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PROBLEM SET 4

1. Connection in Rindler spacetime

The spacetime for an accelerated observer that we derived on Pset 2,
ds? = —(1 + g7)%dt* + dz* + dy* + dz* (1)

is known as “Rindler spacetime”. Compute all non-zero Christoffel symbols for this
spacetime. (Carroll problem 3.3 will help you quite a bit here.)

2. Relativistic Euler equation

(a) Starting from the stress-energy tensor for a perfect fluid, T = pU @ U + Ph, where
h =g !4+ U ® U, using local energy momentum conservation, V - T = 0, derive the
relativistic Euler equation,

(p+P)VyU=-h-VP. (2)

(Note: Because both T and h are symmetric tensors, there is no ambiguity in the dot
products that appear in this problem.)

(b) For a nonrelativistic fluid (p > P, v' > v") and a cartesian basis, show that this
equation reduces to the Euler equation,
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(i, k are spatial indices running from 1 to 3.) What extra terms are present if the
connection is non-zero (e.g., spherical coordinates)?

(c) Apply the relativistic Euler equation to Rindler spacetime for hydrostatic equilib-
rium. Hydrostatic equilibrium means that the fluid is at rest in the  coordinates, i.e.
U* = 0. Suppose that the equation of state (relation between pressure and density) is
P = wp where w is a positive constant. Find the general solution p(z) with p(0) = po.

(d) Suppose now instead that w = wy/(1 + gZ) where wy is a constant. Show that the
solution is p(z) = poexp(—z/L. Find L, the density scale height, in terms of g and
wy. Convert to “normal” units by inserting appropriate factors of ¢ — L should be a
length.

(e) Compare your solution to the density profile of a nonrelativistic, plane-parallel,
isothermal atmosphere (for which P = pkT'/u, where T is temperature and p is the
mean molecular weight) in a constant gravitational field. [Use the nonrelativistic Euler
equation with gravity: add a term —0;® = g;, where ® is Newtonian gravitational
potential and g; is Newtonian gravitational acceleration, to the right hand side of Eq.
(3).] Why does hydrostatic equilibrium in Rindler spacetime — where there is no
gravity — give such similar results to hydrostatic equilibrium in a gravitational field?
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3. Spherical hydrostatic equilibrium

As we shall derive later in the course, the line element for a spherically symmetric
static spacetime may be written
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where ®(r) and M (r) are some given functions. In hydrostatic equilibrium, U* = 0 for
i € [r,0,¢]. Using the relativistic Euler equation, show that in hydrostatic equilibrium
p = p(r) with
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4. Converting from non-affine to affine parameterization
Suppose v* = dz®/d\* obeys the geodesic equation in the form

Dve
dN\*

= k(A")v? .

Clearly \* is not an affine parameter.
Show that u® = dx®/d\ obeys the geodesic equation in the form

Du“

a0

provided that

d\
dX*

= exp
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5. Conserved quantities with charge

A particle with electric charge e moves with 4-velocity u® in a spacetime with metric
gap in the presence of a vector potential A,. The equation describing this particle’s
motion can be written

UV gt = eFogu”
where
Fop =V,Ag — VA, .
The spacetime admits a Killing vector field £ such that

£§gaﬁ =0 )
LAy =0

Show that the quantity (u, + eA,)E™ is constant along the worldline of the particle.
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