
9.07 Introduction to Probability and Statistics for Brain and Cognitive Sciences 
Emery N. Brown 
 

Lecture 1: Introduction to Probability Theory 
 
I. Objectives 
 Introduce the basic concepts of probability theory 
 
 Introduce the basic axioms and rules of probability theory 
 
 Learn to perform probability computations using counting methods 
 
 Understand conditional probability and Bayes’ rule 
  
 Understand the concept of independence 
 
II. Concepts of Probability (DeGroot and Schervish, 2002) 

Probability Theory is the branch of mathematics that is concerned with the analysis of 
random phenomena or chance. Statistics is the science of making decisions under uncertainty. 
Probability models are used to formulate our understanding of uncertainty, stochastic behavior 
and or noise in data analyses. Therefore, we study some basic probability theory that will be 
useful for developing our statistical models and carrying out statistical analyses. Probability 
theory is what we will study in the first seven lectures of the course.   
 

There are three interpretations of probability. The mathematical theory of probability 
which we outline here applies to all three.  
 
A. The Frequency  Interpretation  of Probability. In this interpretation of probability, the 
probability of a specific outcome of a process means the relative frequency with which this 
outcome would occur if the process were repeated a large number of times under similar 
conditions. The classic example is tossing a fair coin. We would expect the relative frequency of 
either heads or tails to be 1

2.   A few issues to consider with this definition are listed below.  
 
How large is large? 
 
How do you insure identical conditions? 
 
Is a coin toss really random? See the work of Persi Diaconis on this problem. 
 
How far away from ½ can the tosses be and have the relative frequency still be interpretable as 
½?  
 
In principle, the relative frequency definition applies only to problems in which the process can 
be repeated a large number of times. Would this condition apply in neuroscience experiments?  
 
B. The Classical Interpretation of Probability . This concept of probability is based on the 
notion of equally likely outcomes. For example, in a coin toss there are two outcomes: a heads 
or a tail. If the outcomes are equally likely to occur then each must have probability of ½. 
Similarly if there are n events each of which is equally likely, then the probability of each must 
be 1/ n  because the total probability must sum to 1. The difficulty here is that: 
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The concept of equally likely outcomes is based on a notion of probability which is what the 
definition seeks to define.  
 
There is no systematic approach to assigning probabilities to outcomes that are not assumed to 
be equally likely.  
 
C. The Subjective Interpretation of Probability .  Under the subjective interpretation of 
probability, the probability that a person assigns to a possible outcome of some process 
represents his or her own judgment of the likelihood that the outcome will occur. The judgment 
will be based on each person’s beliefs and understanding of what is known about the process.  
This belief must be expressed numerically. For example, a person with no special knowledge 
about a coin toss may assign a probability of ½ to the occurrence of either a heads or a tails.  
Similarly, a person who knows that a box contains 5 pennies, 4 copper and 1 steel when asked, 
what is the probability of choosing a copper penny would state 4/5. For this concept of 
probability we know that: 
 
The subjective interpretation can be formalized.  
 
This formalism requires subjective assignments of probabilities to a possibly infinite set of 
outcomes to be logically consistent. While possible it is often difficult to do.  
 
The subjective interpretation appears to contain no objective way for two or more scientists to 
combine objectively their beliefs about the probability of a particular outcome.  
 
The subjective notion of probability reflects the subjective notion of science. Remember experts 
in the same field can make drastically different predictions based an analysis of the same data. 
Also science is not objective. Scientists decide which problems to study, which experiments to 
do, which data to collect and also, how to interpret the findings.  
 
In this course we will make use of all three interpretations of probability.  
 
III. Axioms and Rules of Probability Theory 
A. Basic Concepts of Set Theory 
We require some basic concepts from set theory to formulate our concepts of probability theory. 
Probability theory begins by defining for any problem a triplet ( , , ),Ω ℑ Ρ   where Ω  is the collection 
of all possible outcomes also termed the sample or outcome space . The elements of Ω  are 
called events. ℑ  is the family of objects of Ω  or the non-empty collection of subsets of .Ω  We 
define the specific properties of ℑ  below in Definition 1.1 . Ρ is the probability measure or 
probability rule which is a function from ℑ  into [0,1]  that assigns to any event ( ),A P A∈ℑ  the 
probability of the event .A   
 
Example 1.1  Single Trial of a Learning Experiment. In a learning experiment a subject is 
given multiple trials to learn a task. On any trial the subject either responds correctly or 
incorrectly. Lets call a 1  a correct response and 0  an incorrect response. Hence, 
 
  {0,1}.Ω =  
 
In this example there are only two events A {0}=  and B {1}.=  
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Example 1.2  Nucleotides. Deoxyribonucleic acid (DNA) is composed of sequences of 
nucleotides. The nucleotides are adenine (A), guanine (G), cytosine (C) and thiamine (T). If we 
are interested in the possible nucleotide types that could appear at a given location in DNA then 
the outcome space is 
 
  { , , , }.A C G TΩ =  
 
Example 1.3 Interspike Intervals. Neurons transmit information through the nervous system by 
discharging and propagating electrical impulses called action potentials. Neurophysiologists 
record the action potentials or spiking events and keep track of the spike event times or 
equivalently the time between spike events termed the interspike intervals. If we disregard for 
the moment the absolute refractory period of a neuron, then the interspike intervals could be 
any positive number. In this case, the outcome space would be  
 
  { |t t 0}.Ω = >  
 
The union of two events A  and B  is the event C  that either A  occurs, B  occurs or both occur. 
We write this as .= ∪C A B  In Example 1.2, A  is the event that the nucleotide at the given DNA 
location is A  or G  and B  is the event that the nucleotide is either G  or T  then 
C A= =∪ B { ,A G,T}.  The intersection of two events = ∩C A B  is the event that both A  and B  
occur. For the case just cited C A= =∩ B { }G .  In Example 1.3 , suppose that the neuron is a 
hippocampal pyramidal neuron that discharges in bursts, i.e. ISI’s of between 3 to 20 msec, and 
has modulation by the theta rhythm ISI’s of 110 to 140 msec. If A t= ∈{ | t [3,20]}  and 
B t= ∈{ | t [110,140]}  then A B∩ = ∈{t | t [3,20] and t∈[110,140]}  and = ∅∩A B  where ∅  denotes the 
empty set. If two events have no elements in their intersection then they are said to be disjoint. 
The complement of an event , cA A  is the event that A  does not occur. Stated otherwise, cA  
are all of the events except A . The complement of A t{ | t [3, 20]}= ∈  is A tc = <{ | 0 t < >3∪ t 20}.  
 
The family of events of Ω  has important special properties which we define below.  
 
Definition 1.1 . A non-empty collection of subsets of ℑ  is called a family of subsets of Ω  
provided that the following three properties hold:  
 

i) If A∈ℑ  then Ac ∈ℑ  

ii) If A nn ∈ℑ =1, 2,…,  then n n1A
∞
=∪  and 

1
n

n
A∞

=
∩  are both in ℑ  (1.1) 

iii) Ω∈ℑ  

Example 1.2 (continued) . How big is ?ℑ  In this example, we can easily list all of the subsets. 
They are  
 

 



page 4: 9.07 Lecture 1: Introduction to Probability Theory 

{ } { } { } { }
{ } { } { } { }

  
{ } { } { } { }

{ } { } { } { }

A C G T
AC AG AT CT
CG CT ACG ACT
AGT CGT ∅

 

Ω
 

 
In this case we see that there are 16 subsets. We have 2 14 = 6.  This example illustrates the 
general result that if a set has a finite number of elements n,  then the number of subsets is  2 .n   
 
Venn diagrams are often useful tools for visualizing set theoretic operations. We summarize 
here some elementary laws of set theory. 
 
Commutative Laws 
 

=

=

∪ ∪

∩ ∩

A B B A

A
 

B B A
 
Associative Laws  
 

( ) ( )

( ) ( )

=

=

∪ ∪ ∪ ∪

∩ ∩ ∩ ∩

A B C A B C

A
 

B C A B C
 
Distributive Laws 
 

( ) ( ) ( )

( ) ( ) ( )

=

=

∪ ∩ ∩ ∪ ∩

∩ ∪ ∪ ∩ ∪

A B C A C B C

A
 

B C A C B C
 
B. Axioms of Probability Theory 
Definition 1.2 (Axioms of Probability Theory). A probability law or rule P  on a family of 
subsets of ℑ  is a real-valued function having domain ℑ   and satisfying the following properties: 
 
 i) Pr(Ω =) 1  
 
 ii) Pr(A) ≥ 0  for all A∈ℑ  
 
 iii) If A nn , 1= , 2,...  are mutually disjoint events in ,ℑ  then (1.2) 
 

  
11

Pr( ) Pr( )n n
nn

A
∞

∪
∞

=∑ A  
= =

 
 
C. Elementary Rules of Probability Theory 
We can easily derive the following properties from Definitions 1.1 and 1.2.  
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Proposition 1.1. Pr( c ) 1 Pr( )A A= −  
Proof: = Ω∪ cA A . Pr( ) Pr( ) Pr( ) 1= + =∪ c cA A A A  or Pr( ) 1 Pr( ).cA = − A  
 
Proposition 1.2. P(∅ =) 0  
Proof: Pr(∅ =) 1− Pr(Ω) =1−1= 0.  
 
Proposition 1.3. If A B⊂  then Pr( ) Pr( )A B≤  
Proof: B = =A∪ ∩( )B Ac c(B∩ A)∪ ∩(B A ) . Pr( ) = −Pr( ) Pr( ∩ c ) ≤ Pr( ).A B B A B  
 
Proposition 1.4. (Addition Law). Pr( ) Pr( ) Pr( ) Pr( ).A B A B A B=∪ ∩+ −   
Proof: Let  C A= =∩ ∩Bc c, ,D A B E A= ∩ B  
 
Hence,  
 
  Pr( ) Pr( ) Pr( ) Pr( ) = + +∪A B C D E   (1.3) 
 
= ∪A C D  and C  and D  are disjoint, so  

 
  Pr( ) Pr( ) Pr( ).A C D= +  (1.4) 
 
Similarly,  Pr(B D) = +Pr( ) Pr(E).  Therefore, we have 
 
 

Pr( ) Pr( ) Pr( ) Pr( ) 2Pr( )
  Pr( ) Pr( )

Pr( ) Pr( )

+ = + +
= +
= +

∪
∪ ∩

A B C E D
A B D
A

 (1.5) 
B A B

 
or 
 
  Pr( ) Pr( ) Pr( ) Pr( ).= + −∪ ∩A B A B A B  (1.6) 
 
Example 1.1. (continued). Suppose we consider two trials in this experiment. Let A be the 
event of a correct response on the first trial and B be the event of an incorrect response on the 
second trial. The sample space is  
 
  {00,01,10,11}Ω =  
 
We assume that there is no learning so that each outcome is equally likely and the probability of 
each outcome is thus, ¼. C A= ∪ B  is the event that the response is correct on the first trial or  
incorrect on the second trial. We have Pr(C A) Pr( ) Pr(B) 1.≠ + =  We have that ∩A B  is the event 
that a correct response is given on the first trial and an incorrect response is given on the 
second trial. These events are A = {10,11}, {00,10}=B and {10}=A B∩  and we have 
 
  Pr(C A) = +Pr( ) Pr(B) − Pr(A∩ B) = 0.5+ 0.5− 0.25 = 0.75.  (1.7) 
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IV. Computing Probabilities Using Counting Methods 
For finite sample spaces probabilities are easy to compute. If { 1,..., n},ω ωΩ =  a set of disjoint 
events, and Pr( i i) p ,ω =  then to find the probability of an event A  in ,Ω  it suffices to  compute 

Pr( ) Pr( ).
j

j
A

A
ω

ω= ∑  
∈

 
Example 1.1 (continued). If the subject executes two trials of the experiment then the outcome 
space is Ω = {00,01,10,11}.  If A  is the event that the subject gives at least one correct response 
then {01,10,11}A =  and Pr( ) 0.75.A =  This is an example of a common situation. If Ω  has n  
outcomes and each is equally likely and mutually exclusive (disjoint), and if A  consists of k  
mutually exclusive events then  
 

  Nk Aumber of ways  can occurPr(A) = = .  
n Total number of outcomes

 
Definition 1.3 (The Multiplication Principle). If there are p  experiments and the first has n1  
outcomes, the second n2 , ... ,  and the pth  has pn  outcomes, then the total number of outcomes 

p
is 1 2× ×, ... , =∏ .

=1
pn n n ni  

i
 
Proof: By induction, if p = 2  then there are n1  outcomes for the first experiment and n2  for the 
second. The n1  choices for the first experiment and each can be paired with the n2  possibilities 
from the second experiment. Hence, there are n n1 2×  possible outcomes. If we assume the 

p−1
result is true for a study with p −1 experiments, then there are ni

i−1
∏  outcomes for the first 1p −  

experiments and each one of these outcomes can be paired with pn  outcomes of experiment p.  
p p−1

Therefore, there are ( )∏ ∏n ni p× = ni .   
i i= =1 1

 
Example 1.1 (continued). If there are p  trials in this learning experiment, then the total number 

p p
of outcomes is 2 2 .

1 1

p∏ ∏ni = =  How many subsets are there in this experiment? 
i i= =

 
Example 1.2 (Continued). The genetic code or DNA sequence for an amino acid consists of a 
triplet of three nucleotides. How many possible amino acids could there be in theory? The actual 
number is 20. Because there are four nucleotides , ,  and  A C G T  and three positions to fill to 
make a triplet then there are 4 4× ×4 = 43 = 64  possible amino acids. How many elements are 
there in ℑ  for this problem? 
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A. Permutations (Sampling without replacement with regard to order) 
 To understand approaches to counting possible outcomes it is important to understand 
two important concepts of sampling. These are sampling with replacement and sampling 
without replacement . In sampling without replacement there are two cases: with regard to 
order or without regard to order.  
 
Definition 1.4 Given a population with n  elements, a sample of size r n≤  is drawn without 
replacement if the element selected is not returned to the population after each draw. The 
number of possible samples is ( 1)( 2)...( 1).− − − +n n n n r  If =n r  then the number of possible 
samples is n n( − −1)(n 2)...2 ⋅1= n!,  termed n  factorial.  
 
Definition 1.5 Each ordered arrangement of objects is called a permutation.  
 
Example 1.2 (continued) . If we sample the possible nucleotides with replacement how many 
amino acids can be coded for in theory if a sequence of three nucleotides is required to code for 
an amino acid? If we take n = 4  and r 3=  then as we showed above, we have the number of 
amino acids is 4 63 = 4.  If we sample the nucleotides without replacement, we construct 
nucleotide sequences with no repeats. In this case, the number of amino acids that have a 
distinct sequence of nucleotides is 4 3 2 24.× × =   
 
Notice that we can write n n( − −1)...(n r +1)  as 
 

  ,
( 1)...( 1)( )...2 1 ! .

( )...2 1 ( )!n r
n n n r n r nP

n r n r
− − + − ⋅

= =  (1.8) 
− ⋅ −

 
Equation 1.8 defines the number of permutations of n  objects taken r  at a time for r n≤ .  
 
Example 1.4 (The Birthday Problem). Suppose there are n  people in a room. What is the 
probability that at least two have a common birthday? We assume that every day is equally 
likely and that there are no leap years or wars (why do we make this assumption?). Let A  be 
the event that at least two people have a common birthday. Instead of Pr( ),A  we consider 
Pr( ).cA  The outcome space Ω  has (365)n  outcomes because the n  people could have been 
born on any one of the 365 days. The event cA  occurs if each person is born on a different day. 

This event has 365!  outcomes. Therefore,  
(365− n)!

 

  Ac 365!Pr( ) =  (1.9) 
(365− n)!(365)n

 
and 
 

  A Ac 365!Pr( ) = −1 Pr( ) =1− .  (1.10) 
(365− n)!(365)n

 
As a function of n  the probability is 
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n APr( )
4 0.016

16 0.284
  23 0.507  

32 0.753
40 0.891
56 0.988

 
 
This result is easy to understand if you think of this problem as the problem of throwing n  balls 
into 365 urns and requiring that no urn has two or more balls. The event cA  is the event that 
every urn has at most one ball and A  is the complement of this event. 
 
B. Combinations (Sampling without replacement without regard to order) 
Example 1.2 (continued). Suppose the order of the nucleotides does not matter to code for an 
amino acid. How many amino acids would there be? For example, if we disregard order the 
nucleotide sequences { , , },{ , , }{ , , }{ , , }{ , , }{ , , }A C T C A T T A C C T A A T C T C A  are equivalent and since 
there are 3 nucleotides the number of ways to order them is 3!  Hence, we have the number of 

acids, disregarding order is 4!
= 4.  Notice that this is less than the 24 amino acids we realized 

1!3!
we could obtain if we sampled without replacement with regard to order and the 64 we could 
obtain if we sampled with replacement.  
 
Proposition 1.5. The number of unordered samples of r  objects selected without replacement 

⎛ ⎞n ⎛ ⎞nis ⎜ ⎟.  The number Cn r, = ⎜ ⎟ ,  is read “ n choose r ”  and is called the binomial coefficient. It 
⎝ ⎠r ⎝ ⎠r

was the number of ways of choosing exactly r   objects from a group of nwithout replacement 
and without regard to order. The binomial coefficient comes from the binomial expansion  
 

n
  ( )n kn

a b a bn k .
kk 0

−∑⎛ ⎞
+ = ⎜ ⎟  (1.11) 

= ⎝ ⎠

 
We have the special case 
 

n
  2 ,n ⎛ ⎞n

= ⎜ ⎟kk= ⎝ ⎠0
∑  (1.12)  

 
which, as we mentioned above, defines the number of subsets of a set of n  objects. We use the 
convention that 0!=1.  
 
Proof: By the multiplication principle, the number of ordered samples equals the number of 
unordered samples multiplied by the number of ways to order the samples. The number of 
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ordered samples is n!  and because a sample of size r  can be ordered in r!  ways, the 
( )n r− !

number of unordered samples is n! .  
( )n r− !r!

 
 
V. Conditional Probability and Bayes’ Rule 
A. Conditional Probability 
 Conditional probability allows us to assess how likely one event is given that another has 
happened. If A  and ,B∈Ω  then 
 

  Pr( )Pr( | ) .
Pr( )
A∩ BA B =  (1.13) 
B

 
We read this as the probability of A  given .B  Heuristically, we can think of this as coming from  
 
 

  

(  )Area of A B (Area of )A B / Area of ( )Pr(A B| )
(  )Area B B(Area of ) / Area of ( )

Pr(A B)
Pr(B)

Ω∩ ∩
= =

Ω
 (1.14) 

∩
=

 
By a similar argument, we have 

  Pr( )Pr( | )
Pr( )
A∩ BB A =  (1.15) 
A

 
or we have 

  Pr( ) Pr( | )Pr( | )
Pr( )
A B AB A

A
=  (1.16) 

 
 
If we write Pr( ) Pr( | ) Pr( ) Pr( | )A B A = B A B  we have the Multiplication Rule of Probability. Given 

an event A
n

 and a disjoint partition of Ω = B B= ∪ i ,  we have that  
i=1

 

  Pr(Ω =) Pr(B B) =∑
n

Pr( i )  (1.17) 
i=1

then 
n n

  Pr( ) Pr( ) Pr( i i) Pr( )Pr( | i ).
i i1 1

A = =A B∩ ∩∑ ∑B A = B A B  (1.18) 
= =

 
The above result is sometimes referred to as the Law of Total Probability. Now for j n1, ,= …  
we may write 
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Pr(A B∩ ) Pr( ) Pr(A | )

Pr( j | ) j jB B
B A = = j

n  (1.19) 
Pr(A)

∑Pr(B Ai i) Pr( | B )
i=1

 
This last expression is Bayes’ Rule. In its simplest form, it is merely a re-statement of the 
Multiplication Rule of Probability. 
 
B. Bayes’ Rule and Screening Tests 
 An important application of Bayes’ Rule as stated in Eq. 1.19 is to conduct screening for 
disease processes given a symptom or a test. We consider an example to illustrate this point.  
  
Example 1.5 Screenin g for Multiple Sclerosis (Dangood, 2005). Multiple sclerosis  (MS) is 
a chronic, inflammatory disease that affects the central nervous system. MS can cause a variety 
of symptoms, including changes in sensation, visual problems, muscle weakness, depression, 
difficulties with coordination and speech, severe fatigue, and pain. MS will cause impaired 
mobility and disability in more severe cases. Multiple sclerosis affects neurons. Surrounding and 
protecting some of these neurons is a phospholipid layer known as the myelin sheath, which 
helps neurons transmit their electrical impulses with less degradation. MS causes gradual 
destruction of myelin (demyelination) and transection of axons in patches throughout the brain 
and spinal cord. The name multiple sclerosis refers to the multiple scars (or scleroses) on the 
myelin sheaths. This scarring causes symptoms which vary widely depending upon which 
signals are interrupted. The main theory today is that MS results from attacks by an individual's 
immune system on the nervous system. For this reason MS is usually considered an 
autoimmune disease. There is also a view that MS is not an autoimmune disease, but rather a 
metabolically dependent neurodegenerative disease. 
 
Let n = 2  in Eq. 1.19 and suppose that A is the event of a positive result from a new genetic 
screening test for multiple sclerosis. Let B1  be the event that the patient has multiple sclerosis 
(MS) and let B2  be the event that he or she does not. We can use this problem to make some 
useful definitions for screening in terms of Bayes’ rule.  
 
 The sensitivity of the test for MS is the probability of observing a positive test result 
given that the patient has MS Pr( | 1).A B  The specificity of the screening test for MS is the 
probability of having a negative test given that the patient does not have MS and is defined as 

1 2Pr( | ) Pr( | ).c c cA B A= B  The predictive value positive  of the test for MS is the probability the 
patient has MS given that he or she has a positive test and is defined as Pr(B A1 | ).  The 
predictive value negative of the test for MS is the probability the patient does not have MS 
given that he or she has a negative test and is defined as Pr(B Ac c c

1 2| ) = Pr(B | A ).  The prevalence 
of MS is the probability of observing the disease in the population and is given as Pr(B1).  If the 
probability of cases of MS is considered in a specific time interval such as a year, then Pr(B1)  is 
the incidence of MS.  
 
Let us assume that the properties of the test may be summarized as follows: In persons with 
MS, the test will be positive in 98% of them, whereas if in persons that do not have MS the test 
will be positive in 5% of them. At present, the prevalence of MS in the US is 0.14%. Let B B1=  
and B Bc = 2.  These data suggest that 
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  Pr(A B| ) 0.98=  
 
     Pr(A B| c ) = 0.05  (1.20) 
 
  Pr(B) 0.0014=  
 
Suppose we want to determine the probability Pr( )A  that an arbitrary person tests positive. The 
tested person either has MS or does not. The event A  occurs in combinations with B  and Bc.  
There are no other possibilities. In terms of events we have 
 
  ( ) ( c )A = A B∩ ∪ ∩A B  (1.21) 

   
and  
 
  Pr( ) Pr( ) Pr( c )A A B A B= +∩ ∩  (1.22) 

 
because A B∩  and cA∩ B  are disjoint events. We apply the multiplication rule in such a way 
that the known probabilities appear.  
 
 These definitions are important to know particularly if your work involves the clinical and 
epidemiological neuroscience literature. Bayes’ Rule and our Venn diagrams make explicit the 
relationships among these terms. Hence, we have  
 
  Pr( ) Pr( | ) Pr( )A B A B B=∩  (1.23)  

 
  Pr( ) Pr( | ) Pr( )c c cA∩ B A= B B  (1.24) 

 
and we have by applying the Law of Total Probability (Eq. 1.18) 
 
  Pr( ) Pr( | ) Pr( ) Pr( | c c) Pr( )A = +A B B A B B  (1.25) 
 
From the data above it follows that Pr(B Bc ) = −1 Pr( ) = −1 0.0014 = 0.9986  and that the probability of 
a positive test is 
 
  Pr(A) = ×0.98 0.0014 + 0.05×0.9986 = 0.051302.  (1.26) 
 
The more important question to ask about this new test and MS is: Suppose that we have a 
positive test, what is the probability that the person has MS? To answer this question we 
compute 

  

Pr(A B∩ ) Pr(B) Pr(A | B)Pr(B A| ) = =
P(A A) Pr( )

Pr(B A) Pr( | B)
=

Pr( | ) ( ) + Pr( | c c) ( )
0.98×0.0014

= = 0.026
0.051032

A B P B A B P B
 (1.27)  
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Hence, the predictive value positive for this test is 0.026.   
 
Remark 1.1 . If A  is the event of a positive test and B  is the event that a person has MS, a 
perfect test would have Pr(B A| ) =1  (predictive value po sitive) and Pr(B Ac c| ) =1  (predictive 
value negative). The first statement says whenever (or given that) there is a positive test what 
is the probability the person has MS. The second statement says that whenever (or given that) 
there is a negative test what is the probability the person does not have MS. It would also be 
ideal to have Pr(B A| ) =1  (sensitivity) and Pr(B Ac c| ) 1=  (specificity). The sensitivity says given 
that the person has MS what is the probability that the test is positive. The specificity says given 
that the person does not have MS what is the probability that the test is negative. We should 
really have all of these characteristics to make a perfect test. 
 
As a second application of Eq.1.19, let us consider the problem of decoding neural spiking 
activity from primary motor cortex.   
 
Example 1.6. Reach Direction Given an Observed Neural Firing Pattern  (Simplest 
Decoding Problem).  Suppose that a monkey is making reaching movements with a 
manipulandum in 8 directions while spiking activity is being recorded from a set of single 
neurons in primary motor cortex. If A  is an observed ensemble firing pattern, and jB  is the jth  
direction, then Pr(B Aj | )  above represents the probability that the observed firing pattern A  
encodes direction .jB  This is the simple model for neural spike train decoding that appeared in 
Sanger (1996) using a Poisson model.  
  
VI. Independence 
 Two events E1  and E2  are independent if 
 
  Pr(E E1 2 ) Pr(E1) Pr(E2 )=∩  (1.28) 
 
This implies that 
  Pr(E E2 1| ) = +Pr(E1 ∩ E2 ) / Pr(E1) Pr(E1) Pr(E2 ) / Pr(E1) = Pr(E2 )  (1.29) 
 
Intuitively, this statement says that knowledge about E1  gives no information about E2.  In 
general a set of n  events E E1, ,… n  is independent if 

n

  Pr(E E1 2∩ …∩ En i) =∏Pr(E ).  (1.30) 
i=1

 
Example 1.1 (continued). If we suppose that we record perform on three trials of the learning 
experiment, that performance the trials are independent and the probability of a correct 
response is 1

2 ,  then what is the probability of three correct responses? From Eq. 1.30, if we let 
E ii ={correct responseon trial }  for i =1,2,3,  then we have 

  
3

1 1 1 1
1 2 3 2 2 2 8.

1

Pr( ) Pr( )i
i

E E E E
=

=∩ ∩ ∏ = × × =  

Independence is a very strong condition. To see this we consider the following example.  
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Example 1.7 (Pairwise Independent Events That Are Not Independent) 
 Let a ball be drawn from an urn containing 4 balls, numbered 1, 2, 3 and 4. Define the 
events E E1 2= ={1, 2}, {1, 3}  and E3 = {1, 4}  

  

1Pr(E E1 2 ) Pr(E1) Pr(E2 )
4

1Pr(E E2 3 ) Pr(E2 ) Pr(E3 )
4

1Pr(E E1 3 ) Pr(E1) Pr(E3 )
4

= =

= =

= =

∩

∩

∩

 (1.31) 

  1Pr(E E1 2 E3 ) Pr({1})
4

= =∩ ∩  

  1Pr(E E1 2) Pr( ) Pr(E3 )
8

=  

  
Hence Pr(E E1 2∩ ∩ E3 ) ≠ Pr(E1) Pr(E2 ) Pr(E3)  and the events are pair-wise independent but not 
independent. 
 
Proposition 1.6 We can now write a general statement about the probability of the intersection 
of events. Given events E E1 2, ,... ,En  
 

n
i) Pr(E E1 2∩ ∩ E3 ∩ ...∩ En i) =∏Pr(E |E E1 ∩ ∩2 ...∩ Ei−1) Pr(E1)  (1.32) 

i=2

if E E1 2, ,...,En  are independent then 
n

ii) Pr(E E1 2∩ ∩ E3 ∩ ...∩ En i) =∏Pr(E ),   (1.33) 
i=1

and if the events E E1,..., n  have Markov dependence, i.e. Pr(E Ei i| 1 2∩ ∩E ...∩ E − −1) = Pr(Ei | Ei 1)  
then  

n
iii) Pr(E E1 2∩ ∩ E3 ∩ ...∩ En i=∏Pr(E | Ei−1) Pr(E1)   (1.34) 

i=2
 
Proof: Let B E= n  and A E1 2E ... En 1.−= ∩ ∩ ∩  Then 
 

Pr(E E1 2 ... En ) Pr(B A)
 Pr(B A| ) Pr(A)

Pr(E En n| 1 2E ... E 1) Pr(E1 E2 ... En 1)− −

=

=
=

∩ ∩ ∩ ∩

∩ ∩ ∩ ∩ ∩ ∩
 (1.35) 

 
Now let 1−= nB E  and 1 2 2... .nA E E E −= ∩ ∩ ∩  Then we get  
 
Pr(E E1 2 ... En n) Pr(E | E1 2E ... En−1) Pr(B A)

Pr(E En n| 1 2E ... E −1) Pr(B | A) Pr(A)
Pr(En n| E1 2E E... 1) Pr(En 1 | E1 2E E... n 2 ) Pr(E1 2E E... n 2 )−

∩ ∩ ∩ = ∩ ∩ ∩ ∩
= ∩ ∩ ∩  (1.36) 
= ∩ ∩ ∩ − −∩ ∩ ∩ ∩ ∩ ∩ −
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The final result in i) follows by repeated application of the multiplication rule of probability. To 
establish ii) we note that if the Ei  are independent, then  

Pr(E Ei i| 1 2E ... E −1) Pr(Ei ).=∩ ∩ ∩  (1.37) 

The result in iii) follows by substituting the right side of Eq. 1.37 into Eq. 1.32. Similarly, to 
establish iii) it suffices to substitute Pr(E Ei i| 1)−  into Eq. 1.32.  

The result in Eq. 1.32 is a general statement about a general way to factor the joint probability of 
n  events. It will be useful when we derive the joint distribution of point processes. Eq. 1.33 will 
be useful when we need to formulate the joint probability density of n  independent random 
variables to carry out our likelihood analyses. Eq. 1.34 will be useful for our state-space 
analyses. 

VII. Summary
In this lecture we have introduced the basic concepts, definitions, axioms and rules of 
probability theory along with standard counting methods for enumerating outcomes and 
computing probabilities when sampling with and without replacement. In addition, we introduced 
the basic concepts of conditional probabilities, Bayes’ rule and independence. This material will 
be the building blocks for the work we do in probability theory and statistics.  
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