# 9.07 MATLAB Tutorial 

Camilo Lamus

October 1, 2010

## Aim

- Transform students into MATLAB ${ }^{\circledR}$ ninjas!

© Source Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/


## Contents

- Matrix operations: $a+b, a * b, A . * B, A .{ }^{\wedge} B$, sort, etc
- Loops: for $\mathrm{i}=1: \mathrm{n}$, while "statement is true"
- Some useful functions: rand, randn, min, max, etc
- Function for displaying results:
figure, plot, subplot, bar, hist, title, xlabel, etc
- Translating algorithms into MATLAB code.


## Getting started

- Getting MATLAB https://www.mathworks.com/store?s_eid=ppc_ 5852460202\&q=\%2Bmatlab\%20\%2Bpurchase
- MATLAB support: http://www.mathworks.com/support/, in search support box select "Function list for all products"
- MATLAB support: Goto Help>Product Help
- In command prompt type: help <name of funct>


## The MATLAB interface



## Constructing matrices

- Generate the $(1 \times 4)$ row vector $a=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$

$$
a=[1,2,3,4] ;
$$

- Generate the $(4 \times 1)$ column vector $b=\left[\begin{array}{lll}7 & 6 & 5\end{array} 4\right]^{\prime}$

$$
\mathrm{b}=[7 ; 6 ; 5 ; 4] ;
$$

- Generate the row vector $c=\left[\begin{array}{lll}12 \ldots 100\end{array}\right]$

$$
c=[1: 1: 100] ;
$$

- Generate the $3 \times 4$ matrix $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12\end{array}\right]$

$$
A=\left[\begin{array}{llllllllll}
1 & 2 & 3 & 4 ; 5 & 6 & 7 ; 9 & 10 & 11
\end{array}\right] ;
$$

## Constructing matrices

- Accessing a portion of the matrix $A$
- Take the element in the 2 nd row and 3 rd column of matrix $A$

$$
d=A(2,3) ;
$$

- Take the elements in the 1st through 2 nd rows and 2nd through 4th columns

$$
D=A(1: 2,2: 4) ;
$$

- Find the transpose of matrix, $B=A^{\prime}$

$$
B=A^{\prime} ;
$$

- Not using a semicolon ";" after an expression prints the output
$\square \mathrm{B}=\mathrm{A}^{\prime}$
- Generate a $(3 \times 3)$ identity matrix
I = eye (3);
- Load data from a ".mat" file meg_data.mat
load meg_data


## Matrix operations

- Show the elements of matrix $A$ that are equal to 5

$$
C=(A=5)
$$

- Show the elements of vector $a$ that are equal to vector $b$, element-wise

$$
\mathrm{a}=\mathrm{b}^{\prime}
$$

- Find elements of matrix $B$ that are equal to 1

$$
\text { find ( } B==1 \text { ) }
$$

- Sort the numbers in $b$ in ascending order

$$
\mathrm{f}=\operatorname{sort}(\mathrm{b})
$$

- Add matrices $A$ and $C$, i.e., $F=A+C$

$$
F=A+C ;
$$

- Multiply the matrices $A$ and $B$, i.e., $G=A * B$

$$
\mathrm{G}=\mathrm{A} * \mathrm{~B} ;
$$

## Matrix operations

- Multiply element-wise matrix $G$ and the identity matrix $I$, i.e.,

$$
\begin{aligned}
& G=\left[\begin{array}{ccc}
130 & 70 & 110 \\
70 & 174 & 278 \\
110 & 278 & 446
\end{array}\right], I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& H=\left[\begin{array}{llll}
h_{1,1} & h_{1,2} & h_{1,3} & h_{1,4} \\
h_{2,1} & h_{2,2} & h_{2,3} & h_{2,4} \\
h_{3,1} & h_{3,2} & h_{3,3} & h_{3,4}
\end{array}\right]=\left[\begin{array}{ccc}
130 * 1 & 70 * 0 & 110 * 0 \\
70 * 0 & 174 * 1 & 278 * 0 \\
110 * 0 & 278 * 0 & 446 * 1
\end{array}\right] \\
& \mathrm{H}=\mathrm{G.*I;}
\end{aligned}
$$

- Find the cube of the elements of matrix $A$

$$
J=A . \wedge 3 ;
$$

## Loops

- Load the MEG data from meg_data.mat and compute the sample mean of the first 500 samples with a for loop: $\bar{y}=\frac{1}{500} \sum_{i=1}^{500} y_{i}$

```
% load the meg data
load('meg_data.mat');
% Take the required values
y = back_average(1:500);
% Initialize a variable accumulate the sum
acum = 0;
for i=1:500
    % Accumulates the sum of the data
    acum = acum + y(i);
end
% Divide by number of samples
y_bar1 = acum / 500;
```


## Loops

- Compute the sample mean again using a while loop

```
% Initialize a temporary variable
acum = 0;
counter = 0;
while counter < 500
    % Updates the counter
    counter = counter + 1;
    % Accumulates the sum of the data
    acum = acum + y(counter);
end
% Divide by number of samples
y_bar2 = acum / 500;
```


## Some useful functions

- Simulate 500 independent samples from a uniform distribution: $u_{i} \sim U([0,1]), i=1,2, \ldots, 500$

```
% Draw 500 samples from the uniform distibution
u = rand(1,500);
```

- Simulate 500 independent samples from a standard Gaussian distribution: $x_{i} \sim N(0,1), i=1,2, \ldots, 500$

```
% Draw 500 samples from the Standard Gaussian
x = randn(1,500);
```

- Simulate 500 independent samples from Bernoulli distribution with $p=0.5$ (500 fair coin flips): $b_{i} \sim B(0.5), i=1,2, \ldots, 500$

```
% Draw 500 samples from Bernoulli distribution
p = 0.5;
b = rand (1,500) > 0.5;
```


## Some useful functions

- Computed the minimum, maximum, mean, standard deviation, and variance from simulated sample from the standard Gaussian distribution: $x_{i}, i=1,2, \ldots, 500$, where the sample variance is $\hat{\sigma}^{2}=\frac{1}{500} \sum_{i=1}^{500}\left(x_{i}-\bar{x}\right)^{2}$, and the sample standard deviation is $\hat{\sigma}$

```
% The minimum
x_min = min(x);
% The maximum
x_max = max(x);
% The sample mean
x_bar = mean(x);
% The sample variance
sigma2_hat = var(x);
% The sample standard deviation
sigma_hat = sigma2_hat^(1/2);
```


## Functions for displaying results

- Load and plot the MEG data

```
load('meg_data.mat');
% Take the required values
y = back_average(1:500);
figure, plot(y)
title('MEG data')
xlabel('Time'), ylabel('A*m')
```



- Make a histogram of the simulated sample from the standard Gaussian distribution

$$
x_{i}, i=1,2, \ldots, 500
$$

```
%select the number of bins
m = 25;
figure, hist(x,m)
title('Histogram')
xlabel('x'), ylabel('Count')
```


## Translating a problem to an algorithm to a code

- Simulate 500 independent samples from the exponential distribution with a "fair" coin
- With the "fair" coin we can obtain a samples from the Bernoulli distribution with parameter $p=0.5$. Recall that the pdf of the Bernoulli is given by:

$$
f_{\text {ber }}(b)=p^{b}(1-p)^{(1-b)}, \text { where } b \in\{0,1\}
$$

- Recall that if $t_{i} \sim \operatorname{Exp}(\lambda), i=1,2, \ldots, 500$, then its pdf is given by: $f_{\text {exp }}(t)=\lambda e^{-\lambda t}$, where $t>0$
- Wow! This sound impossible!
- It is possible if we could generate a sample from the uniform distribution using a coin
- And from the uniform sample simulate a new sample of the exponential distribution using the Inverse Transform method!
- Find an algorithm
- Write the code


## From the problem to an algorithm

- To find the algorithm we should note that a number $u$ between 0 and 1 can be represented with the binary expansion $0 . b_{1} b_{2} b_{3} \ldots$, i.e:

$$
u=\sum_{i=1}^{\infty} b_{i} / 2^{i}, \text { where } b_{i} \in\{0,1\}
$$

- For example:
- If $u=0.75$ then $b_{1}=1, b_{2}=1, b_{j}=0, j=3,4, \ldots$, since $u=1 / 2+1 / 2^{2}+0 / 2^{3}+\cdots$
- If $u=0.958$ then $0 . b_{1} b_{2} b_{3} \ldots=0.1111010101 \overline{0}$
- If $u=0.3288$ then $0 . b_{1} b_{2} b_{3} \ldots=0.01010100001010010010 \overline{0}$


## From the problem to an algorithm

- The million dollar question: If the binary coefficients $b_{i}$ in expansion $u=\sum_{i=1}^{\infty} b_{i} / 2^{i}$ come from a Bernoulli distribution with $p=0.5$ (the "fair" coin), what is the distribution of $u$ ?
- The answer is: $u$ is a uniform random variable. But this is difficult to show!
- We will use a heuristic argument to convince our selves
- If $b_{1}=1 \rightarrow u>=0.5$ and if $b_{1}=0 \rightarrow u<0.5$
- More generally, with a figure we see that:



## From the algorithm to the code

- Simulate a sample of size 1000 from the uniform distribution using samples from the Bernoulli distribution with parameter $p=0.5$ :

$$
u_{j}=\sum_{i=1}^{500} b_{i, j} / 2^{i}, \text { where } j=1,2, \ldots, 1000, i=1,2, \ldots, 500
$$

and $b_{i, j}$ are iid Bernoulli with parameter $p$

```
% Sample size
n = 1000;
% Compute the denominators expansion
m = 500;
d = 1./2.^[1:m];
% For loop to obtain the 500 uniform rvs
for i =1:n
    % Simulate 100 Bernoulli rvs (b_{i,j})
    b = rand (1,m)>0.5;
    % Compute the summation
    u(i) = sum(b.*d);
end
```


## From the algorithm to the code

- Make a histogram of the obtained uniform sample

```
figure, hist(u)
title('Histogram of Uniform Sample')
```



## From the problem to an algorithm

- Generate a sample of size 1000 of the exponential distribution from a sample from the uniform distribution using the Inverse Transform method (find $F_{\text {exp }}^{-1}$ )
- Recall that $f_{\exp }(t)=\lambda e^{-\lambda t}$, where $t>0$
- The cdf is given by:

$$
F_{e x p}(t)=\int_{0}^{t} \lambda e^{-\lambda \tau} d \tau
$$

Make change in variable $w=-\lambda \tau \rightarrow d \tau=-d w / \lambda$

$$
F_{\text {exp }}(t)=-\int_{0}^{-\lambda t} e^{w} d w=1-e^{-\lambda t}
$$

- Now we can obtain $F_{\text {exp }}^{-1}$ as:

$$
F_{e x p}^{-1}(u)=-\frac{\log (1-u)}{\lambda}
$$

## From the algorithm to the code

- Generate a sample of size 1000 of the exponential distribution with parameter $\lambda=3$ using a sample from the uniform distribution ( $u_{j}$ ) using the Inverse Transform method:

$$
t_{j}=-\frac{\log \left(1-u_{j}\right)}{3}, \text { where } j=1,2, \ldots, 1000
$$

$$
\mathrm{t}=-\log (1-\mathrm{u}) / 3 ;
$$

- Make a histogram of the sample simulated from the exponential distribution

```
figure, hist(t)
title('Histogram of Exponential Sample')
```


## Did it WORK???

- Raise you hand if you think it did work

Histogram of Exponential Sample


MIT OpenCourseWare
https://ocw.mit.edu

### 9.07 Statistics for Brain and Cognitive Science

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

