. 

a) Consider a spherically symmetric density perturbation of the form 

δi > 0 , |�x | < q0δ(�x, τi) = (2)
0 , |�x | > q0 

Find the radial displacement field �ψ (�q ) corresponding to this density field 
to lowest order in δi. Show that the Zel’dovich approximation gives δ(|�x | < 
q0, τ ) → ∞ at some finite τ = τc. What is the corresponding prediction for 
δ(τc) from linear perturbation theory? Does the Zel’dovich approximation 
agree with the exact solution of the spherical infall model from Problem 3 
above? 

b) The Zel’dovich approximation is exact for plane-parallel perturbations for

trajectories that have not intersected others. Show this by considering a

one-dimensional density field ρ(x, τ ) with corresponding displacement field

ψx(qx) and gravitational potential φ(x, τ ) obeying the Poisson equation ∂2φ =
x

4πGa2(ρ−ρ̄). Hint: substitute the Zel’dovich approximation trajectories into 
the exact equation of motion d2�x/dτ 2 + ( ̇a/a)d�x/dτ = − ��φ. Show that the 
�φ implied by this equation agrees with the solution of the Poisson equation 
assuming mass conservation. 

2. Linear growing mode 
Small-amplitude cosmological density fluctuations with comoving wavenumber obeying 
H � k � kJ grow in amplitude according to the well-known damped, driven wave 
equation 

¨ ȧ
D + Ḋ = 4πGρ̄ma 2D (3) 

a 
where a dot denotes a conformal time derivative. 
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a) Suppose that the universe contains nonrelativistic matter, vacuum energy,

and (possibly) curvature, but no other types of matter. By combining equa­

tion (3) with the Friedmann equation, show that one solution is given by

D−(τ) = H(τ).


b) Using this solution and the method of variation of parameters, find a quadra­

ture solution for the growing mode, D+(τ). (Hint: write D+ = D−(τ)f(τ)

and substitute into eq. 3. You should obtain f(τ) in the form of an integral.)


c) Using the exact solution of a(τ) for an OCDM (matter-only, open) universe

(a ∝ cosh η − 1 where η ∝ τ , from problem 2b of Problem Set 2), verify

equation (15.31) of Peacock. Also show that for the Einstein-de Sitter model

(flat Ωm = 1), D+ ∝ a.


d) Now consider a flat ΛCDM model. Write the quadrature for D+(a) using

expansion factor as the integration variable so that the quadrature is easy to

evaluate numerically. Evaluate the growth suppression factor g ≡ D+(a =

1, Ωm = 0.35)/D+(a = 1, Ωm = 1) numerically for the ΛCDM model and

compare with equation (15.43) of Peacock. How accurate is Peacock’s ap­

proximation?


e) Suppose that the universe contains quintessence with equation of state p =

wρ, with w being (for simplicity here) a constant in the range −1 < w < 0.

Show that the Peacock’s equation (15.42) is invalid unless w = −1 or w = − 1 .
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3. Simple model of nonlinear evolution 
In hierarchical clustering models of cosmic structure formation, matter is clumped strongly 
on small scales and is smooth on large scales, with a transition mass Mnl that grows in 
time. One may define Mnl as the mean mass contained in a smoothing window large 
enough so that the filtered linear density fluctuation field has unit variance: 

4π 
¯σ(Mnl) = 1 where σ2(M) ≡ d3k P (k)W 2(kR) , M = ρR3 . (4)
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The distribution of clump masses is given approximately by the Press-Schechter formula, 
Peacock equation (17.13). In this problem we use the gaussian window function W (x) = 
exp(− 1 x2).
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a) Suppose that the power spectrum of δρ/ρ̄ in the linear regime may be ap­

proximated (for at least a useful range of k) as a power-law in k, P (k, τ) =

D2


+(τ)Akn . Determine σ(M) in terms of the relevant constants. (Express 
the needed integral as a gamma function.) 

b) Check Peacock equation (17.14) for the low-mass slope of the Press-Schechter

mass distribution.
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c) Today, Rnl ≈ 2.6 h−1 Mpc (using the gaussian window function). What is

the corresponding Mnl in solar masses (in terms of Ωm and h)? Now suppose

that we take the characteristic mass of a galaxy to be 1011 h−1 M�. At what

redshift was σ = 1 for this mass scale, i.e. what is the predicted redshift

of galaxy formation? Evaluate your result for SCDM and ΛCDM using the

standard parameters for these models with n = 1. (For ΛCDM you’ll have

to evaluate D+(a) by numerical integration.)


4. Gravitational radiation with a simple equation of state 
Gravitational waves correspond to transverse-traceless metric perturbations hij with 
�ih

i
j = hi

i = 0. The perturbations evolve according to the wave equation for a massless 
spin-2 field, 

ȧ
∂2 + 2 ∂τ −�

2 + 2K hij = 8πGa2Σij,T (5)τ a 
where K is the spatial curvature constant and Σij,T is the transverse-traceless shear stress, 
the source for gravitational radiation. It vanishes in vacuum. Part a) of this problem 
is concerned with the evolution of the background spacetime; gravitational radiation is 
considered in the remainder. Assume that Ω ≈ 1 (H2 � a−2|K|) as is appropriate at 
high redshift even if Ω �= 1 today. 

a) Suppose that the unperturbed equation of state of the universe is p = wρ with

w = constant (e.g., w = 0 for a matter-dominated universe, w = 1/3 for a

radiation-dominated universe, and w = −1 for a vacuum energy-dominated

universe). Solve the Friedmann and energy conservation equations for the

unperturbed Robertson-Walker spacetime to get a(τ). Show that for w >

−1/3 the result is a power law of τ but for w < −1/3 the solution is a power

of τ∞ − τ . What is the physical interpretation of τ∞? How does this relate

to inflation?


b) Show that gravitational radiation has two polarizations. (Hint: use the infor­

mation given at the beginning of this problem.) Write down 3 × 3 matrices

�+ and �× corresponding to the two independent linear polarization states
ij ij 

of plane gravitational waves traveling in the x3-direction. The general gravi­
tational wave may then be written h+(k, τ)�+ 

ijij + h×(k, τ)�× summed over all 
different plane waves. 

c) For plane gravitational waves of comoving wavenumber k, show that the

source-free gravitational wave equation has two solutions (for each polariza­

tion) given in terms of powers and Bessel functions of kτ (for w > −1/3)

or k(τ∞ − τ) (for w < −1/3). Show that h(k, τ) is constant on scales much

larger than the Hubble distance (neglecting the decaying mode). Thus, both

density fluctuations and gravitational waves created during inflation can be
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cosmologically important at late times when they reenter the Hubble dis­
tance. 

d) Show that the amplitude of gravitational waves decays as a−1 on scales small 
compared with the Hubble distance (kτ � 1). Interpret this result physically 
in terms of the energy flux carried by gravitational waves. (A qualitative 
argument will suffice.) The decay of h once waves cross the Hubble length 
implies that tensor mode contributions to the CMB anisotropy are negligible 
for l > 100. 
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