\(\left.\begin{array}{|l|l|}\hline 9.07 INTRODUCTION TO STATISTICS FOR BRAIN AND \\
COGNITIVE SCIENCES \\

Emery N. Brown\end{array}\right]\)| Lecture 3: Examples of Probability Models Applied to Data |
| :---: |
| Addendum |

\qquad
\qquad
\qquad
a. Channel Opening Times at the from NMJ
b. Miniature Excitatory Post-Synaptic Currents

Gamma and Inverse Gaussian Probability Model: Interspike Interval Distributions
\qquad
4. Beta Probability Model: Waking Up from General Anesthesia.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reanimation from General Anesthesia by Administering Ritalin Animals are anesthetized with propofol.	
Group 1: Saline Group 0 of 6 animals have return of righting	Group 2: Ritalin Group 11 of 12 animals have return of righting
Are animals more likely to have return of the righting reflex after Ritalin than after saline?	
Probability Model: Binomial Is p in one group different from p in the other group?	
Group 1: $\operatorname{Binomial}(\mathrm{n}=6, \mathrm{k}=0)$	Group 2: Binomial ($\mathrm{n}=12, \mathrm{k}=11$)
$p=0 / 6=0$	$p=11 / 12=0.92$
Chemali et al. Anesthesiology 2012	

Bayes' Theory
What is the best estimate of \mathbf{p} given the observed data?
$f(p \mid k)=\frac{f(p) f(k \mid p)}{f(k)}$
Probability Model for the Data \quad Prior Probability Model
$f\left(k_{i} \mid p_{i}\right)=\binom{n}{k_{i}} p_{i}^{k}\left(1-p_{i}\right)^{n-k} \quad f\left(p_{i}\right)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} p_{i}^{\alpha-1}\left(1-p_{i}\right)^{\beta-1}$,
Posterior Probability Model
$f\left(p_{i} \mid k_{i}\right)=\frac{\Gamma(n+\alpha+\beta)}{\Gamma\left(k_{i}+\alpha\right) \Gamma\left(n-k_{i}+\beta\right)}$
$\times p_{i}^{k_{i}+\alpha-1}\left(1-p_{i}\right)^{n-k_{i}+\beta-1}$.

MIT OpenCourseWare
https://ocw.mit.edu

9.07 Statistics for Brain and Cognitive Science

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

