Addendum to Lecture 7, 9.07

Emery Brown

10.31.16

1 Confidence Interval

A range of value where a parameter is likely to lie with probability $1-\alpha$ for $d t(0,1)$ usually $0<\alpha \ll 1$.
$Z=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}=\frac{n \frac{1}{2}(\bar{x}-\mu)}{\sigma}$ Pick $\epsilon \alpha \epsilon(0,1)$
For example $\alpha=0.05, \alpha=0.01$
$1-\alpha=\operatorname{Pr}\left(Z_{\frac{\alpha}{2}} \leq Z \leq Z_{1-\alpha}\right)$
$=\operatorname{Pr}\left(Z_{\alpha} \leq \frac{n \frac{1}{2}(\bar{x}-\mu)}{\sigma} \leq Z_{1-\frac{\alpha}{2}}\right)$
$=\operatorname{Pr}\left(\frac{Z_{\frac{\alpha}{2} \sigma}}{n \frac{1}{2}} \leq \bar{x}-\mu \leq \frac{Z_{1-\frac{\alpha}{2} \sigma}}{n \frac{1}{2}}\right)$
$=\operatorname{Pr}\left(-\bar{x}+\frac{Z \frac{\alpha}{2} \sigma}{n \frac{1}{2}} \leq-\mu \leq-\bar{x}+\frac{Z_{1-\frac{\alpha}{2} \sigma}}{n \frac{1}{2}}\right)$
$=\operatorname{Pr}\left(\bar{x}-\frac{Z \frac{\alpha}{2} \sigma}{n \frac{1}{2}} \leq \mu \leq \bar{x}+\frac{Z_{1-\frac{\alpha}{2} \sigma}}{n \frac{1}{2}}\right)$
$=\operatorname{Pr}\left(\bar{x}-\frac{z \frac{1-\alpha}{2} \sigma}{n \frac{1}{2}} \leq \mu \leq \bar{x}+\frac{Z_{1-\frac{\alpha}{2}} \sigma}{n \frac{1}{2}}\right)$

N. B. By symmetry $Z_{\frac{\alpha}{2}}=-Z_{1-\frac{\alpha}{2}}$
or
$Z_{1-\frac{\alpha}{2}}=-Z_{\frac{\alpha}{2}}$.
For example if $x=0.05$
$Z_{1-\frac{\alpha}{2}}=Z_{0.975}=1.96$
$Z_{\frac{\alpha}{2}}=Z_{0.025}=-1.96$
The probability $1-\alpha$ is interpreted in the long-run frequency sense. We will explain this in Lecture 8.
σ^{2} is not known.

MIT OpenCourseWare
http://ocw.mit.edu

9.07 Statistics for Brain and Cognitive Sciences
 Fall 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

