The visual and oculomotor systems

Peter H. Schiller, year 2013

Review, the visual and oculomotor systems

Basic wiring of the visual system

Primates

Image removed due to copyright restrictions.

Please see lecture video or Figure 3 from Schiller, Peter H., and Edward J. Tehovnik. "Visual prosthesis." *Perception* 37, no. 10 (2008): 1529.

Retina and LGN

Coronal section of monkey LGN

Figure removed due to copyright restrictions.

Please see lecture video or Figure 4A of Schiller, Peter H., and Edward J. Tehovnik. "Visual Prosthesis." *Perception* 37, no. 10 (2008): 1529.

Visual cortex

Image by MIT OpenCourseWare.

Cortical projections from LGN

LGN

© Pion Ltd. and John Wiley & Sons, Inc.. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Transforms in V1

Orientation Direction Spatial Frequency Binocularity ON/OFF Convergence Midget/Parasol Convergence

Three models of columnar organization in V1

Image by MIT OpenCourseWare.

Striate Cortex Output Cell

Extrastriate cortex

Image by MIT OpenCourseWare.

Major cortical visual areas:

Occipital	V1 V2 V3 V4 MT (medial temporal)
Temporal	(inferotemporal)
Parietal	LIP (lateral intraparietal) VIP (ventral intraparietal) MST (medial superior temporal)
Frontal	FEF (frontal eye fields)

The ON and OFF Channels

The receptive fields of three major classes of retinal ganglion cells

Action potentials discharged by an ON and an OFF retinal ganglion cell

Figure removed due to copyright restrictions.

Please see lecture video or Figure 2A of Schiller, Peter H., and Edward J. Tehovnik. "Visual Prosthesis." *Perception* 37, no. 10 (2008): 1529.

The 2-amino-4-phosphonobutyrate (APB) experiments blocking the ON channel:

- 1. No effect on center-surround antagonism and on orientation and direction selectivities in V1.
- 2. Deficit in detecting light increment but not light decrement.

The central conclusion:

The ON and OFF channels have emerged in the course of evolution to enable organisms to process both light incremental and light decremental information rapidly and effectively.

The midget and parasol channels

PARASOL SYSTEM

Projections of the midget and parasol systems

Summary of PLGN and MLGN lesion deficit magnitudes

VISUAL CAPACITY		PLGN	MLGN
color vision		severe	none
texture perception		severe	none
pattern perception	fine	severe	none
shape perception	fine	severe	none
	coarse	mild	none
brightness perception		none	none
coarse scotopic vision		none	none
contrast sensitivity	fine	severe	none
	coarse	mild	none
stereopsis	fine	severe	none
	coarse	pronounced	none
motion perception		none	moderate
flicker perception		none	severe
choice of "lesser" stimuli		severe	none
visual learning		not tested	not tested
object transformation		not tested	not tested

BASIC VISUAL FUNCTIONS

Image by MIT OpenCourseWare.

The midget system extends the range of visual processing in the spatial frequency and wavelength range.

The parasol system extends the range of visual processing in the temporal frequency range.

Color vision and adaptation

The color circle

Basic facts and rules of color vision

- 1. There are three qualities of color: hue, brightness, saturation
- 2. There is a clear distinction between the physical and psychological attributes of color: wavelength vs. color, luminance vs. brightness.
- 3. Peak sensitivity of human photoreceptors (in nanometers): S = 420, M = 530, L = 560, Rods = 500
- 4. Grassman's laws:
 - 1. Every color has a complimentary which when mixed propery yields gray.
 - 2. Mixture of non-complimentary colors yields intermediates.
- 5. Abney's law:

The luminance of a mixture of differently colored lights is equal to the sum of the luminances of the components.

6. Metamers: stimuli producing different distributions of light energy that yield the same color sensations.

Response to Different Wavelength Compositions in LGN

Response of a retinal ganglion cell at various background adaptation levels

Image by MIT OpenCourseWare.

Basic facts about light adaptation

- 1. Range of illumination is 10 log units. But reflected light yields only a 20 fold change (expressed as percent contrast).
- 2. The amount of light the pupil admits into the eye varies over a range of 16 to 1. Therefore the pupil makes only a limited contribution to adaptation.
- 3. Most of light adaptation takes place in the photoreceptors.
- 4. Any increase in the rate at which quanta are delivered to the eye results in a proportional decrease in the number of pigment molecules available to absorb those quanta.
- 5. Retinal ganglion cells are sensitive to local contrast differences, not absolute levels of illumination.

Depth perception

Cues used for coding depth in the brain

Oculomotor cues	Visual cues
accommodation vergence	<i>Binocular</i> stereopsis
	Monocular motion parallax shading interposition size perspective

Autostereogram

Image removed due to copyright restrictions.

Please see lecture video or the autostereogram from The Magic Eye, Volume I: A New Way of Looking at the World. Andrews McMeel Publishing, 1993.

MOTION PARALLAX, the eye tracks

on the retina.

. 00 . . . 00 8 - -0, -

Binocular, motion parallax

Binocular, stereo

Four conditions:

- 1. No depth cues
- 2. Stereo only
- 3. Parallax only
- 4. Stereo and parallax

50 and 60 trials each

Form perception

Three general theories of form perception:

- 1. Form perception is accomplished by neurons that respond selectively to line segments of different orientations.
- 2. Form perception is accomplished by spatial mapping of the visual scene onto visual cortex.
- 3. Form perception is accomplished by virtue of Fourier analysis.

Form perception with little information about orientation of line segments

Image removed due to copyright restrictions.

Please refer to lecture video.

Cortical layout of neurons activated by disks

disks in one hemifield

Image by MIT OpenCourseWare.

Cortical layout of neurons activated by disks

disks across midline

Image by MIT OpenCourseWare.

Prosthetics

Image removed due to copyright restrictions.

Please see lecture video or Figure 5 from Schiller, Peter H., and Edward J. Tehovnik. "Visual prosthesis." *Perception* 37, no. 10 (2008): 1529. Image removed due to copyright restrictions.

Please see lecture video or Figure 7 from Schiller, Peter H., and Edward J. Tehovnik. "Visual prosthesis." *Perception* 37, no. 10 (2008): 1529. Image removed due to copyright restrictions.

Please see lecture video or Figure 9 from Schiller, Peter H., and Edward J. Tehovnik. "Visual prosthesis." *Perception* 37, no. 10 (2008): 1529.

Illusions

The Hermann grid illusion

Image is in public domain.

The most widely cited theory purported to explain the illusion:

Due to antagonistic center/surround organization, the activity of ON-center retinal ganglion cells whose receptive fields fall into the intersections of the grid produces a smaller response than those neurons whose receptive fields fall elsewhere. Differently oriented vertical and horizontal lines reduce illusion

Figure removed due to copyright restrictions.

Please see lecture video or Schiller PH, Carvey CE (2005). "The Hermann Grid Illusion Revisited." *Perception* 34 (11): 1375–97.

Retinal ganglion cell receptive field layout at an eccentricity of 5 degrees

Figure removed due to copyright restrictions.

Please see lecture video or Schiller PH, Carvey CE (2005). "The Hermann Grid Illusion Revisited." *Perception* 34 (11): 1375–97.

After-effect illusions explained by the facts and rules of adaptation.

interocular experiments

Effects of lesions on vision

Summary of lesion deficit magnitudes

VISUAL CAPACITY	/	PLGN	MLGN	V ₄	MT
color vision		severe	none	mild	none
texture perception		severe	none	mild	none
pattern perception	fine	severe	none	mild	none
shape perception	fine	severe	none	mild	none
	coarse	mild	none	none	none
brightness perception		none	none	none	none
coarse scotopic vision		none	none	none	none
contrast sensitivity	fine	severe	none	mild	mild
	coarse	mild	none	none	mild
stereopsis	fine	severe	none	none	none
	coarse	pronounced	none	none	none
motion perception		none	moderate	none	moderate
flicker perception		none	severe	none	pronounced
choice of "lesser" stimuli		severe	none	severe	none
		Severe		Severe	
visual learning		not tested	not tested	severe	none
object transformation		not tested	not tested	pronounced	not tested

BASIC VISUAL FUNCTIONS

Eye-movement control

Electrical stimulation triggering eye movements:

Figure removed due to copyright restrictions.

Please see lecture video or Figure 2 from Schiller, Peter H., and Edward J. Tehovnik. "Look and See: How the Brain Moves Your Eyes About." *Progress in Brain Research* 134 (2001): 127-42.

Electrical stimulation triggering eye movements:

Figure removed due to copyright restrictions.

Please see lecture video or Figure 3 from Schiller, Peter H., and Edward J. Tehovnik. "Look and See: How the Brain Moves Your Eyes About." *Progress in Brain Research* 134 (2001): 127-42.

Summary of the effects of the GABA agonist muscimol and the GABA antagonist bicuculline

Target selection

Visual discrimination

Hikosaka and Wurtz

Figure removed due to copyright restrictions.

Please see lecture video or Figure 17 from Schiller, Peter H., and Edward J. Tehovnik. "Look and See: How the Brain Moves Your Eyes About." *Progress in Brain Research* 134 (2001): 127-42.

Motion perception

Summary of cell types in V1

Image by MIT OpenCourseWare.

The central role of the parasol system in motion processing and in the perception of apparent motion.

Major Pathways of the Accessory Optic System (AOS)

Velocity response of AOS neurons = 0.1-1.0 deg/sec

Number of AOS RGCs in rabbit = 7K out of 350K

vestibulo-ocular reflex

MIT OpenCourseWare http://ocw.mit.edu

9.04 Sensory Systems Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.