
9.07 Introduction to Statistics for Brain and Cognitive Sciences 
Emery N. Brown 

 
Lecture 2 Discrete Probability Models 

 
I. Objectives 
  
 Introduce the concept of a random variable  
  
 Introduce the 4 principal discrete probability models 

a. Bernoulli 
b. Binomial 
c. Poisson  
d. Discrete counting probability model  
 

 Understand their basic assumptions, properties and situations for which they 
would be appropriate models 
 
 Understand the concepts of expectation and variance for discrete random 
variables 
 
Definition 2.1. A random variable is a real-valued function from an outcome space into the 
real line more generally into Rn . The probability law defined on the outcome space induces 
(defines explicitly) a probability model for the random variable. A random variable can be either 
discrete or continuous. It is the basic quantity used in probability theory to characterize a 
probability process. 
   
 
Example 2.0 Sum of the Digits on Two Fair Dice.  To motivate the concept of a random 
variable we consider a single roll of two fair dice. In this case there are 36 outcomes because by 
the Multiplication Principle (Definition 1.3) we multiply the 6 possible outcomes on one die by 
the six possible outlcomes on the second die. These outcomes are shown below in Table 1.  
 
 
1,1 1,2 1,3 1,4 1,5 1,6 
2,1 2,2 2,3 2,4 2,5 2,6 
3,1 3,2 3,3 3,4 3,5 3,6 
4,1 4,2 4,3 4,4 4,5 4,6 
5,1 5,2 5,3 5,4 5,5 5,6 
6,1 6,2 6,3 6,4 6,5 6,6 
 
Table 1. Outcomes from the roll of two fair dices.  
 
Let X  be the random variable that is defined as the sum of two fair dice. All the like values of  
X  can be easily identified by looking along the diagonals of Table 1 from right to left. By 
counting the number of distinct values on these diagonals we see that there are 11 possible 
outcomes. The probability of each of the 11 outcomes can be computed as 
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1Pr{ 2} Pr{(1,1)}
36

2Pr{ 3} Pr{1, 2), (2,1)}
36

3Pr{ 4} Pr{(1,3), (2,2), (3,1)}
36

4Pr{ 5} Pr{(1, 4), (2,3), (3, 2), (4,1)}
36

5Pr{ 6} Pr{(1,5), (2, 4), (4, 2), (3,3), (5,1)}
36

Pr{ 7} Pr{(1,6), (2,5), (3, 4), (4,3), (

X

X

X

X

X

X

= = =

= = =

= = =

= = =

= = =

= =
65, 2), (6,1)} =

36

5Pr{X = =8} Pr{(2,6), (3,5), (4, 4), (5,3), (6, 2)} =
36

4Pr{X = =9} Pr{(3,6), (4,5), (5,4), (6,3) =
36

3Pr{X = =10} Pr{(4,6), (5,5), (6, 4)} =  36

2Pr{x = =11} Pr{(5,6), (6,5)} =
36

1Pr{X = =12} Pr{(6,6)} =
36

 
We need a rule or summary process to describe the likelihood, frequency or probability with 
which a random variable assumes a set of values. In what follows, we will in general not talk 
about outcome spaces but instead in terms of random variables and the probability models that 
define the behavior of these random variables.  
 
 
III. Discrete Probability Models 
 We divide probability models into two classes: discrete data models and continuous-
valued data models. As stated in the Introductory Lecture, discrete data are data which can 
assume a finite or a countably infinite set of values. In this lecture we discuss four discrete 
probability models: the Bernoulli, the binomial, the Poisson and a discrete counting probability 
model.  
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A. Bernoulli Probability Model 
Example 2.1 (Learning Experiment, Jog et al. 1999) 
 To help establish neural correlates of procedural learning, Ann Graybiel and colleagues 
recorded from neurons in the striatum of rats over several days as they executed a procedure 
learning task. In this task, the rat used auditory cues to learn which one of two arms of a T-maze 
to enter in order to receive a reward.  On each trial, the rat was placed in a T-maze. A tone was 
played. If it was a low tone the animal had to go left to receive a reward, whereas if it was a high 
tone it had to go right to obtain its reward. Suppose that on the previous day, the animal 
executed this task 40 times and, in so doing, made 22 correct choices and 18 incorrect choices. 
Before, the start of the 40 trials today, what is the probability that the animal will give a correct 
response on a given trial? 
 
 In this problem, there are only two possible outcomes: a correct response or an incorrect 
response. The outcomes are mutually exclusive. That is, when one outcome occurs, the other 
cannot occur. Let p  be the probability of a correct response, then 1 p−  is the probability of an 
incorrect response.  
 
We can define this is terms of a random variable as follows. Let x  be the random variable that 
is 1  if the response is correct and 0  if the response is incorrect. We can write 
 

Pr(x p1)
  

Pr( 0) 1x p
= =
=

 (2.1) 
= −

 
or, in a more compact notation, 
 
  Pr( ) (1 )1 .x xx p p −= −  (2.2) 
 
Equation 2.2 defines the Bernoulli probability model. It is the simplest probability model possible 
as there are only two outcomes. It is used extensively to model binary outcomes, e.g. yes-no, 
correct-incorrect, success-failure and spike-no spike type events. If we were to plot Eq. 2.2, we 
get  

 
Figure 2A. Bernoulli Probability Mass Function with p = 0.55. 
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The probability mass function (pmf) defines the probability of each outcome. Notice that by 
Definition 2.1 the sum of the probabilities of all the outcomes must be 1. Formally, we state this 
as 
 

1
  p x( ) p (1 p) 1.

x=0
=∑ + − =  (2.4) 

 
The cumulative distribution function (cdf) defines ( ) Pr( ).F x X x= ≤  We have 

(0) Pr( 0) Pr( 0)F = ≤X X= ≤ = p  and F X(1) Pr( 1) Pr(X 0) Pr(X 1) p 1 p 1.= ≤ = = + = = + − =  Alternatively, 
 

1
  (0) Pr( 0) ( )

x 0
F X p x p

=

= ≤ =∑ =  (2.5) 

 
1

  F X(1) = ≤Pr( 1) =∑ p(0) + p(1) = p + (1− p) =1.  (2.6) 
n=0

 
The cdf at ( )F X  defines the area under the curve up to and including X   
 
 

 

 
Figure 2B. Bernoulli Cumulative Distribution Function with p = 0.55. 

 
Example 2.1 (continued). The Bernoulli probability model would be a good model for this 
problem. It defines the probability of a correct or incorrect response on each trial. Either the   

quantity 22p̂ = = 0.55  or p = 0.5  would be a reasonable estimate (guess) of p  for a trial in 
40
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today’s experiment. Use of the parameter p̂ 0.55=  would suggest that we expect the 
performance on the trials today to be like the performance on trials yesterday. Use of p 0.5=  as 
the guess of p  for today would indicate a belief that performance will be indistinguishable from 
chance on today’s trial.  
 
 Other theoretical properties of a probability model to characterize are the mean or 
expected value and the variance. The mean or average is defined as  
 

∞
  μ = =E X( ) ∑ xp(x)  (2.7) 

x=0

 
and the variance is 
 
 

σ 2 2( (x E X )) p(x)
x 0

  E X[ (E X )]2 2E X[ ]

E X( )2 2.

μ

∑
∞

= −
=

= − = −  (2.8) 
= − μ

 
For our Bernoulli probability model we have 
  

1
μ = =E X( ) xp(x)

x=0
  1 0p p(1 )

p
=

∑
× + × −  (2.9) 

=
 

1
σ μ2 2= −E X( ) 2 =∑ x2 p(x) − p2

x=0

  = +1 02 2p p(1− ) − p2  (2.10) 
= −p p2 = p(1− p)

 
 The mean is the average value of the outcomes whereas the variance defines the 
spread of the pmf. For the Bernoulli probability model, note that if 1

2p <  then p  is not the most 
likely outcome or the mode, which in this case would be 1 .p−  The variance for the Bernoulli 
random variable is p p(1− ).  If p  is small compared with 1,  then p p(1 ) p.− ≈  Hence, for small 
probability of success, the mean and the variance of the Bernoulli are approximately equal. We 
will return to this observation when we discuss the Poisson probability model. The variance is a 
negative quadratic function of p  (Figure 2C).  This function has a maximum at 1

2 ,p =  where it 

has the value 1
4 .  This makes the intuitive statement that probabilities close to 1

2  will be most 
variable, i.e., have the highest mixture of success and failure, whereas probabilities close to 
either 0 or 1  will have to be less variable and have respectively predominantly either failures or 
successes respectively.  
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Figure 2C. Bernoulli Variance as a Function of p.  

 
B. Binomial Probability Model 
Example 2.1 (continued). If today we test the rat on the same task and give it 40 trials, and we 
assume that the probability of a correct choice is p,  what are the possible outcomes and what is 
the probability of each outcome? 
 
 To answer this we must count the possible outcomes and assign each outcome the 
appropriate probability. Before beginning this computation we state two results from probability 
theory that will be useful. If a set of events E E1, ,… n  is independent then 
 

Pr(E E1 2 En n) Pr(E1) Pr(E2 ) ... Pr(E )

  n

Pr(Ei ).
i=1

=∩ …∩ × × ×

=∏
 (2.11) 

 
That is, if a set of events is independent the probability of the joint or simultaneous occurrence 
of the events can be computed as the product of the probabilities of the individual events (See 
Proposition 1.6 for a proof of this result). If a set of events E E1, ,… n  is mutually exclusive then 
 

n

  Pr(E E1 2∪ ∪…∪ En i) =∑Pr(E ).  (2.12) 
i=1

 
This results states that if a set of events is mutually exclusive the probability of the union is the 
sum of the probabilities. This result is a special case of third Axiom of Probability in Lecture 1.  
 
 On each trial, there can be either a correct or an incorrect response. Across the 40 trials, 
there can be any combination of correct and incorrect responses such that the sum of correct 
and incorrect responses equals 40. That is, there are k  correct responses and 40 − k  incorrect 
responses for k = 0,..., 40.  If we assume that the trials are independent, and that on each trial the 
probability of a correct response is p  and the probability of an incorrect response is 1− p  then if 
there are k  correct responses and 40 k−  incorrect responses then the probability of this event is  
 
  Pr(k p successes|40 trials) k k(1 p)40−= −  (2.13) 
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If there are k  correct responses and 40 k−  incorrect responses then, there are ⎛ ⎞40 40!
⎜ ⎟ =  
⎝ ⎠k k k!(40 − )!

⎛ ⎞40
combinations of such responses. The quantity ⎜ ⎟  is the number of ways of choosing k  

⎝ ⎠k
objects from 40 without regard to order and k k! (k 1) (k 2) ... 2 1.= × − × − × × ×  For k N= 0,1, 2,..., ,  there 

⎛ ⎞40
are  ⎜ ⎟  mutually exclusive sequences hence, by Eq. 2.12, we have the desired probability as 

⎝ ⎠k
 

40
  Pr( k p successes|40 trials) k k(1 p)40 .

k
−⎛ ⎞

= −⎜ ⎟  (2.14) 
⎝ ⎠

 
Equation 2.12 is the binomial pmf with number of trials equal to 40 and probability of a correct 
response p.  In general, we have for the binomial pmf is   
 

N
  Pr(k N success| ) pk N(1 p) k

k
−⎛ ⎞

= −⎜ ⎟  (2.15) 
⎝ ⎠

 
k N= 0,1, 2,..., .  To see that Eq. 2.13 is a pmf note that 
 

N N ⎛ ⎞N  Pr(k N| ) pk N(1 p) −k 1
kk k= =0 0

=∑ ∑⎜ ⎟ − =  (2.16) 
⎝ ⎠

 
by the Binomial Theorem (Eq. 1.11) The cdf in this case is  
 

k k N
  F k( ) Pr( j | N ) p j N(1 p) j

kj j0 0

−∑ ∑⎛ ⎞
= = ⎜ ⎟ −  (2.17) 

= = ⎝ ⎠

 
 
for k N= 0,1, 2,..., .  The pmf and the cdf for the learning experiment with 40 trials are shown below 
for N = 40  and p = 0.55.  
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Figure 2D. Binomial Probability Mass Function for N= 40 and p = 0.55. 
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Figure 2E. Binomial Cumulative Distribution Function for N = 40 and p = 0.55.  

 
Question 2.1. How does the outcome space of the binomial probability model with 40 trials 
relate to the outcome space of the Bernoulli probability model with 1 trial? 
 
Example 2.1 (continued). Today, the rat executes 36 trials correctly out of 40. How likely is it to 
record 36 correct trials out of 40 if the probability of a correct response is the probability of a 
correct response determined from the animal’s performance on the previous day p̂ = 0.55?  If the 

new p̂  is 36 ,  is there a difference in performance between yesterday and today? To answer 
40

the first question we compute using Eq. 2.12  
 

⎛ ⎞40
Pr(k p= =36 | ˆ ˆ0.55,40) = ( p)36 4

⎜ ⎟ (1− p̂)
⎝ ⎠36

⎛ ⎞40
  = (0. 5)36

⎜ ⎟ 5 (0.45).4  (2.18) 
⎝ ⎠36

= 0.0.0000016857980774740635.
 
Hence, it is highly unlikely to obtain 36 of 40 correct responses if the true probability is 0.55. 
Furthermore, it is even less unlikely if we assume that the animal is performing at chance 
because the probability of a correct response is 0.50. This would suggest that the animal is not 
performing as on the previous day or by chance and because 0.90 is larger than both 0.50 and 
0.55, this analysis suggests that the animal may have learned. We will return to the second 
question when we learn how to compute confidence intervals.  
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 The independence assumption was essential for these computations. It would not be 
appropriate if the animal had a tendency to move in one direction more than another, or if the 
animal’s performance on a given trial began to depend on its performance on the previous trial 
or sequence of previous trials.  
 
Other Theoretical Properties of the Binomial Probability Model 
For the Bernoulli probability model it is easy to show that the expected value and variance are 
 

E k( ) Np
  2 Var( )k Np(1 p)

μ

σ

= =

=
 (2.19) 

= −
 
To compute the expected value, we apply the definition in Eq. 2.7 and obtain  
 

N N N NN−1 1
E[ ]X kp(k) k p pk N(1 ) k Np p pk (1 )N 1 k

k kk k0 0 k 0

  
Np[ (p 1 p)]N 1 Np

−∑ ∑ ⎛ ⎞ ⎛ − ⎞
= = − = − − −

⎜ ⎟ ⎜ ⎟
= = ⎝ ⎠

∑
= ⎝ ⎠

 
= + − − =

 
  
 
C. Poisson Probability Model 
Example 2.2. The Quantal Release Hypothesis. Bernard Katz and colleagues (Tuckwell, 
1988; Aidley,1988) formulated the quantal hypothesis for the release of acetylcholine at the frog 
motor neuromuscular junction. It stated that in response to stimulation, acetylcholine is released 
from the motor nerve terminal in discrete “packets” or quanta. Normal endplate potentials 
(EPPs) are the result of several hundred quanta. Miniature EPP’s are the result of spontaneous 
release of single quanta. An important corollary of the quantal release hypothesis is that there is 
most likely a large population of quanta in the nerve terminal, each one of which has a small 
probability of being released by a nerve impulse. We now know that these quanta are packaged 
in vesicles. For a fixed small time interval (fraction of a millisecond) can we compute the 
probability that a given number of quanta or vesicles will be released?  
 
 To study this problem we can formulate a binomial probability model in which N  is the 
number of quanta or release sites and p  is the probability of release in a given small time 
interval. Let us assume that the release sites behave independently. This then leads to the 
binomial probability model and hence the probability of observing exactly k  quanta released in 
the specified small time interval is given explicitly by Eq. 2.14.  As a practical matter, as N  
becomes large, it is more and more challenging to evaluate the factorials in Eq. 2.14. We can 
approximate this calculation by assuming that as N  increases the probability of release 

decreases so that N p .λ× →  Hence, for N  sufficiently large, we have Np λ≈  or .p
N
λ

=  and 

substituting into the binomial pmf, we obtain 
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Pr( ) (1 )

( 1)( 2),..., 1( )(1 )
!

( 1)( 2),..., 1 (1 ) (1 )
!

.
!

k N k

k
N k

k
N k

k

k

N
X k p p

k

N N N N k
k N N

N N N N k
k N NN

e
k

λ

λ λ

λ λ λ

λ

−

−

−

⎛ ⎞
= = ⎜ ⎟ −

⎝ ⎠

− − − +
= −

 (2.20) 
− − − +

= − −

≈ −

 
These results follow because as N →∞  
 

  

N N( 1)(N 2),...,N k 1 1
Nk

λ(1 )N e−λ
N
λ(1 )−k 1
N

− − − +
→

− →  (2.21) 

− →

 
 
The last line of Eq. 2.20 states that the binomial pmf can be approximated by a Poisson pmf 
when N  is large and p  is small.  The result is termed the Poisson approximation to the 
binomial distribution.  
 
 The Poisson probability mass function is defined formally as 
 

  Pr( )
!

keX k
k

λλ−
= =  (2.22) 

 
for k = 0,1, 2,3,... .  This probability model is used to define the pmf of exactly k  events occurring 
in a specified unit of time or space. The parameter λ  is the rate parameters.  
 
Other Properties of the Poisson Model 
We have that if X P( )λ∼  (read X  is distributed as a Poisson random variable with parameter) 
then 
 

  
1 1
2 2

( )
( )

( ( ))x

E x
Var x

Var x

λ
λ

σ λ

=
=  (2.23) 

= =

 
These results are easy to establish. Note that for the expected value we have 
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0 0

0

0

( )
! ( 1)!

( 1)!

!

x x

x x
x

x
k

k

E x x e e
x x

e
x

e
k

e e

λ λ

λ

λ

λ λ

λ λ

λλ

λλ

λ λ

∞ ∞
−= =∑ ∑ −

−
= =
∞

= ∑ −

−
=  (2.24) 

∞
= − ∑

=

= =−

 
 
The Poisson Assumptions and Poisson Model in Perspective  
 The Poisson model is a central model in many theoretical analyses in computational 
neuroscience of neural spike trains (Rieke et al, 1997; Dayan and Abbott, 2001). While it is 
acknowledged that rarely do neural systems display Poisson behavior, this model is often used 
because it is analytically very tractable.  Similarly, although the Poisson model came about as a 
natural extension of the binomial model for the analysis of the quantal release hypothesis, 
reports appeared within a short time of Katz’s original papers to show that this model did not 
describe acetylcholine release accurately (Tuckwell, 1988).  
 
  The three Poisson assumptions define a Poisson process in that if a probability model 
satisfies these three assumptions, then it is a Poisson process. Assumptions 1 and 2 are 
reasonable for the analysis of neuronal data. The most challenging assumption is Assumption 3. 
It is difficult to believe that arbitrarily close non-overlapping time intervals are independent in a 
physical or biological system. The cases where good agreement between a Poisson model and 
an experimental system has been established are mostly empirical and not derived from first 
principles. Two of these are well known. Attention was significantly drawn to the probability 
model that is now called the Poisson distribution in 1898 in a paper by Ladislaus von 
Bortkiewicz. He noted how deaths of Prussian soldiers caused by horse kicks over a 20 year 
period in the 19th century could be described as a Poisson model and how their number could 
be estimated by the equation for the Poisson pmf.  Lord Rutherford presented an empirical 
analysis to show that the scintillations emitted by the radioactive decay of polonium in a 125 
msec time interval obeyed a Poisson distribution (Rutherford and Geiger, 1910).  
 
 Several authors have shown that the Poisson model is not an accurate description of 
neural spiking data (Kass and Ventura 2001; Barbieri et al. 2001). In our recent work we have 
looked specifically into establishing alternative models for neural data analysis that do not 
require Assumption 3 (Truccolo et al. 2005). The fact that plausible alternatives exist has been 
known for year (Gerstein and Mandelbrot, 1964; Brillinger 1988) but these alternatives have not 
been widely applied. There are now sufficiently many alternatives to the Poisson model that 
maybe used in neural data analyses.  
 
D. Discrete Probability Models 
 Any function defined on a finite set of values or any function defined on a countably 
infinite set of values such that the sum of the function of all the values is finite can be converted 
into a pmf for the set of values. This is because by assumption we have 

∞
  g x( ) c .

x=0
= < ∞∑  (2.32)  
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and hence we can define  
 
  p x( ) = c−1g( )x  (2.33) 
 
is a pmf defined on x 0,1,2,...= . The mean and variance are computed as in Eqs. 2.7 and 2.8 
respectively. Hence, any finitely summable function can be converted into a pmf.  
 
Example 2.5. Birthdays of Students in 9.914 in Spring 2006.  Uri collected the birthdays from 
16 of the students in the class and made a histogram of the data plotted by month. The 
histogram ( )g x  is shown in Figure 2H panel 1 whereas the pmf p x( ) of the data is shown in 
panel 2. This x =1, 2,3, 4,5,6,7,8,9,10,11,12. An EDA histogram or stem-and-leaf plot of the data is 
shown panel 3. Note that even from the small sample there is a suggestion that the birthdays 
are distributed uniformly across the 12 months.   
 
 

 
 
Figure 2H. Construction of a pmf on a set of discrete values using a sample of the 
birthdays of the students in 9.914. Panel 1 is the histogram of the birthdays. Panel 2 is 
the pmf and Panel 3 is the associated stem-and-leaf plot.  
 
IV. Summary 
We have developed a set of discrete probability models for our statistical analyses of 
neuroscience data. We discussed the models and their properties in relation to actual 
neuroscience experiments in which they were applied. These models will be useful in their own 
right and will serve as building blocks for more detailed data models. The results in today’s 
lecture fall into Step 3 (Models) of the Box-Tukey paradigm presented in Lecture 1.  
 
V. Appendix 
Poisson Process 
A sequence of events S S1 2, ,...,  that occur in an interval (0,T ]  is called a Poisson process if in 
any infinitesimal interval [ ,t t + Δ)  for t  in (0,T ]  the following conditions are satisfied 
 

i) the probability of an event in [ ,t t )+ Δ  is .λΔ  
ii) the probability of more than one event is much, much smaller than .λΔ  
iii) if [ , )ss s + Δ  and [ ,t t + Δt )  are non-overlapping intervals in (0,T ],  the probability of 

an event in the first interval is independent of the probability of an even in the 
second interval. 

Courtesy of Uri T Eden. Used with permission.
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For a Poisson process the probability of x  events in an interval of width Δ  is  
 

  ( )Pr( )
!

xeX x
x

λ λ− Δ Δ
= =  (2.25) 

 
which is Eq. 2.22 with parameter .λ λ= Δ  If we decompose time into a large number N  of 
sufficiently small intervals Δ,  we have effectively a sequence of N  independent Bernoulli trials. 
This is because with Δ  sufficiently small, there is a probability of λΔ  of an event and probability 
1 λ− Δ  of no event. We have from Eq. 2.25 that  
 

  
1

1

( )Pr( )
!

(1 ) ( )
!

(1 ) ( )

x

x x

x

e− Δλ λΔX x= =
x

λ λ−

x
λ λ− x

− Δ Δ
≈

=

 (2.26) 

− Δ Δ
 
We see that on a small time-scale the Poisson process is a Bernoulli random variable. This 
feature of the Poisson process is a feature of a more general class of discrete probability 
models called point processes. As we mentioned in Lecture 1, point processes are binary 
processes that occur in continuous time. A Poisson process is a point process. We will study 
point processes in detail in later lectures.  
 
Inhomogeneous Poisson Process 
If we let ( )tλ = λ be time-dependent, then we obtain an inhomogeneous Poisson process. In this 
case, the rate varies with time. If this process is defined on an interval (0,T ] , then for any 
interval ( ,t t1 2 ) in (0,T ] the rate function is  
 

t2
  Λ =( ,t t1 2 ) ∫ λ(u)du  (2.27) 

t1
The associated inhomogeneous probability mass function is  
 

  e t−Λ( ,t t1 2 )Λ( ,1 2t )k
Pr(X t( 1 2, t ) = =k)  (2.28) 

k !
 
for k = 0,1, 2,3,... .  This probability model is used to define the pmf of exactly k  events occurring 
in interval ( ,t t1 2 ) . The rate is now defined by the function ( ,t t1 2 )Λ . We have that if 

1 2 1 2( , ) ( ( , ))X t t ∼ P Λ t t  then 
 

  
1 1
2 2

1 2

1 2 1 2

1 2 1 2

( , ) 1 2 1 2

( ( , )) ( ( , ))
( ( , )) ( ( , ))

[ ( ( , )] ( , )x t t

E X t t t t
V X t t t t

V X t t t tσ

= Λ

= Λ  (2.29) 

= = Λ

 
Technically speaking, the new random variable ( ,1 2 )X t t  is a stochastic process indexed by time. 
We will define this entity precisely when we study point processes and time-series in later 
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lectures. The Poisson process can also be distributed over space instead of time. In this case, it 
defines the number of events per unit space.  

Fixation Scene Delay ResponseFixation Scene Delay Response

 
 

Figure 2F. Raster plot of single neuron from the monkey hippocampus during a 55 trial 
location-scene association task. Data courtesy of Wendy Suzuki NYU. 

 
 
 The Peristimulus Time Histogram (PSTH) is an example of an empirically constructed 
inhomogeneous Poisson model.  

 
Example 2.3. Peristimulus Time Histogram (PSTH). Spike trains are often collected in 
response to a stimulus applied multiple times within a specified time interval. The stimulus may 
be explicit or implicit as discussed in Lecture One. Each application of a stimulus is called a trial 
and a standard way to present the data in either in a raster plot (Figure 2F) or as a peristimulus 
time histogram (PSTH) (Figure 2G). The raster is simply the plot of the spiking activity of a given 
neuron across its trials. The PSTH is computed from the raster plot binning the time axis and 
summing the number of spikes in a given bin across all trials. The PSTH is a much used 
technique in neural data analysis because it is easy to compute and it is often perceived as an 
analysis method that is assumption free. Clearly, this is not the case as the shape of the PSTH 
depends critically on the choice of bin size. Nothing about this choice is invariant.  
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Figure 2G. Peristimulus Time Histogram of raster plot in Figure 2F. Data courtesy of 
Wendy Suzuki NYU. 
 
 Because the number of spikes per bin can often vary, the PSTH is often modeled as an 
inhomogeneous Poisson process. The argument to justify this assumption follows by applying 
the derivation of the Poisson approximation to the binomial separately to each bin across all 
trials. In this case the rate parameter varies as a function of the bin.  
 
 There has been theoretical work on general Poisson limit theorems. We mention one 
result that is relevant for neuroscience data analysis is in Brillinger (1976).  Brillinger uses one 
to establish the large sample properties of his histogram-based estimate of the cross-intensity 
function for relating two neural spike trains. We will discuss the cross-intensity function later in 
our lectures on point processes. Brillinger shows that when the sample size is large adjacent 
bins in a histogram-based estimate of the cross-intensity function are independent Poisson 
random variables. A more careful analysis of the PSTH using this type of Poisson limit law may 
give a more rigorous theoretical justification for use of the Poisson model in PSTH analyses.  
 
Example 2.4 Stimulus-Response Models and the Inhomogeneous Poisson Process. Other 
applications of the inhomogeneous Poisson model in neural spike train modeling include 
analysis of the spatial receptive fields of the rat hippocampus (Brown et al. 1998; Zhang et al. 
1998; Barbieri et al. 2004) and modeling of MI spiking activity in association to hand position 
and or velocity (Brockwell et al. 2004; Wu et al. 2006; Truccolo et al. 2005). The appeal of the 
inhomogeneous Poisson model offers a very practical way to formulate a stimulus-response 
model because we can express neural spiking activity as a function of a time-varying covariate.  
Here are two examples. 
 
Hippocampal Place Cell Model (Brown et al. 1998) 
As a rat executes a behavioral task spiking activity of hippocampal neurons are known to have 
their spiking activity modulated by the animal’s position in the environment and the phase of the 
theta rhythm. An inhomogeneous Poisson model for describing neural spiking activity as a 
function of the animal’s position and the phase of the theta rhythm can be defined as 
 
 

  11( ) exp( ( ( ) ) ( ( ) ) cos( ( ))),
2

t x t W x t tλ α μ μ β φ−′= − − − +  (2.30) 

 
where exp( )α is the background firing rate, ( )x t  is the position of the animal at time t , μ  is the 
center of the place field, W is a scale matrix that governs the orientation of the field, ( )tφ is the 
phase of the theta rhythm and β  is the modulation parameter. Position and phase of the theta 
rhythm are the time-varying covariates. 
 
Primary Motor Cortex Model (Moran and Schwarz 1999; Brockwell et al., 2004; Truccolo 
et al. 2005). Moran and Schwarz (1999) proposed a model that describes the spiking activity of 
MI neurons in terms of the velocity of a hand movement. Their description suggests a 
representation of the rate function for a Poisson model as 
 
  (t v) exp( | (t ) | cos( (t )) | v(t ) | sin( (t ))),λ α β τ φ τ γ τ φ τ= + + + + + +  (2.31) 
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where exp( )α is the background firing rate, | (v t) |  is the speed of the movement at time t , ( )tφ  is 
the direction of the movement at time t , τ is a lead time (negative delay) parameter, and β  and 
γ are the modulation parameters. Speed and direction are the time-varying covariates.  
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