Addendum to Lecture 7, 9.07

Emery Brown

10.31.16

1 Confidence Interval

A range of value where a parameter is likely to lie with probability $1 - \alpha$ for dt(0,1) usually $0 < \alpha << 1$.

$$Z = \frac{\bar{x} - \mu}{\sigma_{\bar{x}}} = \frac{n\frac{1}{2}(\bar{x} - \mu)}{\sigma} \text{ Pick } \epsilon \ \alpha \ \epsilon \ (0, 1)$$

For example $\alpha=0.05$, $\alpha=0.01$

$$1 - \alpha = \Pr(Z_{\frac{\alpha}{2}} \le Z \le Z_{1-\alpha})$$

= $\Pr(Z_{\alpha} \le \frac{n\frac{1}{2}(\bar{x}-\mu)}{\sigma} \le Z_{1-\frac{\alpha}{2}})$
= $\Pr(\frac{Z_{\frac{\alpha}{2}\sigma}}{n\frac{1}{2}} \le \bar{x} - \mu \le \frac{Z_{1-\frac{\alpha}{2}}\sigma}{n\frac{1}{2}})$
= $\Pr(-\bar{x} + \frac{Z_{\frac{\alpha}{2}\sigma}}{n\frac{1}{2}} \le -\mu \le -\bar{x} + \frac{Z_{1-\frac{\alpha}{2}\sigma}}{n\frac{1}{2}}))$
= $\Pr(\bar{x} - \frac{Z_{\frac{\alpha}{2}\sigma}}{n\frac{1}{2}} \le \mu \le \bar{x} + \frac{Z_{1-\frac{\alpha}{2}\sigma}}{n\frac{1}{2}}))$
= $\Pr(\bar{x} - \frac{z\frac{1-\alpha}{2}\sigma}{n\frac{1}{2}} \le \mu \le \bar{x} + \frac{Z_{1-\frac{\alpha}{2}\sigma}}{n\frac{1}{2}})$

N. B. By symmetry $Z_{\frac{\alpha}{2}} = -Z_{1-\frac{\alpha}{2}}$

or

$$Z_{1-\frac{\alpha}{2}} = -Z_{\frac{\alpha}{2}}.$$

For example if x = 0.05

- $Z_{1-\frac{\alpha}{2}} = Z_{0.975} = 1.96$
- $Z_{\frac{\alpha}{2}} = Z_{0.025} = -1.96$

The probability $1 - \alpha$ is interpreted in the long-run frequency sense. We will explain this in Lecture 8.

 σ^2 is not known.

MIT OpenCourseWare <u>http://ocw.mit.edu</u>

9.07 Statistics for Brain and Cognitive Sciences Fall 2016

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.