9.07 INTRODUCTION TO STATISTICS FOR BRAIN AND COGNITIVE SCIENCES

Emery N. Brown

Lecture 3: Examples of Probability Models Applied to Data

1. Gaussian Probability Model : Tetrode Recordings
2. Exponential Probability Model
a. Channel Opening Times at the from NMJ
b. Miniature Excitatory Post-Synaptic Currents
3. Gamma and Inverse Gaussian Probability Model: Interspike Interval Distributions
4. Beta Probability Model: Waking Up from General Anesthesia.

Bivariate Plots of Tetrode Recordings from Multiple Neurons

Six Bivariate Plots of Tetrode Channel Recordings

Box Plots of Spike Events By Channel

Voltage (V)

Analysis by Uri Eden

Histograms of Spike Events By Channel

Channel 1

Channel 2

Channel 4
Analysis by Uri Eden

Channel Openings at the Frog Neuromuscular Junction in the Presence of Succinylcholine

Marshall et al. Journal of Physiology, 1990

Minature Excitatory Post Synaptic Currents

Data Courtesy of Marnie Phillips and Martha Constantine-Paton; Analysis by Laura Lewis

Retinal Ganglion Cell Recorded In Constant Light Conditions

Data: Courtesy of Satish lyengar

Retinal Ganglion Cell Recorded In Constant Light Conditions

ISI Histogram

Analysis by Uri Eden

Analysis by Uri Eden

Interspike Interval Models

Reanimation from General Anesthesia by Administering Ritalin

 Animals are anesthetized with propofol.Group 1: Saline Group 0 of 6 animals have return of righting

Group 2: Ritalin Group 11 of 12 animals have return of righting

Are animals more likely to have return of the righting reflex after Ritalin than after saline?

Probability Model: Binomial
Is \mathbf{p} in one group different from \mathbf{p} in the other group?

Group 1: $\operatorname{Binomial}(\mathrm{n}=6, \mathrm{k}=0) \quad$ Group 2: $\operatorname{Binomial}(\mathrm{n}=12, \mathrm{k}=11)$

$$
p=0 / 6=0
$$

$$
p=11 / 12=0.92
$$

Bayes' Theory

What is the best estimate of p given the observed data?

$$
f(p \mid k)=\frac{f(p) f(k \mid p)}{f(k)}
$$

Probability Model for the Data

$$
f\left(k_{i} \mid p_{i}\right)=\binom{n}{k_{i}} p_{i}^{k}\left(1-p_{i}\right)^{n-k}
$$

Posterior Probability Model

$$
f\left(p_{i} \mid k_{i}\right)=\frac{\Gamma(n+\alpha+\beta)}{\Gamma\left(k_{i}+\alpha\right) \Gamma\left(n-k_{i}+\beta\right)}
$$

$$
\times p_{i}^{k_{i}+\alpha-1}\left(1-p_{i}\right)^{n-k_{i}+\beta-1} .
$$

Probability Density of the Difference in the Probabilities

$$
\operatorname{Pr}\left(p_{M P H}>p_{S}\right)=\operatorname{Pr}\left(p_{M P H}-p_{S}>0\right)>0.95
$$

MIT OpenCourseWare
https://ocw.mit.edu

9.07 Statistics for Brain and Cognitive Science

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

