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SCOTT

HUGHES:

In the previous lecture, I began with the Einstein field equations in the most general
form. And then I specialized to linearized gravity, to taking the spacetime metric,
assuming that I can find a coordinate system in which it is close to the eta alpha
beta form that we use for flat space time, plus a small perturbation, something
that's defined. So I set whenever I have that h multiplied by itself I can neglect it.
Doing so I was able to recast the Einstein field equation as a simple linear equation,
which is the wave operator acting on a variant to that perturbation, the trace
reverse version of that perturbation. It is minus 16 pi g times the stress energy
tensor.

So in doing this recasting, I have-- this is essentially just a trick of reorganizing the
variables. I have taken my h alpha beta, which describes the way in which
spacetime is shifted away from that of flat spacetime, the perturbation of flat
spacetime, and I've just rearranged that to give it the trace with the opposite sign.
And I've chosen a gauge such that the divergence of that trace reverse metric
perturbation is zero.

If we take this equation, which is completely general for linearized spacetime, the
only thing which I had to do is choose a particular gauge. And there's no physics in
that. That's essentially a coordinate choice. If I then imagine that my source is
static, I will have static fields. And so my wave operator goes over to a simple
Laplace operator. And that it's not too hard to show that the solution that emerges
from this looks like this, where phi n is Newtonian gravitational potential, which
arises from a distribution of mass like so.

So this is the leading solution. And it's one that is very powerful and very useful. And
it's actually using tremendous number of physics and astronomical applications.
This restriction to a static source, though, is-- well, it's restrictive. What if I do not
want to simply consider a static source? What if I am interested in sources of the
gravitational interaction that are themselves dynamical?

And so I emphasized last time that this wave equation, my box h bar alpha beta
equals minus 16 pi GT alpha beta, this is something that I hope you have already



seen in the context of electrodynamics, in particular whenever we have a wave
equation, who's not even a wave equation, but any differential equation that is of
the form linear differential operator on field is equal to a source. OK, so I'm
separating out time and spatial behavior here. Whenever I have a situation in which
I'm interested in studying a field in which some differential linear operator acting on
that field is equal to a source, we can solve this using the technique of Green's
functions.

I am not going to be able to go through the technique of Green's functions in detail.
I will quickly give you a synopsis of how it works and then I will look at the particular
Green's function that applies to the wave operator. Students who would like to read
more about this, I would point you to the textbook by Arfken. I believe it is called
Mathematical Methods for Physicists. And in the third edition, Green's functions are
described in Section 16.5 to 16.6.

So in a nutshell, let me just give you a very brief synopsis of how this technique
works. Suppose we take our source, which may be some complicated, very ornate
entity. And what we're going to do is replace that source with a delta function. So
imagine that I take s of t and x over 2a delta at some time t prime and a three-
dimensional delta at some location x prime. What I'm basically saying here is I'm
imagining I might have some source that's extended in time and extended in space,
and I'm just going to look at the little blip at one particular event and see if I
replace my source with this one single blip, what field emerges from that?

What we're going to do is assert that a solution exists. And we will call the field that
arises when my source is replaced with a delta function, we'll call it capital G. OK?
This notation means that this is the amount of field at t, x, arising from my source at
t prime x prime. So my differential equation for this solution G now looks like so. So
whatever my linear operator is when it acts on this G, it gives me the source, which
is now the delta function.

Let me just introduce a little bit of notation here. So t and x, I call this the field point.
This is the point at which the field G is being measured. t prime, x prime is my
source point. This is the point at which the source is non-zero. In this particular case,
it's actually a little delta function spike.



The reason why we do this is pretty much by definition. Pardon me one second. Yes,
pretty much by definition. If I take the source and integrate it against the delta
function-- integrate over all time, integrate over all space-- I must get the source
back. This is a tautology. All I'm doing here is really saying this is the properties of
delta functions.

However, what's sort of remarkable is if instead of integrating the source against
the delta functions-- if instead of integrating the source against the delta functions--
I integrate the source against the Green's function, if I do this, then what I must get
out of it is the solution f. This is actually very easy to prove.

Simply take this equation-- let's call this equation A-- if you take a equation A and
operate on it with your differential operator D, so if I hit equation A with D--
remember D, it's a differential operator that acts on only the unprimed coordinates.
You know what? Let's just go and write this out.

So D on this integral, when I hit D on this, it goes straight through the integral. This
only acts on the unprimed coordinates. So it ignores the integrals. It ignores the s.
The only thing that operator hits when I act on the integral is the Green's function
itself. But I have asserted that the Green's function is such that when D acts on it, I
get the delta functions out. And by the definition of delta functions, this just gives
me my source back.

So what this means is that if we can find the Green's function for our differential
operator, all we need to do is integrate it against our source. And the result must be
the solution to our field equation. It's a beautiful technique. So if you haven't seen
this before, I highly recommend that you turn to that reading in Arfken. I'm going to
take advantage of this. I'm going to use this technique now.

In particular, I'm going to take advantage of the fact that if my differential operator
is in fact the flat spacetime wave operator, there is a very well-known solution for
the Green's functions. It's called the radiative Green's function in this case. I'm just
going to write down what the solution is. So I'm going to talk about the properties of
this in just a moment.

So I'll just comment that this is something that you should be able to find developed
in any good quality, advanced electrodynamics textbook. In my notes here I suggest



looking at this place where I originally went through this carefully was in the second
edition of Jackson. It's presumably also present in the latest edition. But it might be
in a slightly different place. In the second edition, you can find this discussed in
Section 6.6. When I have taught MIT's junior level electrodynamics course, I actually
go through this. And by essentially introducing a Fourier transform, a Fourier
decomposition, turning the wave operator into an algebraic operator, just rearrange
a bunch of terms, then invert a Fourier transform. It's not too hard to show that this
is the result that comes out of that.

Notice the argument of that delta function. And please bear in mind, we are working
in units in which we have set the speed of light equal to 1. So the delta function, it
has support only at-- well, what's going on here is this is taking into account the
amount of time it takes for information to travel from the source point to the field
point.

OK, if I can illustrate this with a little cartoon, imagine I have some dynamical source
of mass and energy that's down here wiggling away. Here is my one example of a
source point that is going to end up inside the integral when I integrate up the
Green's function against my source. Here I am. I'm an observer making my
measurement out here at position x. Whatever is happening at x prime takes time
to be communicated to me making my measurements out here at distance x.

The time lag is the distance that has to be traveled, x minus x prime. And, again, I'll
remind you, we're working in units with a speed of light is equal to 1. We would
divide by c if we were working in normal SI units. OK?

So this factor in the Green's function is building in-- I'm going to do the integral in
just a moment-- it is building in the fact that we need to account for the amount of
time it takes for information about the source's dynamics to be radiatively
communicated to observers far away from that source.

All right, so we are now going to apply this to the linearized-- the Einstein field
equation for linearized gravity. So here is our field equation. Sadly, the letter capital
G is doing multiple duties in this lecture.

So when we solve this, what we need to do is integrate t alpha beta regarded as a
function of prime-- time t prime, position x prime against the radiative Green's



function. Plug in the radiative Green's function, which we use. This is the Green's
function that corresponds to that wave operator. We have a minus 1 over 4 pi hitting
our minus 16 pi out front there. We're going to do the integral over the time
variable. And we're going to leave our result expressed as an integral over space.

This is an exact solution of the linearized field equations of general relativity. This is
telling me that what happens-- the field that is measured, the trace reverse
perturbation that is measured at time t and position x prime is given by integrating
over my source, all the dynamics that happened earlier than that time t. What I
need to do is take into account that over this source I have to fold in the amount of
time it takes for information from source point x prime to go out to x. I integrate
over the source. At every point in the integrand, I divide by the distance between
the field point and the source point. Do that integral, multiply by 4G. There's my
solution.

This is wonderful. It's actually an exact solution. Like most exact solutions, it's not
always the most useful thing in the world. There's one problem which we need to
diagnose, which is that in the way that this has been formulated, it looks like every
component of this trace reverse metric looks radiative.

What do I mean by it looks radiative? Well, it came from a wave equation. They all
depend on information that traveled out at the speed of light with a time lag
appropriate to the speed with which radiation moves in flat spacetime. You know,
you look at that, and you sort of say, wow, the entire metric has this sort of
character that we associate with a propagating wave. All of spacetime is radiative.

We need to be careful about that, because here is where we need to revisit and
think carefully about what happens when we choose our gauge. What I'm going to
show you is a little demonstration that in this case, the gauge we chose-- and let me
emphasize that was a wonderful gauge for putting the horribly messy field equation
into a form where we could actually solve it-- but the gauge we chose is
unfortunately masking some of the physical character of the spacetime.

So this Lorenz gauge was great for producing a set of field equations that we could
bring to bear powerful mathematical techniques and get a closed form actually
exact within the context of linearized theory, an exact solution. But it might be



misleading us as to what the resulting solution means. Let me illustrate this with an
example from electrodynamics.

Suppose I gave you a vector potential that was of the form at a time-like
component that was q over r minus q omega sine q dot r minus omega t capital R
over r. Little r is square root of x squared plus y squared plus z squared. And capital
R is some parameter with the dimensions of length. And my three spatial
components of this thing, I'm going to write them as kqi sine k dot r minus omega t
capital R over r minus qxi.

OK, this is the potential that has a form that kind of looks like if I were to sort of give
this to you on an oral exam and say without doing any calculation, what would you
guess this is? And that would actually be, as you'll see in a moment, that'd be a very
unfair question of me to ask. And I look at this and I say, you know what? That looks
kind of like a Coulomb field. And then there is something radiative that it's
embedded in, kind of a funny amplitude associated with that radiation. But maybe
this is sort of like a dipole radiator with a net monopole moment going on it.

You know, we've got things that involve fields that oscillate in space and time. They
fall off as 1 over r's. A component falls off as 1 over r cubed. Yeah, that would be my
guess-- a point charged with radiation.

So your oral examiner, the next thing they say is, great, work out the
electromagnetic field tensor corresponding to this. So you do this by taking some
derivatives. And what results is this. This is the electromagnetic field tensor
corresponding to a Coulomb electric field with no magnetic field. This potential is
nothing more than a Coulomb point charge in a really dumb gauge. The way I
actually generated this was I started with the q over r potential of a Coulomb point
charge. And I just applied some crazy gauge generator to it to see what happened.

So the parable of this story is whenever you are working with quantities that are
subject to gauge transformations, you have to be careful about drawing conclusions
about what those quantities mean in terms of the physics you want to get out of it.
Gauge can obscure the physics if we are not careful. And in particular-- there's
almost like a conservation of pain principle here-- it is often the case that the best
gauge for formulating tractable equations for solving your problem turn out to be



gauges that give you just kind of crappy results if you want to interpret what's going
on physically.

In the remainder of this lecture, I am going to introduce something that's a slightly
advanced topic. And I pretty shamelessly stole this from a paper that I wrote,
something that I did with a colleague of mine, Eanna Flanagan. And it's based on an
idea that was developed in a different context by my MIT colleague Ed Bertschinger.

So here is what we're going to do in the remainder of this lecture. What we're going
to do is recast the metric and the source in a form, which allows us to categorize the
radiative and non-radiative degrees of freedom of the spacetime. This will, in fact--
we're going to do this in a way where the results are, in fact, completely generic,
provided we stick to linearized gravity, gravity linearized around flat spacetime,
which will be sufficient for our discussion right now.

I will give you the punch line upfront. What we will discover is that spacetime has
four physical degrees of freedom that are non-radiative. And the hallmark of this is
that they are going to be governed by differential equations that look like the
Poisson equation. They will look like the Laplace operator on some potential is equal
to a source. Let me rewrite that. This handwriting is terrible. Spacetime has two
more degrees of freedom that are radiative. These are governed by wave
equations.

The metric tensor of spacetime has 10 components, 10 unique components. It's
represented by about 4 by 4 symmetric matrix. OK? So it has 10 components in it. 4
plus 2 does not equal 10. You might look at this and think, what about the other four
components of this thing? I've got 4 degrees of freedom. That must correspond in
some sense to 4 of those components. I've got another 2 degrees of freedom. That
must correspond to two of those components. What's going on the other four?

Well, the other 4 degrees of freedom are essentially eaten up by our gauge
freedom. OK, we are free to specify our coordinates via an infinitesimal coordinate
shift. And so we have 4 degrees of freedom under our control. General relativity
insists on giving physics to the other six. These four non-radiative degrees of
freedom, the two radiative ones, and the four gauge degrees of freedom
completely describe the spacetime metric. And just to use an analogy, these non-



radiative of degrees of freedom are kind of like the non-radiative electric and
magnetic fields that you get in electrodynamics. Your two radiative degrees of
freedom are going to turn out to two polarization states associated with waves in the
gravitational field in the same way that in electrodynamics, the electric and
magnetic field also have two polarizations associated with them.

So this is all worked out in great detail in a paper that Eanna Flanagan of Cornell
University and I wrote about 16 years ago. And so I will make available through the
8.962 website a copy of that paper. And it was Flanagan who sort of got this started.
And he and I then figured out all the details together. Ed Bertschinger is sort of the
grandfather of this idea since he did something very similar in an analysis that
characterized perturbations to cosmological spacetimes. All right, so here's how we
proceed.

Let's consider h mu nu as a tensor field on a flat background. In the previous lecture
that I recorded, I described how when I am working in linearized theory, it's a useful
fiction to think of h mu nu. Even though we know it's actually telling us about the
curvature of spacetime, it's a useful fiction to think of it as a tensor field in a flat
background. And we're going to take advantage of that.

We are going to choose time and space coordinates. Once I have chosen time and
space coordinates, I then think about how this 4 by 4 tensor, how its different
components break up and how they behave with respect to rotations in the spatial
coordinates. I can imagine going in and tweak my spatial coordinate system.

And what I want to do is examine how the components break up into subgroups with
respect to spatial only coordinate transformations. What we'll see is h mu nu is
going to break up into-- you're going to get one piece. It's your time-time piece. OK?
If I have chosen my time and my space coordinates and I imagine messing around
with my spatial coordinate system, htt is unchanged. And so this-- I'm actually going
to give it a name. I'm going to call it minus 2 phi-- this behaves as a scalar.

My spacetime piece-- so components of this, of the form hti-- I'm going to
characterize this in more detail a little bit later. But these three numbers are going
to behave with respect to spatial only coordinate transformations like a vector.
Likewise hij is going to behave like a 3 by 3 tensor.



So let's break this down a little bit further. Whenever I am dealing with a function
that is vector in nature-- and bear mind it's a field. So I'm dealing with a vector field-
- I'm going to write this as a divergence-free function plus the gradient of some
scalar. So what I'm going to do is say hti is equal to beta i plus the gradient of some
gamma. And I'm going to require that the divergence of that beta be equal to 0.

Notice, since all of my indices are spatial indices and I am working in nearly Lorenz
coordinates-- the placement of the indices, whether it's upstairs or downstairs, is
immaterial-- I will tend to write them all in the downstairs position. And so repeated
indices-- we're going to sort of abuse the Einstein notation a little bit-- repeated
indices will be summed over.

Let's extend this logic to the tensor piece, to hij. This takes a little bit of thought. So
let me just write out the answer and then describe the character of every piece that
goes into this. So hij can be written as hij tt-- I will define that in a moment-- plus 1/3
hij plus d, sort of a symmetrized gradient of a vector epsilon, plus delta i delta j
minus 1/3 delta ij plus operator on some function lambda.

So let me go through and describe what each of these things mean. And while I'm
at it, let me count up the number of degrees of freedom associated with them. Let's
back up for just a second and do that over here.

Gamma is a scalar. So there's 1 degree of freedom associated with gamma. Let me
move this over to here. So that's 1 degree of freedom.

Beta is a vector, but it's divergenceless. Because it's a vector, I have three
components. But being divergence-free, those three components obey a constraint.
So that's 3 minus 1. So this scalar and this divergence-free vector give me the 3
degrees of freedom I need to specify the 3 independent components of hti.

Over here, as I look through all of these different functions, h is a scalar. I have
defined it in such a way-- hold on just one second. I'm going to come back to that
point in just a moment. Epsilon j is a vector. It is defined such that its divergence is
0. OK?

So what is going on here is this contribution to hij, it gives me a piece of this thing
that looks like the gradient of vector. This has 3 degrees of freedom minus 1



constraint. This is a scalar. It only has 1 degree of freedom associated with it.
Lambda is another scalar. Notice whereas h feeds directly into hij its derivatives of
lambda that feed into this.

So this has one degree of freedom. But this is defined in such a way that if I take the
trace of hij, this operator gives me 0. Right? So the trace-- what the trace will do is
sum over elements when i and j are equal. So this will give me essentially the
Laplace operator. But the trace of delta ij is 3. So I get Laplace operator minus
Laplace operator, I get the 0 operator acting on lambda. So this gives me 1 degree
of freedom. This gave me 1 degree of freedom. hij tt-- and you know what, I'm going
to go to a separate board for this one.

This is a tensor. tt stands for transverse and traceless. This is defined so that if I take
its trace-- oops, I said this would all be downstairs-- if I evaluate this, I get 0. OK? So
hij is a tensor but with no trace. And it's defined so that if I take it's divergence, I get
0.

So this guy has 6 independent components. This is 1 constraint. This is 3 constraints,
right? Because it holds for every value of j. So this ends up giving me 2 free
functions. So as we sum all these up-- let's see, did I miss anyone here? Right.

So I have totally characterized h mu nu by a set of scalar, vector, and tensor
functions. I have a scalar phi, which I have over here with my time-time piece. I have
a scalar gamma. I have a vector, beta i. I have a scalar h, a scalar lambda, a vector
epsilon i, and finally, a tensor hij tt. OK?

So what I've done is-- let me just step back for a second. What I've been doing in
this exercise is trying to figure out with respect to its behavior under rotations and
then just because it'll prove to be convenient in a moment its behavior when I sort
of look at casting quantities in this irreducible form that involves divergence-free
vectors and gradients of scalars. This is sort of the equivalent of doing that for a
tensor function.

The 10 independent components in h mu nu have now been encapsulated by-- I've
got one function here 1 here, 2 here, 1 here, 1 here 2 here, 2 here. 1, 2, 4, 5, 6, 8
and 10. So all I've done is rewrite those 10 independent components of h mu nu into
a form, that as we're going to see, is particularly convenient for allowing us to



understand what the gauge invariant degrees of freedom in spacetime are, at least
in linearized theory.

All right, so, so far, all I've really done is rewrite my metric using a set of auxiliary
variables that might look a little bit crazy. What we would like to do is examine what
my linearized Einstein field equation looks like in terms of all of these new fields. So
in terms of the phi gamma beta h lambda epsilon hij tt, I would like to run this
through the mechanism, make my Einstein field equation, but express it in terms of
these things. We'll see why that is in just a moment.

But before I do this, we have to be a little bit careful. We have 10 functions here. We
have 4 gauge degrees of freedom. And the whole point of this exercise is to try to
understand how to deal with the fact that a gauge that is convenient for doing my
calculation may leave me with a result that is confusing in terms of the physics I'm
trying to understand.

So what we're going to do is say that I can take my generator of a gauge
transformation, xi alpha. I can write this since I have chosen time and space
coordinates. I can break it into a time-like piece and a spatial piece. I'm going to say
that the timeline piece is some scalar field A. And spatial piece looks like a vector
field B sub i plus the gradient of some scalar c. And I'm going to require Di Bi to be
equal to 0.

The reason why I'm doing this is these functions that I came up with, my phis and
gammas and betas and epsilons, whatever, they are going to change if I introduce a
gauge transformation. So suppose I change gauge as we learned how to do in the
previous lecture. When you do this, what you discover is the function phi changes to
the original phi, so something that looks like the time derivative of that scalar A.
The beta picks up a term that looks like the time derivative of the vector field B.
Gamma goes to gamma minus A minus time derivative of c. H goes to H minus 2
nabla square root of c.

So all of these functions that we sort of cleverly introduced trying to write these
different pieces of the metric of spacetime in an irreducible form, when we change
gauge, they change in this way. I left one out. It turns out when you change gauge,
hij tt goes to hij tt. This piece is actually gauge invariant. That's really interesting,



because that tells me that once I have worked out my field equations, the piece of it
that describes this transverse and traceless piece of the metric perturbation, it has
meaning in any representation that I write down.

So the piece that looks radiative in one representation, in fact, is radiative in all
representations. We still have to figure out what's going on with all this stuff. OK? So
we have a little bit more work to do. But we've just learned something very
interesting about this.

So at this point, there's really no simple way to describe what you do next. Honest to
god, what you essentially do is you just stare at these things for a while. And you
start to notice that there are certain combinations of these different functions that,
like hij tt, certain combinations of them are gauge invariant.

So if I define capital Phi to be little phi plus the time derivative of my gamma minus
1/2 2 derivatives of lambda, if I define theta as 1/2 h minus Laplace operator on
lambda. I define the vector field, psi i to be beta i minus 1/2 epsilon i-- note, this
vector field is divergence-free-- and, of course, hij tt. Every one of these
combinations is unchanged under a gauge transformation.

But let's note something. Phi is a scalar field. Theta is a scalar field. So I have 1 plus
1 functions associated with them. This is a divergence-free vector. So it has 3 minus
1 degrees of freedom associated with it. And hij, this is traceless and divergence
free. And as I already counted up, this guy has 6 minus 1 minus 3 degrees of
freedom in it, also 2.

So when I characterize the gauge invariant degrees of freedom in the spacetime,
I've only got 6 functions left. But this is good, right? My original 10 degrees of
freedom in the spacetime metric are characterized by these sort of 6 fundamental
degrees of freedom in the gravitational field plus 4 gauge degrees of freedom that
are bound up in my gauge generators.

So what I would like to do is see if I can write the Einstein field equations in terms of
these gauge invariant degrees of freedom. And you know what, I'm going to write it
in its full form. We're, of course, going to linearize this. But what I'm going to do is
take this thing, write it in linearized gravity, using my gauge invariant variables.



Before I do this, it's really helpful to first decompose the stress energy tensor in a
manner similar to how we decomposed our metric. So what I'm going to do is I've
chosen time and space directions. So I'm going to call the time-time piece rho in
energy density. The timespace piece, we know that this tells me something about
the flow of energy or the density of momentum. And I'm going to write this as a
divergence-free vector plus a gradient of some scalar. And I am going to describe
the space-space piece as an isotropic pressure, an anisotropic term-- I'm going to
give you a constraint on this in just a moment-- some kind of a gradient of a vector
field, and then a second order trace free operator acting on a scalar.

So, yeah, I'm going to want to introduce a couple of constraints here. I'm going to
require-- I've already written out that the ISI is 0-- I'm also going to require that the
divergence of sigma be equal to 0, the divergence of the sigma ij be equal to 0. And
I'm going to require that the trace of this trace be equal to zero. Let me strongly
emphasize that really all I'm doing is rearranging terms. I'm just trying to rewrite the
components of my stress energy tensor using this decomposition under rotations
and then looking at fields that can be written as divergence-free vectors plus
gradients of scalars. And I have a typo. I'm just trying to do this in a way that
parallels what I did for the metric. OK?

Before I do this, don't forget that I am required to make sure that my stress energy
tensor satisfies a law of local conservation of energy and momentum. When we do
this, what we find is that these various things that I introduced here, some of them
are related to each other. So in particular, what you find is the Laplace operator on s
is equal to the time derivative of the density, the energy density. Laplace operator
on the scalar sigma is related to the pressure and the time derivative of this s.
Finally, Laplace operator on that sigma i is related to also the time derivative of this
derivative of si.

What this tells us is that-- so I really want to make sure people don't get too hung up
on this. This is really just sort of the a convenient way of reorganizing the
information in those terms. But if you do want to think about this, this is telling us
that only rho, p, si, and sigma ij are freely specifiable. If you know these, there's a
total of 6 functions here-- 1 scalar, 1 scalar, 3 vectors minus 1 constraint, 6 tensors
minus 4 constraints, because this is divergenceless and trace-free. These are the



only ones that are freely specifiable. They determine the other 4 fields. OK? So
density, pressure, kind of an energy flow, and anisotropic stresses.

OK, redemption is at hand. Take all of the framework that we developed and that
we discussed in the previous lecture. And let's grind out the components of the
Einstein tensors. Doing so to linear order in h, which is equivalent to saying linear
order in all of these fields that we've introduced, what you find is Gtt minus Laplace
operator times this field theta. Gti is minus 1/2 Laplace operator on this vector field
psi minus the time derivative, the gradient of the time derivative of your theta. And
Gij, it's like a wave operator on the tt piece of your metric.

OK, that's a lot. Let's equate them to the source. And we'll take advantage of the
fact that when you do this, you're always going to associate like with like, OK? Terms
that are divergence-free, you're going to equate to a source that is divergence-free,
things like that.

This completely characterizes the Einstein field equations, solutions to the Einstein
field equations in linearized gravity. Now, I want to make a couple of remarks about
this. Part of what was the motivation for this entire lecture was this observation that
when we solve the field equations using the radiative Green's function, by
construction, the entire spacetime solution had this radiative character associated
with it. Everything sort of fell off as 1 over r and had a time dependence that
reflected a time delay, the time it takes for radiation to travel from the source to the
point at which the field is being measured.

But we saw via this electrodynamic example that we put up just for intuition's sake,
that it's entirely possible to have a totally non-radiative field that looks radiative
basically because we chose a gauge that masked its physical character. This was a
lengthy and-- I'll be blunt-- a somewhat advanced calculation. I do not expect
everyone to be able to follow this in great detail. But I want you to understand how
we got to this final end result here.

By decomposing the spacetime, the perturbation to spacetime in linearized theory,
into sort of as irreducible as possible a set of functions, we found that there are
exactly 6 degrees of freedom in that spacetime that are completely gauge
invariant. These functions, they will have this form. They will obey these equations.



In principle, you can solve these things and understand how these fields behave no
matter what gauge you are working in. And what we see is 2 degrees of freedom--
remember, hij tt is a 3 by 3 tensor, but its traceless and its divergenceless. So
there's actually only 2 degrees of freedom here-- it is indeed a wave equation. It is
the only piece of the metric that is a wave equation in every gauge and in every
representation. All other gravitational degrees of freedom obey something more
like a Poisson equation. These are non-radiative. This is radiative.

The way that we are going to use this-- the next thing which I want to talk about is
gravitational radiation. And what this calculation told you is that if you are
interested in gravitational radiation, this is the only piece of the spacetime and the
source that you need to be concerned about. If you solve that equation, it will give
you the gauge invariant radiative degrees of freedom in a spacetime no matter
what representation you use.

So we are going to-- for the next couple of lectures, we are going to focus on this.
We're going to show how we can sort of solve the Einstein field equations in a
particularly convenient gauge and then say, all right, I know I've now got these 10
functions. Four of them are just purely things I can get rid of by choosing my gauge.
There's only six that are sort of truly physical. Of those six, four of them don't
constitute true radiative degrees of freedom. There's only 2 degrees of freedom in
my solution that described radiation. We're going to talk about how to pull them out,
how to characterize them, and the important physical content that this gravitational
radiation carries.

So in a nutshell, you should take this lecture as demonstrating that in a very deep
way spacetime always has some kind of a radiative component associated with it.
But it's really only encapsulated in 2 degrees of freedom in the spacetime. It may
look otherwise. But just be careful that because your gauge has confused you
essentially. And with that, I will stop this lecture here.


