
      
   

 
      

 
 

         
 

      
 

     
 

            
 

     
 

      
             

                  
 

   
          

         
         

                 
                

             
        

           
 

           
          

              
  

       
         

             
 

           
             

              
    

 
    
 

            
           

            
        

9.07 Introduction to Statistics for Brain and Cognitive Sciences 
Emery N. Brown 

Lecture 11: Monte Carlo and Bootstrap Methods 

I. Objectives  
Understand how Monte Carlo methods are used in statistics.  

Understand how to apply properly parametric and nonparametric bootstrap methods. 

Understand why the bootstrap works. 

“John Tukey suggested that the bootstrap be named the shotgun, reasoning that it could blow  
the head off any statistical problem if you were willing to tolerate the mess.”  
Paraphrased from Efron (1979).  

“Dad, I just freed my mind!”  
Elena Brown, 5 years old, explaining to me the secret of how she got control of her skis and  
successfully negotiated the bottom third of the ski slope on her first run of the new ski season.  

II. Monte Carlo Methods 
Computer simulations are useful to give insight into complicated problems when detailed 
analytic studies are not possible. We see this all the time in physics, chemistry, climatology and 
ecology, just to cite a few examples. Because by definition, stochastic simulations introduce 
randomness in to the study, they are often referred to as Monte Carlo methods after the capital 
city of the principality of Monaco, which is known for gambling. We have already made use of 
Monte Carlo methods to check the theoretical properties of some of our statistical procedures 
such as confidence intervals in Lecture 8, and to compute posterior probability densities in our 
Bayesian analyses in Lecture 10 and in Homework Assignment 7. 

In this lecture, we will present a very general, computer-intensive method called the bootstrap 
to compute from a random sample an estimate of a particular function of interest and the 
uncertainty in that function. The bootstrap was first proposed by Brad Efron at Stanford in 1979 
(Efron, 1979). Since then it has become one of the most widely-used statistical methods. As has 
often been the case for Monte Carlo methods in general, it has made it possible to solve easily 
a number of estimation problems that would not have been possible or certainly far more difficult 
by other means. We begin by reviewing two elementary Monte Carlo methods. 

A. Inverse Transformation Method. Before beginning with the bootstrap, we re-present one of 
the most basic Monte Carlo algorithms for simulating draws from a probability distribution. A cdf 
F outputs a number between 0 and 1. Therefore if F is continuous and if we take U as a 
uniform random variable on (0,1), then we can define 

X F U (11.1) = −1( )

where F −1( )u equals x whenever F x( ) = u. Because ( )F x is continuous and monotonic, it follows 
that we can simulate a random variable X from the continuous cdf F , whenever F−1 is 

−1computable by simulating a random number U , then setting X F U( ) These observations = . 
imply the following algorithm known as the Inverse Transformation Method. 



 

 
    

    
        

         
           
 

         
     

 
    
 

        
 

    

 
      

 
    
 

    

 
         

 

    

 
               

             

        
 

             
         

        
 

    

 

page 2: 9.07 Lecture 11: Monte Carlo and Bootstrap Methods 

Algorithm 11.1 (Algorithm 3.1, Inverse Transformation Method) 
Pick n large. 

1. For i = 1 to n. 

2. Draw Ui from U (0,1) and compute Xi = F 1 Ui 
− ( )  

3. The observations ( ,...,  )X are a random sample from F.X1 n 

Example 3.2. Simulating Exponential Random Variables (Revisited). In Lecture 3, we 
defined the exponential probability density as 

( ) = λe−λx (11.2) f x  

for 0 and λ > ( )x > 0. It follows that the cdf F x  is 

λ −λu −λx( ) = e du = 1F x  −e . (11.3) ∫0 
x 

To find F −1( )u we note that 

1− e−λx = u (11.4) 

log(1 − u)x = − (11.5) 
λ 

Hence, if u is uniform on (0,1) then 

log(1 − u)F−1( )  (11.6) u = − 
λ 

1is exponentially distributed with mean λ− . Since 1− u is uniform on (0,1), it follows that 
log( ) 1u x = − is exponential with mean λ− . Therefore, we can use Algorithm 3.1 to simulate 
λ 

draws from an exponential distribution by using F−1 in Eq. 11.6.  

B. Sampling from an Empirical Cumulative Distribution Function. The same idea we used 
to simulate draws from a continuous cdf may be used to simulate draws from a discontinuous or 
empirical cdf. That is, given x1,..., x define the empirical cumulative distribution function asn 

n 

∑ I x{ ≤ x}i 

F x( )  = i=1 (11.7) n n 
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where { } is the indicator function of the event for x We have that ( )  I x ≤ x ≤ x x ≤ ≤ x F xi xi min max . n

is the cdf corresponding to the empirical probability mass function that places weight 1 
n 

at every 

observation. We can express the empirical cdf alternatively as 

⎧ 
⎪
⎪
⎨ 
⎪  

0 x x< (1) 
k( )F xn = x( )k ≤ x x  < k( 1)+ (11.8)  
n 
1⎪⎩ x n < x( )  

where the are the ordered observations or order statistics from i = 1 to n andx( )i 
n 

k = ∑ I {xi ≤ x}. Remember we use the order statistics to construct the Q-Q plots. We define 
i=1 

F −1( )u asn

Fn 
−1( ) = ( )  (11.9) u x k 

k k +1if ≤ u < for k = 1,..., n −1. 
n n 

An example of an empirical cdf is shown in Figure 11A which shows the retinal ISI data from 

Example 8.1. There are 971 observations here so that the jump of 1 at each order statistic 
n 

−corresponds to a jump of approximately 10 3. For this reason, this empirical cdf looks very 
smooth. 
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Figure 11A. Empirical Cumulative Distribution Function for Retinal ISI Data (Example 8.1). 

Remark 11.1. ( )  ( )F x is an estimate of the unknown cumulative distribution function F x . This n
can be justified by the Law of Large Numbers (Lecture 7) and more strongly by another 
important result in probability theory called the Glivenko-Cantelli Lemma. This lemma says 
that as n goes to infinity n ( )F x converges uniformly to the true ( )  F x  in distribution. 

Note on Notation. In our lectures we have used θ to denote the parameter in our probability 
models. In this lecture we represent this parameter by ξ in order to let θ , as we show below 
define the generic function whose properties are characterized in a bootstrap analysis. 

Remark 11.2. In Lectures 8 to 10 we studied method-of-moments, likelihood and Bayesian 
methods for estimating the parameters of probability models. In each case, we wrote down a 
specific probability model to describe the data and used one of these three approaches to 
estimate the model parameters. These models, such as the binomial, Poisson, Gaussian, 
gamma, beta and inverse Gaussian are parametric models because given the formula for the 
probability distribution, each is completely defined once we specify the values of the model 
parameters. In this regard our method-of-moments, likelihood and Bayesian methods provided 
parametric estimates of the probability distributions. That is, given a probability distribution 

∫ 
x 

f x( | )ξ the associated cdf is F x f ( | )  .  ξ du Hence, given ξ̂  an estimate of the parameter ( | )  ξ = u 
−∞ 

∫ 
x 

f ( | )  ˆ du ( | )ˆ .ξ we have that F x ( | )  ξ̂ = u ξ is the parametric estimate of the cdf is F x ξ Therefore, 
−∞ 

given F x( | )ξ̂ , we can use Algorithm 3.1 to simulate estimated samples from F x( | )ξ . The type 
of optimality properties of ( | )ˆ and the samples from it will follow from the optimality F x ξ 
properties of the type of estimation procedure used to compute ξ̂ . 

Remark 11.3. In contrast to ( | )ˆ in Remark 11.2, we term the empirical cumulative F x ξ 
distribution function ( )  ( )F x a nonparametric estimate of F x . This is because we can compute n
it without making any assumption about a specific parametric form of ( )F x . Just as we can use 
Algorithm 3.1 applied to F x( | )ξ̂ , to simulate estimated samples from F x( | )ξ , we can use ( )F xn
to simulate samples from ( )F x . The prescription is given in the next algorithm. 

Algorithm 11.2 (Sampling from an Empirical Cumulative Distribution Function). 
*Pick n . 

*1. For i = 1,..., n 
2. Draw Ui from U(0,1). 

* −13. Compute = F ( ) in Eq. 11.9. X Ui n i 

* *The sample (X ,...,  Xn ) is a random sample from F xn ( )1 . 
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The parametric and nonparametric estimates of the cdf are the key tools we will need to 
construct the bootstrap procedures. 

III. Bootstrap Methods (Efron and Tibshirani, 1993; DeGroot and Schervish, 2002; Rice 
2007). 
A. Motivation.  
To motivate the bootstrap we return to two problems we considered previously.  

Example 8.1 (continued). Retinal Neuron ISI Distribution: Method-of-Moments. In this 
problem, we have been studying probability models to describe the ISI distribution of a retinal 
neuron. One of the models we proposed for these data was the gamma distribution with 
unknown parameters α and β . We found that the method-of-moments estimates were 

ˆ 2 1X σ̂ − (11.10) βMM = ( )  

2 2 −1α̂MM = X (σ̂ ) . (11.11) 

One of the points we made in Lecture 8 was that while we could find approximations to the 
distributions of X using the central limit theorem and that of σ̂ 2 under the special assumption of 
Gaussian data, it was in general difficult to find the distribution of the sample moments and 
functions of these moments. However, this is exactly what we need in order to determine the 
uncertainty in the method-of-moments estimates ofα and β in Eqs. 11.10 and 11.11. 

Example 8.1. (continued). Retinal Neuron ISI Distribution: Five-Number Summary. One of 
the first things we did to analyze these data was to compute the five-number summary in 
Lecture 8 (See Figure 8B). These are the minimum 2 msec, 25th percentile 5 msec, median 
(50th percentile) 10 msec, the 75th percentile 43 msec and the maximum of 190 msec. Each of 
these is a statistic and each estimates respectively, the true minimum, 25th percentile, median 
(50th percentile), 75th percentile, maximum. Hence, because each is a statistic, each has 
uncertainty. Each of these is a nonparametric estimate of the corresponding true function of the 
distribution. Suppose we wish to compute nonparametric estimates of the uncertainty in these 
statistics. None of the method-of-moments, likelihood or Bayesian theory we have developed 
would allow us to compute the uncertainty in these estimates. Indeed, the analytics necessary 
to study these estimates falls under the heading of the quite advanced areas of mathematical 
statistics called order statistics (Rice, 2007) and robust estimation theory (DeGroot and 
Schervish, 2002). 

These two problems can be generally formulated as follows. Suppose we have a random 
sample x = ( ,x ...,  ) from an unknown probability distribution F and suppose we wish to x1 n 
estimate the quantity of interest θ = T F x  ( ( )). The quantity θ can be either a parameter of a 
parametric probability distribution, or a nonparametric quantity, such as one of the components 

ˆ ˆof the five-number summary. Suppose we estimate θ as T F x ) . How can we compute the θ = ( ( )
uncertainty in θ̂  ? 

B. The Nonparametric Bootstrap 
Bootstrap methods depend on the concept of a bootstrap sample. Let F̂ be an empirical cdf as 
defined in Eq. 11.8. It puts mass 1/ n at every observation xi for i = 1,..., n. A bootstrap sample 
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* * *is a random sample of size n drawn from F̂ which we denote as x ( , . ,  )x We use the * to = x . . .1 n 
*	 * *indicate that x is not the actual data set x . Alternatively stated, the bootstrap sample x1 ,..., xn 

is a random sample of size n drawn with replacement from the set of n objects x1 ,..., x . The n 
* *bootstrap sample x1 ,..., x consists of members of the original sample some appearing, zero n 

times, some appearing once, some appearing twice, etc. Given a bootstrap sample, we can 
compute a bootstrap replication of ˆ ˆ defined as θ = ( ( )T F x ) 

ˆ* ˆθ = ( ( *T F x  ))	 (11.12) 

The quantity in Eq. 11.12 comes about by applying the function T to the bootstrap sample. For 
example, for the method-of-moments in Eqs. 11.10 and 11.11 

ˆ* 	  * 2*  −1βMM = X (σ̂ )	 (11.13) 

*  2*  2*  −1α̂MM = X (σ̂ ). 	  (11.14) 

In the case of the five-number summary, it would be the five-number summary computed 
* *at the bootstrap sample x1 ,..., xn. 

ˆ ˆIt follows that we can compute the uncertainty in θ = ( ( ) by simply drawing a large T F x ) 
ˆ* ˆnumber of bootstrap samples, say B, from F̂ and we compute θ = T F x  * )( ( ) 	for each sample. A 

histogram of θ̂* shows the uncertainty in θ̂ . We could also summarize the uncertainty in θ̂  by 
computing the standard error of the bootstrap replicates defined as 

B 2⎡	 ⎤ 
1 

* −1 * * 2seB 
ˆ ⎢

⎢ ∑( b̂ ⎥
⎥	 

(11.15) ( )  (  1θ = B − ) θ −θ ) 
⎣ b=1 ⎦ 

where 
B 

* −1 *θ = B	 ∑θ̂ b . (11.16) 
b=1 

Notice here we divide by B −1 instead of B because for many problems only a small number of 
bootstrap replicates is required to accurately establish the uncertainty. The quantity θ * in Eq. 
11.16 is the bootstrap estimate. Dividing by B −1 provides an unbiased estimate of the standard 
error. We could also compute an empirical 95% confidence interval based on the histogram of 
the bootstrap replicates. We term the procedure of drawing random samples with replacement 
from the empirical cdf F̂ to compute the uncertainty in θ̂  a nonparametric bootstrap 
procedure. The procedure is nonparametric because we use the nonparametric estimate of F 
defined in Eq. 11.8. We can state this in the following algorithm. 

Algorithm 11.3 (Nonparametric Bootstrap) 
Pick B. 
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*1 *B ˆ *b *b *b1. Draw x ,..., x independent bootstrap samples from F , where x = (x1 ,...,  x ) is a vector of n 

bthn observations which contains the bootstrap sample for b = 1,..., B. 

ˆ* ˆ *b2. Evaluate the bootstrap replication corresponding to each bootstrap sample θ ( )b = ( (  ))  T F x  
for b = 1,..., B. 

3. Compute the uncertainty in θ̂  as either the: 
*i. sample standard error as θ̂seB ( ) defined in 11.15 

ˆ* ˆ bii. histogram of the θ ( )b  T F x  = (  (  * ))
iii. 95% confidence interval from the histogram. 

Remark 11.4. Notice that in the case of the method-of-moments estimates of the parameters of 
the gamma distribution, even though the functions of interest are parameters, we are using a 
nonparametric bootstrap procedure to estimate their uncertainty. 

C. The Parametric Bootstrap 
Suppose as in Remark 11.2 that given our random sample x1 ,..., x we estimate F not by the n 
empirical cdf ( )  ( | )ˆ using a method-of-moments F x but by a parametric estimate of the cdf F x ξn
or likelihood approach. Therefore, it follows that we can carry out our bootstrap procedure using 
( | )ˆ instead of the empirical F x as the estimate of F . We term this procedure of drawing F x ξ ( )n

random samples with replacement from the parametric cdf ˆ = ˆ to compute the F F( | )  x ξ 
uncertainty in θ̂  a parametric bootstrap procedure. We can state this procedure formally in 
the following algorithm 

Algorithm 11.4 (Parametric Bootstrap) 
Pick B. 

*1 *B ˆ ˆ *b *b *b1. Draw x ,..., x independent bootstrap samples from F F= ( | )x ξ , where x = (x1 ,...,  x ) is a n 

bthvector of n observations which contains the bootstrap sample for b = 1,..., B. 

ˆ* ˆ b2. Evaluate the bootstrap replication corresponding to each bootstrap sample θ ( )b  T F x  
for b = 1,..., B. 

= (  (  * ))

3. Compute the uncertainty in θ̂  as either the: 
ˆ*i. sample standard error as seB ( ) defined in 11.15 θ 

ˆ* ˆ bii. histogram of the θ ( )b  T F x  = (  (  * ))
iii. 95% confidence interval from the histogram. 

Remark 11.5. An important difference between the nonparametric and parametric bootstrap 
procedures is that in the nonparametric procedure, only values of the original sample appear in 
the bootstrap samples. In the parametric bootstrap, the range of values in the bootstrap sample 
is the entire support of F. For example, in the case of the retinal ISI data, there are 971 values. 
Therefore a nonparametric bootstrap procedure applied to these data would have only 971 
different values in any bootstrap sample. In the parametric bootstrap of this problem using the 
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gamma distribution the values in the bootstrap sample could be any value between zero and 
positive infinity. 

Remark 11.6. We can use the parametric bootstrap to analyze the uncertainty in the 
nonparametric estimators such as the five-number summary. 

D. Applications of the Bootstrap 
1. Example 8.1 (continued) Nonparametric and Parametric Bootstrap Analyses of the 
Method-of-Moments Estimates for the Gamma Distribution Parameters. 

We used Algorithms 11.3 and 11.4 to perform nonparametric and parametric bootstrap 
analyses in order to estimate the uncertainty in the method-method of-moments estimates for 
the gamma probability density parameters for the retinal ISI data. The histograms of the 
analyses are shown in Figures 11B and 11C for α̂MM and in Figures 11D and 11E for β̂MM . 
The findings from the analysis are summarized in Tables 11.1 for α̂MM and 11.2 for β̂MM . 

α̂MM α̂B ˆ ˆMM MM Bbias α α= − ˆ( )Bse α 95% CI 
Nonparametric 0.6284 0.6299 -0.0015 0.0281 (0.5749, 

0.6849) 

Parametric 0.6284 0.6324 -0.0040 0.0452 (0.5437, 
0.7211) 

Table 11.1 Comparison of Nonparametric and Parametric Bootstrap Analyses of α̂MM . 

Figure 11B. Histogram of nonparametric bootstrap samples of α̂MM . 
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Figure 11C. Histogram of parametric bootstrap samples of .α̂MM 

The parametric and nonparametric bootstrap estimates of α agree and both procedures show 
little to no bias (Table 11.1 column 3). The parametric bootstrap procedure has a larger 
standard error and a wider 95% confidence interval (Table 11.1 columns 4 and 5) suggesting 
that there is greater uncertainty in the estimate of α than suggested by the nonparametric 
analysis. 

β̂MM β̂B 
ˆ ˆ

MM MM Bbias β β= − ˆ( )Bse β 95% CI 
Nonparametric 0.0204 0.0205 0.0001 0.0007 (0.0191, 

0.0218) 

Parametric 0.0204 0.0206 0.0002 0.0017 (0.0173, 
0.0239) 

Table 11.2 Comparison of Nonparametric and Parametric Bootstrap Analyses of β̂MM . 
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Figure 11D. Histogram of nonparametric bootstrap samples of β̂MM . 

Figure 11E. Histogram of parametric bootstrap samples of β̂MM . 

Similarly, the parametric and nonparametric bootstrap estimates of β agree (Table 11.2) and 
both procedures show little to no bias (Table 11.2, column 3). The parametric bootstrap here 
as well suggests that there is greater uncertainty in the estimate of β than suggested by the 
nonparametric analysis (Table 11.2, column 4 and 5). 

2. Example 8.1 (continued) Nonparametric Bootstrap of the 75th Percentile. 
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Figure 11F . Histogram of Nonparametric Bootstrap samples of 75th Percentile. 

75th Estimate 75thB 75 75 75th Bbias th th = − (75 B )se th 95% CI 
Nonparametric 43 43.73 0.73 5.12 (33.69 

53.77) 

Table 11.3 Nonparametric Bootstrap Analyses of 75th Percentile. 

We used Algorithms 11.3 to perform nonparametric bootstrap analysis of the uncertainty in the 
empirical (order statistic) estimate of the 75th percentile. The histogram of the analyses is shown 
in Figure 11F and the findings from the analysis are summarized in Table 11.3. The order 
statistic and bootstrap estimates agree indicating that there is very little bias. The standard error 
and 95% confidence intervals suggest that the true 75th percentile could be as small as 34 msec 
or as large as 54 msec. This analysis shows one of the important features of the bootstrap 
namely, except for the assumption of independence of the observations, we need to make no 
assumptions about the specific probability model that generated the data. 

E. A Heuristic Look at the Bootstrap Theory 
While the bootstrap is a very simple to apply, computer-intensive estimation procedure, the 
theory underlying it has been a subject of much investigation by some of the best minds in 
modern statistics. See the references in Efron and Tibshirani (1993) and DeGroot and 
Schervish (2002). The essential idea behind why the procedure gives a “correct” assessment of 
uncertainty has two components. First, for the nonparametric bootstrap, by the Glivenko-Cantelli 
Lemma, F x converges in distribution to the unknown cumulative distribution function F. If an ( )n

⎛ 2n −1⎞ (2n −1)! observed sample has n observations, then there are ⎜ ⎟ = distinct bootstrap 
⎝ ⎠ (n −1)!  !  n n 

samples. As B →∞, the bootstrap samples converge to the population of distinct bootstrap 
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samples. Therefore, if ( *)  ( )  ( )  F ,F x  converge F x  and F x  converges to then it follows that n n n
ˆ* ˆθ = T F x  ( ( *)) converges to θ = T F( ( )g ). 

A similar argument holds for the parametric bootstrap except for the fact that ( | )ˆ converges F x ξ 
to ( | ) follows from the large sample properties of ξ̂  . That is, ξ̂  converges to ξ as the F x ξ 
sample size becomes large due to the optimality properties of the procedure used to 
estimateξ .Therefore, since ( | ) is a usually well-behaved function of ξF x ξ it generally follows 
that ( | )ˆ converges to F x ξ . The balance of the argument for the nonparametric bootstrap F x ξ ( | )
is then applied and a similar conclusion about the convergence of the bootstrap procedure 
follows in this case as well. 

Remark 11.7. The above argument shows that the bootstrap is a frequentist method. Like the 
standard confidence intervals, the bootstrap is justified based on its long-run properties over 
repeated sampling. 

Remark 11.8. A key assumption in the bootstrap analysis is that the original sample is 
independent and identically distributed, i.e., every observation is drawn from the same 
distribution function F. When this is the case, the bootstrap samples can be drawn as stated 
above in Algorithms 11.3 and 11.4. In many common problems in neuroscience, such as 
analyses of neural spike trains, regression problems, and EEG and local field potential 
analyses, these assumptions clearly do not hold. For example, in the standard regression 
problem as we will study shortly, every observation is Gaussian with the same variance yet with 
a difference mean given by the regression function. Neural spike trains, EEG and local field 
potential data are never collections of independent observations. Therefore, to apply the 
bootstrap to any of these commonly encountered problems, special care must be taken to 
implement the procedure correctly. We will investigate some of these issues when we study 
linear model, point processes, time-series and spectral methods. 

Remark 11.9. The bootstrap is a computer-intensive estimation procedure. The quantity 

∑ 
B 

* −1 ˆ* * ˆθ = B θ b is the bootstrap estimate of θ . It follows that bθ̂  = (θ −θ ) provides an estimate of 
b=1 

the bias in the estimation procedure that produced θ̂ . Indeed, the bootstrap can be used in this 
way to produce a bias correction for a procedure. This was the original intended purpose of the 
jackknife, a resampling method that was the predecessor of the bootstrap. 

Remark 11.10. A very appealing feature of the bootstrap is that very often, few bootstrap 
replicates are needed to accurately assess the uncertainty in the statistic of interest. For 
example, Efron and Tibshirani (1993) report that only as few as 25 to 200 bootstrap samples 

*may be required to accurately compute the bootstrap estimate of the standard error θ̂seB ( ) in 
Eq. 11.15 for a given parameter of interest. Larger numbers of samples may be necessary to 
compute p-values and a histogram estimate of a probability density. 

Remark 11.11. One challenge to applying the bootstrap, though not an insurmountable one, is 
* bthat it does require reestimating θ̂ ( )b = (  (  * ))ˆ B times. When ˆ T F x( ( )) exists in closed T F x  θ = 

form, such as in the case of the method-of-moments estimates, this is easy to do. However, the 
maximum likelihood estimates of α and β for the gamma distribution do not exist in closed 



 

      
 

 
 

            
             

             
 

 
                 

       
 

  
        

  
  

         
 

           
 

       
 

  
            

page 13: 9.07 Lecture 11: Monte Carlo and Bootstrap Methods 

form. Here, a Newton’s procedure would have to be applied to each bootstrap sample to obtain 
the bootstrap replicates. 

IV. Summary 
The bootstrap is a widely used, computer-intensive method for estimating uncertainty in 
statistics of interest. It has made it possible to attack a wide range of problems that would have 
been otherwise intractable. We will use it extensively in our analyses in later lectures. 
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