
MITOCW | 9. Geodesics.

[SQUEAKING]

[RUSTLING]

[CLICKING]

SCOTT

HUGHES:

So let me just do a quick recap of what we did last time. So today, we're going to
move into things that are a little bit more physics. Last time we were really doing
some things that allows us to establish some of the critical mathematical concepts
we need to study the tensors that are going to be used for physics on a curved
manifold.

So one of the things that we saw is that if I wanted to formulate differential
equations on a curved manifold, if I just defined my derivative the most naive way
you might think of, you end up with objects that are not tensorial. And so
mathematically you might say, well, that's fine. It's just not a tensor anymore. But
we really want tensors for our physics because we want to be working with
quantities that have frame-independent geometric meaning to them. So that notion
of a derivative-- if I just do it the naive way-- isn't the best.

And so I argued that what we need to do is to find some kind of a transport
operation in which there is a linear mapping between things like my vector field or
my tensor field and the displacement, which allows me to cancel out the bits of the
partial derivative transformation laws that are non tensorial. There's a lot of
freedom to do that.

One of the ways I suggest we do that is by demanding that when I do this, that
derivative-- when applied to the metric-- give me 0. And if we do that, we see right
away that the transport law that emerges gives me the covariant derivative as one
of my examples. Now this shouldn't be a surprise. We introduced the covariant
derivative by thinking about flat spacetime operations, but with all my basis objects
being functionals. And this in some way is sort of a continuation of that notion.

The other thing which I talked about is telling you we're not going to use a
tremendous amount here except to motivate one very important result. And that is



if I define transport by basically imagining that I slide my vectors in order to make
the comparison-- along some specified vector field-- I get what's known as the Lie
derivative. And so this is an example of the Lie derivative of a vector.

And you get this form that looks like a commutator between the vector field you're
sliding along and the vector field you are differentiating. Similar forms-- which are
not really the form of a commutator-- but similar forms can be written down for
general tensors.

The key thing that you should be aware of is that it's got a similar form to the
covariant derivative, in that you have one term-- let's focus on the top line for the
second-- you have one term that looks just like the ordinary vector contracted onto
a partial derivative of your field. And then you have terms which correct every free
index of your field-- one free index if it's a vector, one free index if it's a one form,
and corrections for an end index tensor-- with the sign doing something opposite to
the sign that appears in the covariant derivative.

What's interesting about this is that so defined, the Lie derivative is only written in
terms of partial derivatives. But if you just imagine-- you promote those partial
derivatives to covariant derivatives-- you find the exact same result holds because
all of your Christoffel symbols-- or connections as we like to think of them when
we're using parallel transport-- all the connective objects cancel each other out.

And this is nice because this tells me that even though this object, strictly speaking,
only involves partial derivatives, what emerges out of it is in fact tensorial. And it's
an object that I can use for a lot of things I want to do in physics. In particular where
we're going to use it the most-- and I said you're going to do this on the PSET, but I
was wrong-- you're going to do something related to one of the PSETs-- but I'm
going to actually-- if all goes well-- derive an important result involving these
symmetries in today's lecture.

We can use this to understand things that are related to conserved quantities in
your space time. And where this comes from is that there is a definition of an object
we call the Killing vector, which is an object where if your metric is Lie transported
along some field C, we call C a Killing vector. And from the fact that the covariant
derivative the metric is 0, you can turn the equation governing the Lie derivative



along C into what I wrote down just there. And I should write its name. There's the
result known as Killing's Equation.

If a vector has a Killing vector-- if a metric has a Killing vector-- then you know that
your metric is independent of some kind of a parameter that characterizes that
spacetime. The converse also holds. If your metric is independent of something--
like say the time coordinate-- you know that there is a Killing vector corresponding
to that independent thing. And so you'll often see this described as a differing
amorphism of the spacetime-- if you want to dig into some of the more advanced
textbooks on the subject. We'll come back to that in a few more details hopefully
shortly before the end of today's lecture.

So where I concluded last time, was we started talking about these quantities known
as tensor densities, which are given the less-than-helpful definition-- quantities that
are like tensors, but not quite. The example I gave of this-- where we were starting--
was the Levi-Civita symbol. So let me just write down again what resulted from that.

So if I have Levi-Civita-- and the tilde here is going to reflect the fact that this is not
really a tensor-- this guy in some prime coordinates is related to this guy in the
unprime coordinates via the following-- let's get the primes in the right place-- the
following mess of quantities. So I'm not going to go through this again. This is
basically a theorem from linear algebra that relates the determinant of a matrix--
not metric, but matrix-- to what you get when you contract a bunch of matrices
onto the Levi-Civita symbol.

And so the key thing to note is that if this were not here, this would look just like a
tensor transformation. But that is there. So it's not. And so we call this a tensor
density of weight 1.

So the other one-- which I hinted at the end of the last lecture, but did not have time
to get into-- is suppose we look at the metric. Now, the metric-- no ifs, ands, or buts
about it-- it's a tensor. And it's actually the first tensor we've started talking about
back in our toddler years of studying flat spacetime, which by the way, was about
three weeks ago.

Obviously that's a tensor. It's a simple tensor relationship. Let's take the determinant
of both sides of this.



You might look at this and go, why do you want to do that? Well when I do this, I'm
going to call the determinant of the metric in the primed representation. Let's call
that G prime. I get 2 powers-- 2 powers of this Jacobian matrix is determinant. And I
get the determinant in my original representation.

Now I want to write this in a way that's similar to the way I wrote it over here. Notice I
have all my primed objects over here on the left-hand side. And my factor of this
determinant relates-- it's got primed indices in the upstairs position, unprimed in the
downstairs.

But the determinant of 1 over a metric is just 1 over the determinant of-- the
determinant of the inverse of a matrix is just 1 over the determinant of that matrix.
And so I can really simply just say this looks like so. So the determinant of the
metric is a tensor density of weight minus 2.

What this basically tells us is I now have two of these things. I've been arguing
basically this entire course that we want to use tensors because of the fact that they
give me a covariant way of encoding geometric concepts. I've got these two things
that are not quite tensors. I can put them together and get a tensor out of this.

So what this tells me now is I can convert any tensor density into a proper tensor. So
suppose I have a tensor density of weight W. I can convert this into a proper tensor
by multiplying by a power of that G. So multiply it by G to the W over 2.

One slight subtlety here, when we work in spacetime-- let's just stop for a second
and think about special relativity. In special relativity in an inertial reference frame,
my metric is minus 1 1 1 1 on the diagonal. So its determinant is negative 1. And
when I take negative 1 to some power that involves a square root, I get sad.

We all know how to work with complex numbers. You might think that's all OK. It's
not in this case. But the way I can fix that is that equation's still true if I multiply both
sides by minus 1. I want this to be a positive number when I take the square root. So
I'm allowed just to take the absolute value. So we take the absolute value to clear
out the fact that in spacetime, we tend to have an indeterminate metric, where the
sign depends on the interval.



So remember the only reason we're doing this-- this is just a-- I don't want to say it's
a trick. But it's not that far off from a trick. I'm just combining two tensor densities in
order to get a tensor out of it. And minus a tensor density is still a tensor density. So
I'm OK to do that. And I'm just doing this so that my square root doesn't go haywire
on me.

So a particular example-- in fact the one that in my career has come up the most--
is making a proper volume element converting my Levi-Civita symbol into a tensor
that gives me a volume element. So my Levi-Civita symbol has a tensor density of
weight 1. If I want to make that into a proper tensor, I multiply by the square root of
the determinant of the metric.

So now I will no longer have that tilde on there, which was meant to be a signpost
that this as a quantity is a little bit goofy. You wind up with something like this. When
you go-- and by the way, sometimes when you're working with this, you need to
have this thing with indices in the upstairs position. You have to be a little bit careful.
But I'll just give you one example.

If you raise all four of the indices, what you find when everything goes through, this
one is not that hard to see because you're basically playing with a similar
relationship to the one that I wrote down over here-- just a short homework exercise
to demonstrate this. And then you end up with the tensor density of the opposite
sign. Weight minus 1, you wind up with a 1 over square root there.

So like I said one of the reasons why this is an important example is that we use it to
form covariant volume operators.

So in four-dimensional space-- so imagine here's my basis direction for spatial
direction 1, spatial direction 2, spatial direction 3-- you guys can figure out how to
write spatial direction 0 on your own time-- I would define a covariant 4 volume-- 4
volume element from this. It'll look like this. And if this is an orthogonal basis, this
simply turns into something like-- these are meant to be superscripts because these
are coordinates. So it just turns into something like this if I'm working in an
orthogonal basis.

And again for intuition, I suggest go down to 3-dimensional spherical coordinates.
And I wrote this last time. But let me just quickly write it up. I mean everything I did



here, I tend to-- since this is a course on spacetime-- by default I write down all my
formulas for three space dimensions, one time dimension. But it's perfectly good in
3 spatial dimensions, 2 spatial dimensions, 17 spatial dimensions-- whatever crazy
spacetime your physics want you to put yourself in-- or space your physics wants to
put you in.

So I'll just remind you-- that when you do this, you've got yourself a metric across
the diagonal of 1 r squared r squared sine squared theta. And just to be consistent--
I usually use Latin letters for only spatial things. So let's do that.

This would be how I would then write my volume element. Did I miss something?

AUDIENCE: Yeah. [INAUDIBLE].

SCOTT

HUGHES:

Absolutely. Yeah. Thank you. I'm writing quickly. Yeah?

AUDIENCE: Is there [INAUDIBLE]?

SCOTT

HUGHES:

This is dx-- oh, bugger. Yep. I'm trying to get to something new. And I'm afraid I'm
rushing a little bit. So thank you for catching this.

And so with this, take the determiner of this thing. And sure enough you get r
squared sine theta d r d theta d phi. So this is the main thing that we are going to
use this result for-- this thing with tensor densities. I want to go on a brief aside,
which is relevant to the problem that I delayed on this week's problem 7.

So there are three parts of problem 7 that I moved from PSET 3 to PSET 4 because
they rely on a result that I want to talk about now. So the main thing that we use the
determinant of the metric for in a formal way is this-- that it's a tensor density of
weight minus 2. And so it's a really useful quantity for converting tensor densities
into proper tensors. And really the most common application of this tends to be to
volume elements.

But it turns out that it's actually really useful for what a former professor of mine
used to like to call party tricks. There's some really-- it offers a really nice shortcut
to computing certain Christoffel symbols. So in honor of Saul Teukolsky let's call this
a party trick.



So we're using the determinant of the metric to compute certain Christoffels. So this
is going to rely on the following. So suppose I calculate the Christoffel symbol, but
I'm going to sum on the raised index. And bearing in mind it's symmetric in the
lower one, I'm going to do a contraction of the raised index with one of the lower
indices.

So let's just throw in a couple of definitions. This is equivalent to the following. And
so throwing in the definition of the Christoffel with all the indices in the downstairs
position-- this formula, by the way, is something that I've been writing down now for
about 27 years. And I have to look it up every time. Usually by the end of a
semester of teaching 8.962, I have it memorized. But it decays by then. So if you're
wondering how to go from here to here-- this is the kind of thing-- just look it up. So
let's pause for a second.

Remember that the metric is-- it's itself symmetric. So in keeping with that, I'm
going to flip the indices on this last term, which-- hang on a second. That was stupid.
Wait. Pardon me. This is the term I want to switch indices on. My apologies.

So the reason I did that is I want to have both of these guys ending with the alpha
because notice this and this-- they're the same. But I have interchanged the beta
and the mu. So these two terms-- the first term and the third term-- are anti
symmetric upon exchange of beta and mu. They are contracted with the metric,
which is symmetric upon exchange of beta and mu.

Question?

AUDIENCE: Does the metric have to be symmetric?

SCOTT

HUGHES:

The metric has to be symmetric. [LAUGHS] I don't want to get into that right now,
but yes [LAUGHS].

So these guys are anti symmetric. This guy is symmetric. And remember the rule.
Whenever you contract some kind of a symmetric object with an anti symmetric m
you get 0. So that means this term and this term die.

And what we are left with is gamma mu mu alpha is 1/2 g u beta, and the alpha
derivative of g u beta. There is the way it is contracting the indices in the 2 metric



with the other one. Well here's a theorem that I'm going to prove in a second-- or at
least motivate-- that it's going to rely on a result that I will pull out of thin air, but
can be found in most linear algebra textbooks.

It's not too hard to show that this can be further written as 1 over square root of the
determinant times the partial derivative of the square root of the determinant,
which is sometimes-- depending on your applications-- this can be written very
nicely as the derivative of the logarithm of the absolute value of the-- the square
root of the absolute value of the determinant.

So before I go on and actually demonstrate this, you can see why this is actually a
pretty-- so this actually comes up. I'm going to show a few applications as to why this
particular combination of Christoffel symbols shows up more often than you might
guess. It's really important for certain important calculations.

And this is telling me that I can get it by just taking one partial derivative of a scalar
function. And if you know your metric, that's easy. So this becomes really easy thing
to calculate. So let's prove it.

So the proof of this relies on a few results from linear algebra. So let's not think
about tensors for a second. And let's just think about matrices. So imagine I've got
some matrix m. I'm going to be agnostic about the dimensions of this thing. And
suppose I look at the following variation of this matrix.

So suppose I imagine doing a little variation. So suppose every element of m is a
function. And I look at a little variation of the log of the determinant of that matrix.
Well this can be written as log is basically a definition of this. Now, if I exploit
properties of logarithms, this can be written as the log of the determinant-- m plus
delta m-- divided by the determinant of m.

Now I'm going to use the fact that 1 over the determinant of m is the determinant
of the inverse of m.

So taking advantage of that, I can further write this guy as something like this. Now
I'm going to invoke an identity, which I believe you can find proven in many linear
algebra textbooks. It just occurred to me as I'm thinking about this, I don't know if
I've ever seen it explicitly proven myself. But it's something that's very easy to



demonstrate with just a quick calculation.

You can just do-- I'm a physicist. So for me I'll use Mathematica. I'll look at six or
seven examples and go, it seems right. And so I've definitely done that. But I believe
this is something that you can find proven explicitly-- like I said-- in most books.

So remember these are all matrices. So this isn't the number 1. We want to think of
this as the identity matrix.

Oh and I'm also going to regard this variation as a small quantity. So if I regard
epsilon as a small matrix-- this can be made formal by defining something like
condition number associated with the matrix or something like that. But generally
what I want to mean by that is if I take this epsilon and I add it to 1, all of this-- so
my identity is 1 on the diagonal-- 0s everywhere else-- all the things that are put into
the sum of 1 plus epsilon are much, much smaller than that 1 that's on the diagonal.
That will be sufficient.

So if epsilon is a small matrix, then the determinant of 1 plus epsilon is
approximately equal to 1 plus the trace of epsilon. What that approximately refers
to is-- of course you can take that further. And you'll get additional corrections that
involve epsilon times epsilon, epsilon times epsilon, times epsilon. I believe when
you do that, the coefficient is no longer universal. But it depends upon the
dimensions of the matrix.

But leading order it's independent of dimensions of the matrix. And that's
something that you can you can play with a little bit yourself. Like I said, this is
sufficient for what we want to do here.

So I'm going to think of my small matrix as the matrix of inverse m times a variation
of m. This is our epsilon. So we're going to apply it to the line that I have up here.
And this tells me that my delta on the log of the derivative of m is the log of 1 plus
the trace of m to the minus 1 on the matrix m. Log of 1 plus a small number is that
small number.

Now the application. So this is-- like I said, this the theorem that you can find in
books that I don't know about but truly exist. This is something I've seen
documented in a lot of places. Let's treat our m as the metric of spacetime.



So my m will be g alpha beta. My m inverse will be g in the upstairs position. And I
will write this something like so. And I'm going to apply this by looking at variations
in my metric.

So delta log-- I'm going to throw my absolute values in here. That's perfectly allowed
to go ahead and put that into there. Applying this to what I've got, this is going to be
the trace of g mu beta times the variation of g beta gamma. And I forgot to say, how
do I take the trace of a matrix?

So the trace that we're going to use-- we want it to be something that has geometric
meaning and has a tensorial meaning to it. So we're going to call the trace of this
thing g alpha beta epsilon alpha beta.

If you think about what this is doing, you're essentially going to take your-- let's say I
apply this to the metric itself. I put one index in the upstairs position, one the
downstairs position, and then I am summing along the diagonal when I do this. You
will sometimes see this written as something like that.

So in this case, when I'm taking the trace of this guy here, that is going to force me
to-- let's see. So this gives me a quantity where I'm summing over my betas. And
then I'm just going to sum over the diagonal indices. I'm forcing my two remaining
indices to be the same.

So putting this together, this tells me-- so now what I'm going to do is say, I basically
have part of a partial derivative here. All I need to do is now divide by a variation in
my coordinate and take the limit.

So it comes out of this as the partial derivative-- looks like this. Now let's trace it
back to our Christoffel symbol. My Christoffel symbol-- the thing which I'm trying to
compute-- is one half of this right-hand side.

So it's one half of the left-hand side. And I can take that one half, march it through
my derivative, and use the fact that 1/2 the log of x is the log of the square root of
x. Check.

So like I said, this is what an old mentor of mine used to like to call a party trick. It is
a really useful party trick for certain calculations. So I want to make sure you saw



where that comes from. This is something you will now use on the problem that I
just moved from PSET 3 to PSET 4. It's useful for you to know where this comes from.
You're certainly not going to need to go through this yourself. But this is a good type
of calculation to be comfortable with.

Those of you who are more rigorous in your math than me, you might want to run
off and verify a couple of these identities that I used. But this is very nice for physics
level rigor-- at least astrophysicists level rigor.

So let me talk about one of the places where this shows up and is quite useful. So a
place where I've seen this show up the most is when you're looking at the spacetime
divergence of a vector field. So when you're calculating the covariant derivative of
alpha contracting on the indices-- let's just throw in-- expand out the full definition
of things-- all you've gotta do is correct one index. And voila, this is exactly the
things that change-- where is it-- change my alpha to a mu-- that's exactly what I've
got before.

And so-- hang on just one moment. I know what I'm doing. These are all dummy
indices. So in order to keep things from getting crossed, I'm going to relabel these
over here. So I can take advantage of this identity and write this. So stare at this for
a second. And you'll see that the whole thing can be rewritten in a very simple form.

Ta-da. You haven't done as much work with covariant in your lives as I have. So let
me just emphasize that ordinarily when you see an expression like you've got up
there on the top line, you look at that, and you kind of go [GROANS] because you
look at that, and the first thing that comes to your mind is you've got to work out
every one of those Christoffel symbols and sum it up to get those things. And in a
general spacetime, there will be 40 of them.

And before Odin gave us Mathematica, that was a fair amount of labor. Even with
Mathematica it's not necessarily trivial because it's really easy to screw things up.
With this you calculate the determinant of the metric, you take its square root, you
multiply your guy, and you take a partial derivative, and you divide. That is
something that most of us learned how to do quite a long time ago. It cleans the
hell out of this up.

So the fact that this gives us something that only involves partial derivatives is



awesome. This also-- it turns out-- so when you have things like this, it gives us a
nice way to express Gauss's theorem in a curved manifold.

So Gauss's theorem-- if I just look at the integrals that-- or rather the integral for
Gauss's theorem-- let's put it that way. Let's say a Gauss's-type integral. So go back
to when you're talking about conservation laws. If I imagine I'm integrating the
divergence of some vector field over a four-dimensional volume, look at that, I get
a nice cancellation.

So this turns into an integral of that nice, clean derivative over my four coordinates.
And then you can take advantage of the actual content of Gauss's Theorem to turn
that into an integral over the three-dimensional surface that bounds that four
volume.

It's a good point-- so you're emboldened by this. You say, yay, look at that. We can
do all this awesome stuff with this identity. It gives me a great way to express some
of these conservation laws. You might think to yourself-- and I realized as I was
looking over these notes-- I'm about to I think give away a part of one of the
problems on the PSET-- but c'est la vie. It's an important point.

Can we do something similar for tensors? So this is great that you have this form for
vectors. The divergence of a vector is a mathematical notion that comes up in
various contexts. So this is important. But we've already talked about the fact that
things like energy and momentum are described by a stress energy tensor. So can
we do this for tensors?

Well the answer turns out to be no, except in a handful of cases. And I have a
comment about those handful of cases. So suppose I take this-- and I'm taking the
divergence on say the first index of this guy-- so there's the bit involves my partial
derivative-- I'm going to have a bit that involves correcting the first index.

So the first correction is it's of a form that does in fact involve this guy we just
worked out this identity for. And in principle we could take advantage of that to
massage this and use this identity. But the second one there's nothing to do with
that. This you just have to go and work out all of your 40 different Christoffel
symbols and sit down and slog through it.



This spoils your ability to do anything with it, with one exception. What if a is an anti-
symmetric tensor? If a is an anti-symmetric tensor, you've got symmetry, anti
symmetry, and it dies. So that is one example of where you can actually apply it.
And I had you guys play with that a little bit on the PSET.

It's worth noting though that the main reason why one often finds this to be a useful
thing to do is that when you take the divergence of something like a vector, you get
a scalar out. You get a quantity that is-- really its transformation properties between
different inertial frames or freely-falling frames is simple.

So even when you can do this and take advantage of this thing, working with the
divergence of a tensor-- exploiting a trick like this turns out to generally not be all
that useful. And I'll use the example of the stress energy tensor. So conservation of
stress energy in special relativity-- it was the partial derivative-- the divergence of
the stress energy tensor expressed with the partial derivative was equal to 0.

We're going to take this over to covariant derivative of the stress energy tensor
being equal to 0. That's what the equivalence principle tells us that we can do. Now
when I take the divergence of something like the stress energy tensor, I get a 4
vector. Every 4 vector always has implicitly a set of basis objects attached to it.

When I've got basis objects attached to it, those are defined with respect to the
tangent space at a particular point in the manifold where you are currently working.
And so if I want to try to do something like an integral like this-- where I add up the
four vector I get by taking the divergence of stress energy and integrate it over a
volume-- I'm going to get nonsense because what's going on is I'm combining
vector fields that are defined in different tangent spaces that can't be properly
compared to one another.

In order to do that kind of comparison, you have to introduce a transport law. And
when you start doing transports over macroscopic regions, you run into trouble.
They turn out to be path dependent. And this is where we run into ambiguities that
have to do with the curvature content of your manifold. We'll discuss where that
comes into our calculations a little bit later.

But what it basically boils down to is if I use a stress energy tensor as an example,
this equation tells me about local conservation of energy and momentum. In



general relativity I cannot take the local conservation of energy and momentum
and promote it to a global conservation of energy and momentum. It's ambiguous.

We'll deal with that and the conceptual difficulties that that presents a little bit later
in the course. But it's a good see the plant at this point.

So let's switch gears. We have a new set of mathematical tools. I want to take a
detour away from thinking about some more abstract mathematical notions and
start thinking about how we actually do some physics. So what I want to do is talk
today about how do we formulate the kinematics of a body moving in curved
spacetime?

So I've already hinted at this in some of my previous lectures. And what I want to do
now is just basically fill in some of the gaps. The way that we do this really just
builds on Einstein's insight about what the weak equivalence principle means. So go
into a freely falling frame.

Go in that freely-falling frame. Put things into locally Lorentz coordinates. In other
words perform that little calculation that make spacetime look like the spacetime of
special relativity of the curvature corrections. And to start with, let's consider what
we always do in physics, is we'll look at the simplest body first. We're going to look
at what we call a test body.

So this is the body that has no charge, no spatial extent, it's of zero dimensional
point, no spin-- nothing interesting, except a mass. So if you want to think about
this-- I use a way that I find to think about this is all these various aspects to it,
you're adding additional-- either charges to it or additional multipolar structure to
this body.

I'm thinking of this-- this is sort of like a pure monopole. It's nothing but mass
concentrated in a single zero size point. Obviously it's an idealization. But you've got
to start somewhere.

So since it's got no charge, no spatial extent, it's got nothing but mass, nothing's
going to couple to it. It's not going to basically do anything but freefall.

In this frame the body moves on a purely inertial trajectory. And what does a purely



inertial trajectory look like? Well you take whatever your initial conditions are. And
you move in a straight line with respect to time as measured on your own clock.
Simplest, stupidest possible motion that you can.

So we would obviously call that a straight line with respect to the parameterization
that's being used in this representation. So what does that mean in a more general
sense of the representation? So if we think about this a little bit more geometrically,
when a body is moving in a straight line, that basically means that whatever the
tangent vector to its world line is, it's essentially moving such that the tangent
vector at time T1 is parallel to the tangent vector at T1 plus delta T1, provided
that's actually small enough that they're sort of within the same local Lorentz
frame.

So a more geometric way of thinking about this motion is that it's parallel
transporting its tangent vector.

Let's make this a little bit more rigorous. So let's imagine this body's moving on a
particular trajectory through spacetime. So it's a trajectory parameterized. I will
define its parameterization a little bit more carefully very soon. So for now, just
think of lambda as some kind of a quantity. It's a scale that just accumulates
uniformly as it moves along the world line.

So I'm going to say the small body has a path through spacetime, given by u x of
lambda. Its tangent is given by this. And if it is parallel transporting its own tangent
vector, that is-- I'll remind you that the condition for parallel transport was that you
take the covariant derivative your field. And as you are moving along, you contract
it along the tangent vector of the trajectory you're moving on. And you get 0.

So in my notes, there's a couple of equivalent ways of writing this. So you will
sometimes see this written as the gradient along u of u. And you'll sometimes see
this written as capital u u lambda equals 0. So these are just-- I just throw that out
because these are different forms that are common in the notation that you will
see.

So let's expand this guy out.

It's something like this. So what we're going to do-- so remember this is dx d



lambda. This is d by dx. That's a total derivative with respect to the parameter
lambda. So this becomes-- I'm going to write it in two forms. This is often written
expanding out the u into a second order form.

This is obvious but sufficiently important. It's worth calling it out. And this has
earned itself a box.

This result is known as the geodesic equation.

The trajectories which solve these equations are known as geodesics.

One of the reasons why I highlight this is it's-- I'm trying to keep a straight face with
the comment I want to make. A tremendous amount of research in general
relativity is based around doing solutions of this equation for various spacetimes
that go in to make the Christoffel symbols. My career-- [LAUGHS] it's probably not
false to say that about 65% of my papers have this equation at its centerpiece at
some point with the thing that goes into making my gammas-- things related to
black hole spacetimes.

This is really important because this gives me the motion of a freely-falling frame.
What does a freely-falling frame describe? Somebody who's moving under gravity.
So when you're doing things like describing orbits, for example, this is your tool. A
tremendous number of applications where if what you care about is the motion of a
body due to relativistic gravity, this gives you a leading solution.

Now bear in mind when I did this, this is the motion of a test body. This is an object
with no charge, no spatial extent, no spin-- that describes no object. So it should be
borne in mind that this is the leading solution to things.

Suppose the body is charged. And there is an electromagnetic field that this body is
interacting with. Then what you do is you are no longer going to be parallel
transporting this tangent factor. It will be pushed away-- we like to say-- from the
parallel transport. And you'll replace the 0 on the right hand side here with a
properly-constructed force that describes the interactions of those charges with the
fields.

Suppose the body has some size. Well then what ends up happening is that the body
actually doesn't just couple to a single-- remember what's going on here is that in



the freely falling frame, I'm imagining that spacetime is flat at some point. And in a
decent enough vicinity of that point, the first order corrections are 0. But there
might be second order corrections.

Well imagine a body is so big that it fills that freely-falling frame. And it actually
tastes those second order corrections. Then what's going to happen is you're going
to get additional terms on this equation, which have to do with the coupling of the
spatial extent of that body to the curvature of the spacetime.

That is where-- so for people who study astrophysical systems involving binaries,
when you have spinning bodies, that ends up actually-- you cannot describe a body
that's spinning without it having some spatial extent. And you find terms here that
involve coupling of those spins to the curvature of the spacetime.

So this is the leading piece of the motion of a body moving in the current
spacetime. And it's enough to do a tremendous amount. Basically because gravity is
just so bloody strong that all of these various things-- it's the weakest fundamental
force. But it adds up because it's only got one sine.

And when you're dealing with some of these things, it really ends up being the
coupling to the monopole-- the most important thing. So all these other terms that
come in and correct this are small enough that we can add them in. And that, to be
blunt, is modern research.

So let me make a couple of comments about this. A more general form-- this will
help to clarify what the meaning of that lambda actually is.

Suppose that as my vector is transported along itself-- so one way is recall how we
derive parallel transport. We imagine going into a freely-falling frame and a Lorentz
representation. And we said, in that frame, I'm going to imagine moving this thing
along, holding all the components constants-- that defined parallel transport.

Imagine that I don't keep the components constant, but I hold them all in a constant
ratio with respect to each other, but I allow the overall magnitude to expand or
contract. So suppose we allow the vector's normalization to change as it slides
along.



Well the way I would mathematically formulate this is I'm going to use a notation
that looks like this. So recall this capital D-- it's a shorthand for this combination of
the tangent and the covariant derivative. I'm going to call the parameterization I
use when I set up like this lambda star, for reasons that I hope will be clear in just
about two minutes.

So what I'm basically saying is that as I move along, I don't keep the components
constant. But I keep them proportional to where they were on the previous step. But
I allow their magnitude to change by some function, which I'll call a kappa.

So you might look at that and think, you know, that's a more general kind of
transport law. It seems to describe physically a very similar situation here. It's kind
of annoying that this normalization is changing. Is there anything going on with this?

Well what you guys are going to do as a homework exercise, you're going to prove
that if this is the situation you're in, you've chosen a dumb parameterization. And
you can actually convert this to the normal geodesic parameterization by just
relabeling your lambda.

So we can always reparameterize this, such that the right-hand side is 0. And right-
hand side being 0 corresponds to the transport vector remaining constant as it
moves along. So I'll just quickly sketch-- so imagine there exists some different
parameterization, which I will call lambda.

So imagine something that gives me my normal parallel transport exists. And I have
a different one that involves the star parameter. You can actually show that these
two things describe exactly the same motion, but with lambda and the dumb
parameterization, lambda star, related to each other by a particular integral.

So what this shows us is we can always-- as long as I'm talking about motion where
I'm in this regime-- where there's no forces acting-- it's not an extended body-- it's
just a test body-- I can always put it into a regime where it'll [INAUDIBLE] geodesic
and the right-hand side is equal to 0. If I'm finding that's not the case, I need to
adjust my parameterization.

When you are, in fact, in a prioritization such as the right-hand side is 0, you are
using what is called an affine parameterization. That's a name that's worth knowing



about.

So your intuition is that the affine parameterization-- I described this in words last
time. And this just helps to make it a little bit more mathematically precise what
those words mean.

Affine parameters correspond to the tick marks on the world line, being uniformly
spaced in the local Lorentz frame. If you are working with time-like trajectories--
which if you're a physicist, you will be much of the time-- a really good choice of the
affine parameter is the proper time of a body moving through the spacetime. That
is something that is uniformly spaced, assuming that's-- you don't have to assume
anything. Just by definition it's the thing that uniformly measures the time as
experienced by that observer.

So this is-- you guys are going to do on PSET 4-- this is the exercise you need to do to
convert a nonaffine parameterized geodesic to an affine parameterized one. That
kind of parameterization is not too hard to show that if we adjust the
parameterization in a linear fashion-- so in other words, let's say I go from lambda to
some lambda prime, which is equal to a lambda plus b, where and b are both
constants-- we get a new affine parameterization.

But that's the only class of reparamterizations that allows me to do that. And
hopefully that makes sense. If you imagine that you're using proper time as your
reparameterization, this is basically saying that you just chose a different origin for
when you started your clock. And this means you changed the units in which you are
measuring time. That's all.

So I'm going to skip a bunch of the details. But I'm going to scan and put up the
notes corresponding to one other route to getting to the geodesic equation, which I
think it's definitely worth knowing about. It connects very nicely to other work in
classical mechanics.

So it's a bit of a shame we're going to need to skip over it. But we're a little bit
behind pace. And this is straightforward enough that I feel OK posting the notes that
you can read it.

So there is a second path to geodesics. So recall the way that we argued how to get



the geodesic equation, which we said we're going to go into-- it's actually in the
board right above where I'm writing right now-- go into the freely-falling frame. I
have a body that isn't coupling to anything but gravity. Therefore in the freely-
falling frame, it just maintains its momentum. It's going to go in a straight line.
Straight means parallel transporting tangent vector-- math, math, math-- and that's
how we get all that.

So what this boiled down to is I was trying to make rigorous in a geometric sense
what straight meant. There's another notion of straight that one can imagine
applying when you're working in a curved space. So your intuition for-- if you're
talking about how do I make a straight line between two points on a globe-- your
intuition is you say, oh, well the straightest line that I can make is the path that is
shortest.

We're going to formulate-- and I'll leave the details and the calculation to the notes--
we're going to formulate how one can apply a similar thing to the notion of
geodesics. So imagine I've got an event p here and event q up here. And I ask
myself, what is the accumulated proper time experienced by all possible paths that
take me from event p to event q?

I'm going to need to restrict myself. I want it to be something that an observer can
physically ride-- so all the time-like trajectories that connect event p to event q. So
I've got one a path that goes like this, got a path that goes like this, path that goes
like this, path goes like this, path goes like-- some of them might have just become
somewhat space like, so I should rule them out. But you get the idea. Imagine I take
all the possible time-like paths that connect p and q.

Some of those paths will involve strong accelerations. So they will not be the freefall
path. Among them there will be one that corresponds exactly to freefall.

So if I were talking about-- imagine I was trying to-- and this is something that
Muslim astronomers worked out long, long ago-- they wanted to know the shortest
path from some point on earth towards Mecca. And so you need to find what the
shortest distance was for something like that. And when you're doing this on the
surface of a sphere, that's complicated.

And that's where the qibla arose from, was working out the mathematics to know



how to do this. This is a similar kind of concept. I'm trying to define-- in this case, it's
going to turn out it's not the shortest path, but it's the path on which an observer
ages the most because as soon as you accelerate someone-- it's not hard. Go back
to some of those problem sets you guys did where you look at accelerated
observers. Acceleration tends to decrease the amount of aging you have as you
move through some interval of spacetime.

So the path that has no acceleration on it, this is going to be the one on which an
observer is maximally aged. Why maximum instead of a minimum? Well it comes
down to the bloody minus sign that enters into the timepiece of an interval that we
have in relativity. And that's all I'll say about that, is just boils down to that.

So what we want to do is say, well along all of these trajectories, the amount of
proper time that's accumulated-- so let's just say that every one of these is
parameterized by some lambda that describes the motion along these things.

This is the amount of proper time that someone accumulates as they move from
point p-- which is at-- let's say this is defined as lambda equals 0-- and it's
indeterminate what that top lambda is actually going to be. It's whatever it takes
when you get up to lambda of q. So what the notes I'm going to post do, is they
define an action principle that can be applied to understand what the trajectory is
that allows you to do this.

So I'll just hit the highlights. So in notes to be posted, I show that this delta t-- this
delta tau rather-- this can be used to define an action.

It looks like this. And then if you vary the action-- or rather you do a variation of
your trajectory-- where you require that the action remain stationary under that
variation-- in other words I require delta i equals 0 as x goes over to such-- so-- what
you wind up with-- is delta i equals--

Notice what I've got in here. This is just a Christoffel symbol. So when I do this
variation, what I find-- and by the way going from essentially that board to that
board, it's about 2/3 a page of algebra. Going down to this one, there's a bunch of
straightforward but fairly tedious stuff. It's one reasons why I'm skipping over the
details. We've got enough G mu nus on the board.



So the key point is I am going to require that my action be stationary, independent
of the nature of the variation that I make. For that to be true, the quantity in braces
here must be equal to 0. Let me just write that down over here. This is a good place
to conclude today's lecture.

So we require this to be 0 for any variation. Yet the bracketed term being equal to 0,
pull that out, and clear out that factor of the metric with an inverse, you've got your
geodesic equation back. So we just quickly wrap this up.

So it's worth looking over these notes. It's not worth going through them in gory
detail on the board, which is why I'm skipping a few pages of these things. But what
this demonstrates is that geodesics-- our original definition is that they carry the
notion of a straight line in a straightforward way from where they are obvious in a
locally Lorentz frame to a more covariant formulation of that-- so a generalized
straight line to a curved spacetime.

And they give the trajectory of extremal aging in other words a trajectory along
which between two points in spacetime, an observer moving from one to the other
will accumulate the most proper time.

So I'm going to stop here. There's a bit more, which I would like to do, but I just
don't have the time. But I'll tell you the key things that I want to say next. Everything
that I've done here so far is I've really fixated on time-like trajectories. I've imagined
there's a body with some finite rest mass where I can make a sensible notion of
proper time.

We are also going to want to talk about the behavior of light. Light moves on null
trajectories. I cannot sensibly define proper time on long such a trajectory. They are
massless. There's all sorts of properties associated with them that just make this
analysis. The way I've done it so far, I'll need to tweak things a little bit in order for it
to work. We will do that tweaking. It's actually quite straightforward and allows us to
also bring in a bit more intuition about what affine parameters mean when we do
that. So that'll be the one thing we do.

The other-- it's unfortunate I wasn't able to get to it today-- but it's a straightforward
saying, which I think I may include in the notes that I post-- is including what
happens, if your spacetime-- so if the metric you use to generate these Christoffels



has a Killing factor associated with it, you can combine Killing's equation with the
geodesic equation to prove the existence of conserved quantities associated with
that motion. And that's where we start to begin to see that if I have a spacetime that
is independent of time, there's a notion of conserved energy associated with it. So
we will do that on Tuesday.


