Massachusetts Institute of Technology
 Department of Physics

8.962 Spring 2006

Problem Set 2

1. Show that the number density of dust measured by an observer whose 4 -velocity is \vec{U} is given by $n=-\vec{N} \cdot \vec{U}$, where \vec{N} is the matter current 4 -vector.
2. Take the limit of the continuity equation for $|\mathbf{v}| \ll 1$ to get $\partial n / \partial t+\partial\left(n v^{i}\right) / \partial x^{i}=0$.
3. In an inertial frame \mathcal{O}, calculate the components of the stress-energy tensors of the following systems:
(a) A group of particles all moving with the same 3 -velocity $\mathbf{v}=\beta \vec{e}_{x}$ as seen in \mathcal{O}. Let the rest-mass density of these particles be ρ_{0}, as measured in their own rest frame. Assume a sufficiently high density of particles to enable treating them as a continuum.
(b) A ring of N similar particles of rest mass m rotating counter-clockwise in the $x-y$ plane about the origin of \mathcal{O}, at a radius a from this point, with an angular velocity ω. The ring is a torus of circular cross-section $\delta a \ll a$, within which the particles are uniformly distributed with a high enough density for the continuum approximation to apply. Do not include the stress-energy of whatever forces keep them in orbit. Part of this calculation will relate ρ_{0} of part (a) to $N, a, \delta a$, and ω.
(c) Two such rings of particles, one rotating clockwise and the other counter-clockwise, at the same radius a. The particles do not collide or otherwise interact in any way.
4. Use the identity $\partial_{\nu} T^{\mu \nu}=0$ to prove the following results for a bounded system (i.e., a system for which $T^{\mu \nu}=0$ beyond some bounded region of space):
(a) $\partial_{t} \int T^{0 \alpha} d^{3} x=0$. This expresses conservation of energy and momentum.
(b) $\partial_{t}^{2} \int T^{00} x^{i} x^{j} d^{3} x=2 \int T^{i j} d^{3} x$. This result is a version of the virial theorem; it will come in quite handy when we derive the quadrupole formula for gravitational radiation. (c) $\partial_{t}^{2} \int T^{00}\left(x^{i} x_{i}\right)^{2} d^{3} x=4 \int T^{i}{ }_{i} x^{j} x_{j} d^{3} x+8 \int T^{i j} x_{i} x_{j} d^{3} x$. No pithy wisdom for this one.
5. The vector potential $\vec{A} \doteq\left(A^{0}, \mathbf{A}\right)$ generates the electromagnetic field tensor via

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

(a) Show that the electric and magnetic fields in a specific Lorentz frame are given by

$$
\begin{aligned}
\mathbf{B} & =\nabla \times \mathbf{A} \\
\mathbf{E} & =-\frac{\partial \mathbf{A}}{\partial t}-\nabla A^{0} .
\end{aligned}
$$

Here, ∇ is taken to be the normal gradient operator in Euclidean space.
(b) Show that Maxwell's equations hold if and only if

$$
\partial_{\mu} \partial^{\mu} A^{\alpha}-\partial^{\alpha} \partial_{\mu} A^{\mu}=-4 \pi J^{\alpha}
$$

(c) Show that a gauge transformation of the form

$$
A_{\mu}^{\text {new }}=A_{\mu}^{\text {old }}+\partial_{\mu} \phi
$$

leaves the field tensor unchanged.
(d) Show that one can adjust the gauge so that

$$
\partial_{\mu} A^{\mu}=0
$$

Show that Maxwell's equations take on a particularly simple form with this gauge choice. Use the operator $\square \equiv \partial_{\mu} \partial^{\mu}$ to simplify your result.
6. An astronaut has acceleration g in the x direction (in other words, the magnitude of his 4 -acceleration, $\sqrt{\vec{a} \cdot \vec{a}}$, is g). This astronaut assigns coordinates $(\bar{t}, \bar{x}, \bar{y}, \bar{z})$ to spacetime as follows:

First, the astronaut defines spatial coordinates to be $(\bar{x}, \bar{y}, \bar{z})$, and sets the time coordinate \bar{t} to be his own proper time.
Second, at $\bar{t}=0$, the astronaut assigns $(\bar{x}, \bar{y}, \bar{z})$ to coincide with the Euclidean coordinates (x, y, z) of the inertial reference frame that momentarily coincides with his motion. (In other words, though the astronaut is not inertial - he is accelerating there is an inertial frame that, at $\bar{t}=0$, is momentarily at rest with respect to him. This is the frame used to assign $(\bar{x}, \bar{y}, \bar{z})$ at $\bar{t}=0$.) Observers who remain at fixed values of the spatial coordinates $(\bar{x}, \bar{y}, \bar{z})$ are called coordinate-stationary observers (CSOs). Note that proper time for these observers is not necessarily \bar{t} ! we cannot assume that the CSOs' clocks remain synchronized with the clocks of the astronaut. Assume that some function A converts between coordinate time \bar{t} and proper time at the location of a CSO:

$$
A=\frac{d \bar{t}}{d \tau}
$$

The function A is evaluated at a CSO's location and thus can in principle depend on all four coordinates $\bar{t}, \bar{x}, \bar{y}, \bar{z}$.
Finally, the astronaut requires that the worldlines of CSOs must be orthogonal to the hypersurfaces $\bar{t}=$ constant, and that for each \bar{t} there exists an inertial frame, momentarily at rest with respect to the astronaut, in which all events with $\bar{t}=$ constant are simultaneous.
It is easy to see that $\bar{y}=y$ and $\bar{z}=z$; henceforth we drop this coordinates from the problem.
(a) What is the 4 -velocity of the astronaut, as a function of \bar{t}, in the initial inertial frame [the frame that uses coordinates (t, x, y, z)]? (Hint: by considering the conditions on $\vec{u} \cdot \vec{u}, \vec{u} \cdot \vec{a}$, and $\vec{a} \cdot \vec{a}$, you should be able to find simple forms for u^{t} and u^{x}.)
(b) Imagine that each coordinate-stationary observer carries a clock. What is the 4 -velocity of each clock in the initial inertial frame?
(c) Explain why $A(\bar{x}, \bar{t})$ cannot depend on time. In other words, why can we put $A(\bar{x}, \bar{t})=A(\bar{x})$? (Hint: consider the coordinate system that a different CSO may set up.)
(d) Find an explicit solution for the coordinate transformation $x(\bar{t}, \bar{x})$ and $t(\bar{t}, \bar{x})$.
(e) Show that the line element $d s^{2}=d \vec{x} \cdot d \vec{x}$ in the new coordinates takes the form

$$
d s^{2}=-d t^{2}+d x^{2}=-(1+g \bar{x})^{2} d \vec{t}^{2}+d \bar{x}^{2}
$$

MIT OpenCourseWare
https://ocw.mit.edu

8.962 General Relativity

Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

