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PROBLEM SET 7

1. Gravitomagnetism

In lecture and working in Lorentz gauge, we examined the linearized Einstein field
equations for a static source,

Oh,, = —167GT,, — V?h,, = —167GT,, ,

where V2 is the ordinary Euclidean 3-space Laplacian operator. For a static, non-
relativistic source, the only non-zero stress-energy component is (to sufficient accuracy
for our purposes)

Too=1p -
Using this, we found
hoo = —4® — hy, = —2® diag(1,1,1,1) ,

where & = —G M /r is the Newtonian gravitational potential.

We will now modify this slightly by imagining that the source rotates, and thus is
characterized by a spin angular momentum with spatial components S? as well as a
mass M.

(a) Consider the source to be spherically symmetric, with uniform density p and radius
R. Take it to be rotating rigidly about the 2% = z axis with constant angular velocity
2. Working in a Lorentz frame that is at rest with respect to the center of mass of
the source, work out all components of the stress energy tensor 7T}, to first order in €.
(Assume p, R, and () are constant.) Indicate which components would change if you
included terms to second order in €2, but don’t calculate those second order corrections.
(You may neglect pressure terms throughout your calculation.)

(b) Solve for the Cartesian off-diagonal components ho,, hoy, ho.. (Note that hg; = ho;
since trace reversal has no effect on off-diagonal components.)

This is a moderately challenging calculation. The following tips should help:
e Recall that the formal solution to the Poisson-type equation for hg; is

hos(x —4G/ ToiX) s
x — x|

where x is the “field point”, the location of the point at which hg; is to be evalu-
ated, and x’ is the “source point”, a coordinate within the source over which the
integral is taken. [Boldface quantities denote 3-vectors: x = (z,y, 2).|
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e The following expansion for the factor 1/|x — x’| is very useful:

1 1 a9zt

]x—x’\:; r3

You may assume this identity in your solution. Note also that a sum over j is
implied here; we are allowed to be sloppy about the placement of indices since
the spatial metric is ;; to leading order. [This identity is more often seen as an
expansion in spherical harmonics; see, for example, J. D. Jackson, Sec. 3.6 (2nd
edition). This form in terms of Cartesian coordinates is equivalent.]

e After you have set up your integral, convert the primed integration variable to
spherical coordinates to do the integration:

/ .

V=2 — r'sind cos¢’
!/ . .

¥ =y — 1'siné sin¢’
/

2 =72 — 1'cost

Your final metric components should be proportional to pR>/r3.

(c) Using the identity S* = IQ’ where I is moment of inertia and Q° is the ith com-
ponent of the angular velocity vector, rewrite your answer in terms of the angular
momentum S°.

Although we derived this result for a special situation (uniform density, spherical body,
rigid rotation), the result we obtain in terms of S’ is completely general; see, for
example, MTW Sec. 19.1.

(d) Converting to spherical coordinates, find hg,., hog, hog-

Hint: Only one of these components is non-zero. After changing coordinates, you
should find that this non-zero component is oc S*sin®/r.

. Comparison of linearized GR and Maxwell’s theory
Consider the line element

ds* = —(1+2®)dt* + (1 — 20)(da” + dy* + d2*) — 23" da* dt ;

in other words, the usual weak field line element on the diagonal with h% = —f°.

(a) Show that the geodesic equation for a particle moving in this spacetime gives the
following equation of motion to first order in the particle’s velocity v:

d2
md—;(:mg—i—m(va).

Here, x is a 3-vector representing the position of the particle, and

g = _V(I)7
H = Vxg3,

where V represents the ordinary gradient operator in Euclidean 3-space.
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(b) Show that for stationary sources (i.e., no component of the stress energy tensor
shows time variation) the Einstein field equations may be written

V.g = —4nGp,
VxH = —-16rGJ
V-H = 0,
Vxg = 0.

The current J = pv, where v is the velocity of fluid flow in the source. (Note that the
second two equations follow from the definitions of g and H, so the only labor is in
working out the first two.)

(c¢) These equations clearly bear a strong resemblance to Maxwell’s equations in the
limit O;E = 0;B = 0; the main differences are the reversed sign in both equations,
and the extra factor of 4 (compared to Maxwell) in the curl equation. Can you give a
simple explanation for these differences?

3. Carroll: Chapter 7, Problem 1.
4. Carroll: Chapter 7, Problem 3.

5. Carroll: Chapter 7, Problem 4.
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