
 
 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

  

 
  

 

  

 

  

 

9.07 Introduction to Statistics for Brain and Cognitive Sciences 
Emery N. Brown 
Updated 11/25/09 

Lecture 10 Bayesian Methods 

I. Objectives 
1. Understand the concept of conditional probabilities and Bayes’ Rule 

2. Understand how to apply the Bayesian inference paradigm 

3. 	Understand the relation among method-of-moments, likelihood and Bayesian 
         methods 

4. Understand how to compute Bayesian estimates by Gaussian approximation 

5. Understand how to compute Bayesian estimates by Monte Carlo 

6. Understand the properties of Bayesian estimates 

II. Bayesian Methods 

A. Conditional Probabilities and Bayes’ Rule 
We recall from Lecture 1 that conditional probability allows us to assess how likely one 

event is given that another has happened. If A and B∈Ω, then 

Pr(A∩ B)Pr( | = .	 (10.1)A B) 
Pr( ) B 

We read this as the probability of A given B.  Heuristically, we can think of this as coming from  

(Area of A B) (Area of A B  ∩  ) /  Area of (  )  ∩	 ΩPr( A B| ) =	 = 
(Area B) (Area of B) /  Area of (Ω) 

(10.2) 
Pr( A B)∩

= 
Pr( ) B 

By a similar argument we have 
Pr(A∩ B)Pr( B A| ) =	 (10.3)

Pr( ) A 

or we have 
Pr( ) Pr( B A|A )Pr(A B| ) =	  (10.4)

Pr( ) B 

If we write Pr( ) Pr( | ) = Pr( ) Pr( B  A B  )  we have the Multiplication Rule of Probability. GivenA B A  | 
n 

an event A and a set B = ∪ Bi = Ω  of disjoint events such that
i=1 



 

 

  

  

 
  

 

  

 

 
 

 

  
 

  

 
 

 

 
 

 

  

 

 
 

 

  

page 2: 9.07 Lecture 10: Bayesian Methods 

n 
Pr( ) =∑Pr( Bi ) = 1B (10.5) 

i=1 

then 
n n 

Pr( ) = Pr( A B) =∑Pr( Bi ∩ A =∑Pr( Bi ) Pr( | iA ∩ ) A B  ). (10.6) 
i=1 i=1 

The above result is sometimes referred to as the Law of Total Probability. Now for j = 1, …, n 
we may write 

Pr( A Bj ) Pr( Bj ) Pr( A B  j )∩ |
Pr( j | ) = = .B A  (10.7)nPr( ) A 

∑Pr( Bi ) Pr( A B  i )| 
i=1 

This last expression is Bayes’ Rule. In its simplest form, it is merely a re-statement of the 
Multiplication Rule of Probability. 

As a first application of Eq 10.7, let’s consider the problem of decoding MI neural spiking 
activity. 

Example 1.6. Reach Direction Given an Observed Neural Firing Pattern (Simplest 
Decoding Problem). Suppose that a monkey is making reaching movements with a 
manipulandum in 8 directions while spiking activity is being recorded from a set of single 
neurons in primary motor cortex MI. If A  is an observed ensemble firing pattern, and Bj  is the 

jth direction, then Pr( B A| )  above represents the probability that the observed firing pattern Aj

encodes direction Bj . This is the simple model for neural spike train decoding that appeared in 
Sanger (1996) using a Poisson model.  

Example 5.3 (continued). Dynamics of Dendritic Spines of Adult Cortical Neurons (Lee et 
al. 2006). To examine the extent of neuronal remodeling that occurs in the brain on a day-to-day 
basis, Elly Nedivi and colleagues used a multiphoton-based microscopy system for chronic in 
vivo imaging and reconstruction of entire neurons in the superficial layers of the rodent cerebral 
cortex. Over a period of months, they observed neurons extending and retracting existing 
branches and, in rare cases, budding new tips. 35 of 259 non-pyramidal interneuron dendritic 
tips showed rearrangement and 0 of 124 pyramidal cell dendritic tips showed rearrangement. 
We would like to construct a Bayesian analysis of these data to decide whether the results of 
these two groups are different.  

B. Bayes’ Rule for Probability Mass Functions and Probability Densities 
Let = 1, ,  xn  be a random sample from a probability distribution ( |  ).  We can make a x x … f x θ
statement of Bayes’ rule for probability mass functions and probability density functions. Let 
f x( | )θ  be the sampling probability density or likelihood and f θ( )   be the prior probability density 

for the model parameter. The posterior probability density is 

f ( ) ( |  )  θ f x  θf ( | )  θ x =  (10.8)
( )f x  
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x ( ) ( | )  θ θwhere f ( ) = f θ f x d  is the normalizing constant. ∫
f x  θ with a prior 

probability density on the parameter θ  to compute a posterior probability density for θ . In this 
formulation of the estimation problem, θ  is a random variable unlike in the case of maximum 
likelihood or methods-of-moments estimation in which θ is viewed as a fixed unknown 
parameter. The parameter θ  has all its uncertainty characterized by its posterior density.  

Remark 10.1. Bayesian estimation combines the sample probability density ( | )

Remark 10.2. The Bayesian approach represents an important paradigm for combining 
information from different sources. In the simplest case one source is what is known about a 
parameter prior to an experiment and the second source is the likelihood for the experiment. 
Equation 10.8 therefore shows how the likelihood can be converted directly into a probability 
statement. 

Remark 10.3. We can take a summary statistic (function) from f ( | )  to be a point estimate of θ x
θ . The most typical is the posterior mean, which is defined as 

( | )  x = θ θf ( | )  .  E θ x d  θ (10.9)∫
Other estimators to be used are the posterior median and the posterior mode. We will 
illustrate computation of the posterior mode below. The posterior variance is defined as 

Var x ( | ) 2 f θ x d θ (10.10)( | )  θ = (θ − E θ x )  ( | )  ∫
Remark 10.4. A Bayesian credibility interval (confidence interval) evaluates the probable 
values of the parameter relative to the posterior probability density. The parameter is a random 
variable and not a fixed quantity. The credible interval is usually chosen to be the smallest one 
with the highest posterior probability. These confidence statements have the more intuitive 
interpretation that one might guess a confidence statement should have.  

Remark 10.5. The two basic questions in Bayesian inference are: 1) how to specify the prior 
probability density in a principled way for a given problem; and 2) how to compute the posterior 
probability density in Eq.10.8. To address the first question we will present several examples 
illustrating prior probability densities for commonly used sampling densities or likelihood 
functions. To address the second question we will consider four approaches: analytic methods, 
numerical methods, approximation methods and Monte Carlo methods.  

Example 2.1 (continued). Let x = x1 … x, , n  be the sample of responses from the learning 
experiment. We assume a binomial probability mass function with parameters n = 40 and 
unknown propensity for a correct response p.  Assume that the prior probability density for p  is 
the beta probability density with parameters α and β .  Find the posterior density of p. Take 

n 

y =∑ xk .  What does this say about how well y  summarizes the information in the sample x ? 
k =1 

Notice that y  is the total number of successes in the n  trials. We have that 
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( | )  ∝ ( ) ( | )  f p x  f p f x p  

Γ +(α β ) α−1 β −1 ⎛ ⎞ y  n y  −∝
α  β  

p (1 ) − p 
n
p (1− p)⎜ ⎟Γ Γ  ( ) ( )  y⎝ ⎠  

(10.11) 
α−1 β −1 y  n y  −(1 ) p ( − p)∝ p − p 1 

α y+ −1 n y  − + −  β 1∝ p (1 ) − p . 

Hence by the definition of the pdf of a beta random variable, we have that 

(α β n) α+ y−1 n y  − + −  β 1( | )  = Γ + +  p (1− p) . (10.12)f p x  
(α y) (  n y  β )Γ + Γ − +

is a beta distribution with parameters ( + ) and n y  β . It follows from Eq. 3.24 and Eq. 3.25α y − +

α + y α + y n  y  ( − +  ( ) β )that ( | )  = and Var p x ( | )  = . The beta distribution is a conjugateE p x  
n α β (n α β )(n α β  )+ + + +  + + +1

prior distribution for the binomial probability mass function. 

A conjugate prior probability distribution for a parameter is a prior distribution that is 
proportional to the likelihood function of that parameter. This formulation makes the computation 
of the posterior distribution more tractable mathematically.  

Example 5.3 (continued). To conduct a Bayesian analysis of the data we apply Eq. 10.8. Let 
us denote the binomial probability mass function for the interneurons as 

n⎛ ⎞  
i i if k  n p  ( | , )  = i p k (1− p )n k  − (10.13)i i  i i  ⎜ ⎟ i iki⎝ ⎠

and the binomial probability mass function for the pyramidal neurons as 

n⎛ ⎞  p k −p p pf k( |  n p  , ) = ⎜  ⎟ p (1− p )n k  . (10.14)p p  p p  p p⎜ ⎟kp⎝ ⎠

What important assumptions do these models make about the individual branchtips in both the 
interneuron and pyramidal neuron groups? Because we want to minimize the set of apriori 
assumptions we make about the data, let us assume that for both the interneurons and the 
pyramidal neurons that there is no prior knowledge about what the propensity to change is. 
Hence, we assume that the prior distributions for both pi  and pp  are both uniform. We recall 
that we can represent the uniform probability density as a beta probability distribution with 
α β 1= =  (see Lecture 3). We write this as 

Γ +  (α β ) α−1 β −1( ) = p (1− p) . (10.15)f p  
( ) ( )  α β  Γ Γ



 

 

 

  

 

 

  

 

 
 

 
 

  

 
 

 

    
  

 
 

  

 
 

 
 

 

 

  

 

page 5: 9.07 Lecture 10: Bayesian Methods 

Therefore, using Bayes’ rule in Eq. 10.8 we can write for the interneurons the posterior 
probability density 

( ) (  |f p f k  p  )i i if p  k  ( | )  = . (10.16)i i ( )f ki 

where ( )  f p f k  p d) (  )  pf ki = ∫ ( i i | i i  is the normalizing constant and for the pyramidal neurons the 

posterior probability density   

( p ) (  p | pp )f p  f k  
( p | p = ( )  

. (10.17)f p  k  ) 
f kp 

Where f ( )kp = ∫ ( p ) (  p | p ) ppf p f k  p d .  Equations 10.16 and 10.17 provide explicit probability 

densities for the probability of change for the interneuron and pyramidal neuron branchtips. We 
can now make a comparison by computing the posterior probability densities for the two 
distributions and comparing the extent to which they overlap. We can specifically compute  

Pr( p > p ) = ( , | , ) p dpf p  p k k dp i ∫ p i p i  p i  p p  >p i (10.18) 
= f (p  k  f p k d|  ) (  | )  p dp∫ p p i i p i p p  >p i 

This quantity can be computed explicitly numerically. We devise a simple Monte Carlo scheme 
for computing the probability in Eq. 10.18.  

Algorithm 10.1 (Bayesian Comparison) 

Sum = 0 
 For j = 1,...,10,000  

1. Draw from f ( p k ) and p  from f p k )pp, j p p | p , i ( |  ii j i 

2. If pp, j > pi j Sum ← Sum +1,
−13. If j = 10,000 then compute Pr( pp > pi ) � 10,000 Sum 

We will use Algorithm 10.1 to analyze these data in Homework Assignments 7 and 8. 

Example 2.2 (continued). We consider x = x1,..., x  observations from the quantal release n 
experiment. If we assume the xi 's  a Poisson distribution with unknown parameter λ,  then the 
joint distribution of the data is 

y −nλλ ef x( |  λ) = (10.19)n 

∏ ( )!  xi 
i=1 
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n 
where y =∑ x .  Assume λ  has a prior probability density given by the gamma probability model  i  

i=1  

αβ α− −1 βλλ α β  e (10.20)f ( | , )  = λ 
Γ( )α 

The posterior probability density 

f ( ) ( | )  x λλ ff ( | )  xλ =
( )  (10.21)f x  

y −n 1 βλλ α−  −  ∝ λ e λ e (10.22) 

α y 1 (n β λ)λ + −  − +  ∝ e . (10.23) 

We recognize that the posterior density is a gamma probability density with parameter α + y  and 
n + β .  Could we have predicted this based on our analysis of the Poisson likelihood in Lecture 

λ x =9? It follows that the posterior mean is E( | )  (  α + y) /(n + β )  and the posterior variance is 
Var( | )  (  λ x = α + y) /(n + β )2. 

Example 10.3. A Gaussian random variable with a Gaussian prior probability density for 
the mean parameter θ .  Assume that x  is a single observation from the Gaussian probability 
density 

x N  ( ,  )θ σ 2 (10.24)∼

Assume further that the mean parameter θ  has a prior probability density 

N μ τ 2θ ∼ ( ,  ).  (10.25) 

It suffices to find the posterior distribution of θ .  It is straight forward, albeit tedious, to show 
directly using Eq. 10.8 and completing the square that this posterior distribution is Gaussian. 
Because of this, it suffices to report the mean and variance of the posterior distribution which 
are 

τ 2 σ 2 
E[ | ]θ x = x + μ (10.26)2 2 2 2τ +σ σ +τ 

2 2σ τVar[ | ]  = . (10.27)θ x 
σ 2 +τ 2 

The Gaussian distribution is a conjugate prior distribution for the Gaussian probability density 
when the unknown parameter is the mean. Notice that the posterior mean is a weighted 
average between the prior mean and the data. Here, we see explicitly how the prior 
assumptions affect the resulting estimate of the mean. How do the relative sizes of the 



 

 
   

  

 
 
 

 

 

 
 

  

 

 

 

  

 

  

  

 

 

 
 
 

 

 
 

 
 

 

page 7: 9.07 Lecture 10: Bayesian Methods 

observation and prior variances affect the estimate of the prior mean? Now let xt = x, 
θ = E[ | x ] and μ = θθt t t−1 

τ 2 
θ = θ + (x −θ ),  (10.28)t t−1 t t−1τ 2 +σ 2 

we obtain the simplest version of the well-known Kalman filter. This is a point of departure for 
our dynamic estimation algorithms for state-space models. We will expand on these points a 
little further in the next section when we study Gaussian approximations to posterior probability 
densities. 

Question 10.1. What would be a possible conjugate prior model for the variance of a Gaussian 
distribution? To answer this remember that the joint likelihood for μ  and σ 2  is 

⎧ n ⎫⎛ 1 ⎞ ⎪ 1 ⎪( ,  2 ) = ⎜ 2 ⎟ 
n / 2  

exp  ⎨ 2 ∑ (xi − μ)2
⎬ (10.29)L μ σ  − 

⎝ 2πσ ⎠ 2σ⎪ i=1 ⎪⎩ ⎭ 

n 
2 2 2Now let η =1/σ and let Sn =∑ (xi − μ) .  We can reexpress Eq. 10.29 as 

i=1 

n / 2  ⎧ η 2 ⎫( ) ∝η exp  ⎨− Sn ⎬ (10.30)L η 
⎩ 2 ⎭

and see that the likelihood expressed in terms of η  is proportional to a gamma probability 
2 
nndensity (Eq. 3.23) with α = +1 and β =
S 

.  This suggests that a gamma or chi-squared 2 2 
distribution would be the choice of conjugate prior model for 1/σ 2 (Why?) It is sometimes stated 
that the inverse chi-squared is the conjugate prior for the variance of a Gaussian distribution.  

D. Approximations to Posterior Probability Densities 
In high-dimensional problems, with realistic prior densities and realistic likelihoods, it is difficult 
to compute the posterior probability density in closed form or with exact numerical integration 
beyond a dimension of say 10. Therefore, it is useful to have approaches to approximate the 
posterior densities. Useful approximations for posterior probability densities include the 
Gaussian and Laplace’s approximations (Tanner, 1996; Pawitan, 2001). We illustrate the 
Gaussian approximation.  

1. Gaussian Approximation: The Essentials of Maximum-a-Posteriori Estimation 
The posterior probability density is proportional to the product of a prior probability density and a 
likelihood function. We saw in Lecture 9 that likelihood functions become more Gaussian in 
shape as the sample size gets large. Moreover, we motivated the fact that the maximum 
likelihood estimates have Gaussian distributions as the sample size gets large. Together these 
facts suggest that the Gaussian distribution should provide a reasonable approximation to 
posterior densities particularly those for which the likelihood is regular and the prior is not 
informative. 
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Let ( | )  be the sampling probability density or likelihood and f θf x θ ( )   be the prior 
probability density. The posterior probability density is 

f ( )  (  f x  |θ θ )f ( | )  xθ = 
( )f x  

(10.31) 
f ( ) ( |  ),  f x  θ∝ θ 

where ( )  = ∫ f θ f x  d .f x ( ) ( |  )  θ θ  

Recall that the maximum likelihood (ML) estimate of θ  is defined as 

θ̂  = arg max f x( |θ ). (10.32)ML
θ 

Given ( )  we define the maximum-a-posteriori (MAP) estimate of θ  asf θ

θ̂  = arg max f (θ | x). (10.33)MAP
θ 

Simply stated, the MAP estimate is the mode of the posterior density.  

Example 10.3 (continued). Gaussian Prior and Gaussian Sampling Density. Before deriving 
a general Gaussian approximation to a posterior density, let’s gain some intuition by considering 
the Gaussian sampling probability density and prior probability density defined as 

1 

⎛ 1 ⎞ 2 ⎧⎪ 1 (x −θ )2 ⎫⎪θ = ⎨f x( | )  ⎜ ⎟ exp  − ⎬ (10.34)⎜ 2 ⎟ 22πσ 2 σ⎝ x ⎠ ⎪⎩ x ⎪⎭

1 

1 ⎞ θ θ ⎫⎛ 2 
⎪⎧ 1 ( − 0 )2 ⎪( |  0 ) = ⎜ exp  ⎨− ⎬. (10.35)f θ θ  ⎟⎜ 2 ⎟ 22πσ 2 σ⎝ θ ⎠ ⎪⎩ θ ⎪⎭

To find the ML estimate of θ  we consider the log likelihood 

2 
21  1 (  x −θ )log f x( | θ ) = −  log(2 πσ  ) − . (10.36)x2 2 σ 2 

x 

Differentiating with respect to θ  gives 

log ( | θ ) (x −θ )∂ f x  
= , (10.37)

∂θ σ x 
2 

and setting the derivative of the log likelihood equal to zero and solving for θ  gives 

θ̂ML = x. (10.38) 
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To compute the MAP estimate of θ  we consider the log posterior probability density 

log (  |  x) ∝ log ( )  + log  f (x |θ )f θ f θ (10.39) 

1 ⎡ ( − ) (x −θ ) ⎤ 
∝ −  ⎢

θ θ0
2 
+ 

2 

⎥ . (10.40)
2 ⎢ σ 2 σ 2 ⎥⎣ θ x ⎦

Differentiating with respect to θ  gives 

∂ log f θ θ0(θ | x) ( − ) (x −θ )
= −  + , (10.41)

∂θ 2 2σ σθ x 

and setting the derivative of log posterior to zero yields 

2 2⎡ 1 1 ⎤
−1 
⎡ θ x ⎤ σ σ0 x θθ̂  = ⎢ + ⎥ ⎢ + ⎥ = θ + x (statistician's view) (10.42)MAP 02 2 2 2 2 2 2 2σ σ σ σ σ +σ σ +σ⎢ θ x ⎥⎦ ⎢⎣ θ x ⎥⎦ θ x θ x⎣ 

σ 2 
=θ0 + 2 

θ 
2 (x −θ0 ) (control engineer's view) (10.43)

σ +σθ x 

2 � 2If σ x →∞, then θMAP → θ0  and there is no information from the likelihood. If σθ →∞, then 

θ̂  → =x θ̂  and there is no information from the prior. The last expression above is the MAP ML 

essential result for deriving the well-known Kalman filter. When the sampling probability density 
is a point process observation model, then the corresponding form of Eq. 10.43 may be used to 
derive neural spike train decoding algorithms (Brown et al. 1998).  

Gaussian Approximation to a Posterior Probability Density. Let us now analyze the 
posterior probability density the same way we analyzed the likelihood in Lecture 9. Given a 
posterior probability density f ( | )  and θ̂MAP a MAP estimate of θ ,  expand the log posterior θ x , 

probability density in a Taylor series about θ̂MAP  to obtain 

ˆ∂ log f (θ | x)
log f (θ | x) = log f (θ̂ | x) + MAP (θ −θ̂ )MAP MAP ∂θ 

2 ˆ 
(10.44)

1 ∂ log f (θMAP | x) ˆ 2+ (θ θ− ) + ...  
2 ∂θ 2 MAP 

2 ˆ1 ∂ log f (θ | x) 2≈ log f (θ̂ | x) + MAP (θ −θ̂  ) , (10.45)MAP MAP 2 ∂θ 2 

∂ log f (θ̂ | x)because MAP = 0  by definition of the MAP estimate. Hence, 
∂θ 
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1 ∂ log f (θ | x) 2f (θ | x) ≈ f (θ̂ | x) exp{ 
2 ˆ

MAP (θ −θ̂  ) }. (10.46)MAP MAP 2 ∂θ 2 

gives a general Gaussian approximation to a posterior probability density.  

Example 10.3 (continued). Notice that for all θ 

2∂ log f (θ | x) ⎡ 1 1 ⎤ 
= − ⎢ + ⎥ . (10.47) 

and thus 

f (θ | x) = f 

⎛ 1 
= ⎜⎜ 2 22π ⎢σ +σ⎝ ⎣ θ x 

In this case the approximation is exact. 

2 2 2∂θ ⎢σ σ ⎥⎣ θ x ⎦

1 1 1 2(θ̂ | x) exp{ − [ + ](θ −θ̂  ) } (10.48)MAP MAP2 2 

2 2⎡ σ σθ x⎢ 

2 σ σθ x 

1 

⎤ ⎞ 2 1 ⎡σ 2 +σ 2 ⎤
−1 

θ x 2⎥ ⎟ exp{ − ⎢ ⎥ (θ θ− ˆ 
MAP ) }. (10.49)2 2⎥ ⎟ 2 ⎢ σ σ  ⎥⎦ ⎠ ⎣ θ x ⎦ 

Example 2.2 (continued). Poisson probability mass function and a gamma prior 
probability density. We computed above the exact posterior probability density for this 
problem in Eq.10.23. Here we derive the Gaussian approximation. The Gaussian approximation 
to f ( |  )λ x  is defined by 

( |  )  f xλ =� ˆ( MAP f λ 
2 

2 

ˆlog (1|  )  exp{  
2 

MAP f x ∂ λ 
∂λ 

2| ) ˆ(  )  }.  MAP 
x 

λ λ− (10.50) 

We have the log posterior and the first derivative are 

log ( |f λ ) (∝x α 1) lo (g )+ −  −  n +y λ β λ  (10.51) 

log (∂ 
∂ 
f λ 
λ 

| )x 
= α 1 (  ),  + − 

− +ny β
λ

 (10.52) 

n 
where y .ix=∑  Solving for MAP λ̂  gives 

i=1 

α + y −1λ̂MAP = . (10.53)
n + β 

The second derivative of the log posterior is 

2∂ log f (λ | x) α + y −1
= − . (10.54)

∂λ2 λ2 

http:Eq.10.23
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Evaluating this at λ̂MAP  gives 

2 ˆ 2 2∂ log f (λ x) (n + β ) α + −1 (n + β ) n| y + βMAP = −  = − = −  . (10.55)2 2 ˆ∂λ (α y 1)  (  + y −1)  λ+ −  α MAP 

α+ y(n + β ) (α y 1)  (n β )λ+ −  − +  ˆThe normalizing constant is f ( | )  = λ e evaluated at λMAP  which isλ x 
(α y)Γ +  

⎛α y 1+ − ⎞(n β ) ⎟− +  ⎜ y α+ −  1 ⎝ +β ⎠α+ y n(n + β ) α +  −  1)  e( yf (λ̂ | )  �x = MAP α+ −1Γ +  (α )(  + yy n  β ) 

α+ −1+ −  1)  (α y 1)  (n + β α)(  y y 
=� e− + −  (10.56)

(α y)Γ +  

α+ −  − + −  y 1 (α y 1)  (n + )(  + −  1)  e (n + ββ α  y )
≈ = ,1 1 1α+ − +  y 1 − + −  (α y 1)  2 2 2(2 ) ( + −1) e π α +  −  1)] π α  y [2 ( y 

z+ −z2 2≈ π
1 1 

α + −  using Stirling’s formula z! (2 )  z e for z  large and taking Γ( + y) = (α y 1)!  Hence, 

n + β ⎧ 1( + −  y 1) α y 1 ⎪⎫⎪ α + −  f λ y 1 ⎨ 2
2 
⎬. (10.57)( | )  ≈ exp  − [λ − ]

[2 ( y 2 ⎪⎩ (n + β ) ⎭π α + −1)] 2(n + β ) ⎪ 

The Gaussian approximation is in good agreement with the true posterior probability density 
provided that α + y is large relative to 1. Notice that the true posterior mean and variance are 
respectively E( | )  = α + y)  /(  n + β ) and Var( | )  = α + y)  /(  n + β )2.λ x ( λ x ( 

2. Monte Carlo Approximations to Posterior Densities 
One of the things which has made wide use of Bayesian methods possible in the last 17 

years is the increase in computational power and as a consequence, the development of Monte 
Carlo algorithms to compute high-dimensional posterior probability densities. In some 
applications such as climatology, astronomy and imaging, the dimension of the posterior 
probability densities can be several thousands if not millions!!! We illustrate two very basic 
Monte Carlo methods for computing posterior probabilities: importance sampling and the 
rejection method. 

Importance Sampling 
Posterior distributions are all of the form 

( | )  θ x ∝ f ( )  (  x |θ ).  (10.58)f θ f 

It may be the case that the prior and sampling distribution are easy to specify but the resulting 
form of the posterior does not suggest any easy analytic approach to summarizing it. We can 
generate a summary by Monte Carlo. Suppose we wish to compute for some function g( )θ  the 
quantity 
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( ( )) = g f  x d  θ .E g θ ( ) (  | )  θ θ  (10.59)∫
Suppose we have probability density ( )  f ( | )  and is easyh θ  which has the same support as θ x
to sample. We can then write 

g( ) (  | )  xfθ θ  ( ( )) = h θ θE g θ ( )  d∫ h( )θ (10.60) 
= g( ) (  | ) ( )  x h  θ θ  θ w θ d∫

where w( | )  θ x = f ( )  (  θ f x  |θ θ) ( )  −1  Equation 10.60 defines the process of importance sampling h 
and the distribution ( )h θ  is the importance distribution. Effectively, importance sampling 
converts the original problem into a problem of drawing a weighted sample from a distribution 
that is easy to manipulate. We can simulate Eq. 10.60 with the following algorithm. 

Algorithm 10.2 (Importance Sampling) 
Sum 0=

 For j =1,...,10,000 
1. Draw j ( )θ from h θ 

2. Compute w θ x = f ( ) ( |  ) ( )  ( )( | )  θ f x  θ h θ −1 andj j j j g θ j 
3. Sum ← Sum + (θ | x g) ( ) w θj j 

4. Compute E g θ )  10 00  Su( ( ) � ,0 −1 m 

A common choice for ( )  f ( | )  such as h θ  is a probability density which approximates θ x
the Gaussian approximation to f ( | )  derived above. A second choice of h θ  is f ( )θ  the priorθ x ( )  

w θ ( | ) h θdistribution. In this case, we have simply ( | )  x = f x  θ .  The better the extent to which ( )  
approximates f ( | ),θ x  the more efficient the importance sampling, where efficiency here means 
the number of Monte Carlo samples required to evaluate Eq. 10.60 accurately. Ideally, we 
would like to have w( | )θ x  close to 1 for as many values of θ as possible. 

Rejection Method 
Suppose that f ( | )  can be approximated by h θ , a probability density which has the sameθ x ( )
support or whose support contains the support of f ( | ).θ x  Suppose there is a constant c  such 
that 

f ( | )  θ x 
≤ c (10.61)

h( )θ 

for all θ .  We then have the following algorithm for simulating from f ( | ).  It is called the θ x
rejection method. 

Algorithm 10.3 (Rejection Method). 

Pick n large j =1. 
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*1. Draw θ  from h θi ( )  
2. Draw Ui  from U (0,1) 

*f (θ | )  x3. If Ui ≤ i take θ j =θi j j 1*; ← +  *ch( )θi 
4. If j n stop else i← +  Return to Step 1= i 1 

*This algorithm was originally due to John Von Neumann. We accept the value θi with 
* *probability f (θi |  ) /  x  ch(θi ) by generating a uniform (0,1)  random variable U  and accepting if 

* * 
i f ( i |  ) /  h(θi ).  U ≤ θ x c

When = /j n ; the quantity n i  measures the efficiency of the algorithm.  

E. Summary of Properties of Bayesian Procedures.  
Remark 10.6. Bayes’ estimates are generally biased. 

Remark 10.7. Bayes’ estimates are consistent and they are hence asymptotically unbiased. 

Remark 10.8. Bayes’ estimates are asymptotically efficient. This is because like the maximum 
likelihood estimates Bayes’ estimates are functions of the sufficient statistics of the sample. 

Remark 10.9.  Remarks 10.7 and 10.8 imply that Bayes’ estimates have optimal mean squared 
error properties. 

Remark 10.10.Given the posterior distribution of θ ,  the posterior distribution of some function of 
θ , say ( )h θ  can be computed directly by change-of-variable, analytically in many cases, or by 
Monte Carlo. 

III. Summary 
Bayesian methods provide a powerful framework for statistical analysis that enjoys the 
optimality properties of the likelihood approach. They also provide a principled approach for 
addressing the important problem of combining information from different sources.  
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