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1. CDM density perturbation growth 
For wavelengths much less than the Hubble length (kc � H), the Fourier transform of 

the density perturbation for nonrelativistic matter, δ(�k, τ), obeys the well­known linear 
wave equation for small­amplitude, isentropic, longitudinal perturbations: 

¨ ȧ 2 ρa2
� 
δ = 0 (1)δ + δ̇ + 

�
k2 cs − 4πG¯

a 

where dots denote conformal time derivatives. 

a) Consider a universe dominated by cold dark matter (CDM) with cs = 0, but

also including radiation. Ignoring the radiation perturbations — a useful

approximation on scales smaller than the Hubble distance — equation (1)

is valid for the CDM throughout the radiation­ and matter­dominated eras

(with ρ̄ on the right­hand side being the mean density of the CDM). Using

the solution of the Friedmann equation for a(τ) in a flat matter+radiation

universe, a(τ) = a1τ + a2τ

2 (be sure to express a1 and a2 in terms of H0 and

aeq = [1+zeq]

−1), show that the growing mode solution is δ ∝ 1+(3/2)(a/aeq).

Interpret this result physically for a < aeq as well as a > aeq.


b) Rewrite the wave equation given above in terms of the gravitational potential

perturbation φ(�k, τ). Show that φ̇ = 0 for growing­mode density perturba­

tions in a Ω = 1 CDM­dominated universe, implying that in real space,

φ = φ(�x). What happens to φ if Ω = 1 or cs = 0? Now consider an iso­

lated, gravitationally bound, relaxed system (e.g., the Milky Way galaxy), 
whose mass and proper size do not change with time. Assuming that the 
gravitational potential at the center is finite, does it change with time? Can 
one, therefore, estimate the initial gravitational potential fluctuations from 
the gravitational potential well depths of galaxies and clusters? 

2. Hot Dark Matter 
Suppose that the universe is closed by one flavor of massive neutrino with Ων = 1. The 
neutrinos stream freely (without scattering) since decoupling at T ≈ 1 MeV. The proper 
momentum of a typical neutrino is p = (1 + z) kBTν0/c where Tν0 = (4/11)1/3 T0 is the 
present neutrino “temperature.” 
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a) Show that the proper distance travelled by a typical neutrino (the “free­

streaming distance”) is


� τ0 kBTν0
Lfs = a0c dτ α (1 + z)

�
1 + α2 (1 + z)2

�−1/2 
where α ≡ (2) 

0	 mν c2 

and z = z(τ ) through the usual relation 1 + z = a0/a(τ ). 

b) At what redshift does the massive neutrino become nonrelativistic? Assuming

that this occurs before zeq, compute zeq for an Ω = 1 universe with two flavors

of massless neutrinos and one flavor of massive nonrelativistic neutrino. (cf.

Problem 1 of Problem Set 4.)


c) Using the exact z(τ ) for a K = 0 matter+radiation universe with two flavors

of massless neutrinos and one flavor of massive nonrelativistic neutrino, and

with h = 0.72, compute the exact free­streaming distance in Mpc by numer­

ically integrating equation (2). How doe the results scale with mν and h if

α � aeq? If massive neutrinos are the dark matter, free­streaming erases

primordial fluctuations for wavelengths up to about Lfs.


3. Spherical infall model 
The nonlinear evolution of spherically symmetric perturbations of a Friedmann­Rob ertson­
Walker (zero pressure) universe is most easily describ ed by integrating the trajectories 
of spherical shells containing fixed enclosed mass M . 

a) Show that the solution R(t) for the proper radius of a sphere enclosing fixed

mass is given parametrically by R = A(1 − cos η), t = B(η − sin η). What is

the value of A3/B2?


b) By comparing R(t) with the result for an unperturbed Ω = 1 Einstein­de

Sitter universe, obtain the exact nonlinear solution (in parametric form) for

¯ ¯ ¯
δ(t) ≡ M/M (t)− 1, where M = (4π/3)ρ̄R3	. (Hint: Follow a shell of fixed M 

¯and ask how much mass it would enclose, M (t), if the density were uniform 
¯and equal to the critical density ρ̄. Note that δ is the volume­average of the 

density perturbation ρ/ρ̄− 1.) 

c) If the enclosed mass remains constant and the initial energy is negative,

R → 0 implying δ → ∞. Show that this occurs for growing­mode initial


¯
perturbations when linear perturbation theory would predict δ = δc ≈ 1.69. 
Find the exact expression for δc in terms of π and simple numbers. 

4. Zel’dovich Approximation 
The Zel’dovich approximation is to write the tra jectories of pressureless matter (dark 
matter, or baryons on scales larger than the Jeans length) as 

q, τ ) = � ψ (��x (� q + D+(τ )� q ) ,	 (3) 
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where ψ (�� q ) is determined by the initial conditions and D+(τ ) is the zero­pressure linear 
growing mode growth factor. 

a) Consider a spherically symmetric density perturbation of the form 

� 
δi > 0 , �x < q0δ(�x, τi) =	 (4)
0 ,	

|
x 
|
> q0 

Find the radial displacement field ψ (�q ) corresponding to this density field 
to lowest order in δi. Show that the Zel’dovich approximation gives δ( �x <| |
q0, τ ) → ∞ at some finite τ = τc. What is the corresponding prediction for 
δ(τc) from linear perturbation theory? Does the Zel’dovich approximation 
agree with the exact solution of the spherical infall model from Problem 3 
above? 

b) The Zel’dovich approximation is exact for plane­parallel perturbations for

tra jectories that have not intersected others. Show this by considering a

one­dimensional density field ρ(x, τ ) with corresponding displacement field

ψx(qx) and gravitational potential φ(x, τ ) obeying the Poisson equation ∂2φ =
x 

4πGa2(ρ−ρ̄). Hint: substitute the Zel’dovich approximation trajectories into 

the exact equation of motion d2�x/dτ 2 + (ȧ/a)d�x/dτ = −� φ. Show that the 
� φ implied by this equation agrees with the solution of the Poisson equation 
assuming mass conservation. 
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