9.07 INTRODUCTION TO STATISTICS FOR BRAIN AND COGNITIVE SCIENCES
 Emery N. Brown

Lecture 10. Bayesian Analyses: Beta Probability Models
Waking Up from General Anesthesia
Analysis of Dendritic Spine Growth Data

Lecture 10 Bayesian Methods
Example 5.3: Analysis of Dendritic Spine Growth Data

259 interneurons recorded and 35 changed.

124 pyramidal neurons recorded and 0 changed.
Use a Bayesian analysis to determine if there is a different change probability for the pyramidal neurons compared with the interneurons.

Bayes' Theory

What is the best estimate of \mathbf{p} given the observed data?

$$
f(p \mid k)=\frac{f(p) f(k \mid p)}{f(k)}
$$

Prior Probability Model

$$
f\left(p_{i}\right)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} p_{i}^{\alpha-1}\left(1-p_{i}\right)^{\beta-1},
$$

$$
f(\mathrm{p}) \mathrm{BU}(0,1) ; \alpha=\beta=1
$$

Binomial Probability Model for the Data

$$
f\left(k_{i} \mid p_{i}\right)=\binom{n}{k_{i}} p_{i}^{k_{i}\left(1-p_{i}\right)^{n-k_{i}} .}
$$

Posterior Probability Model

$$
\begin{aligned}
f\left(p_{i} \mid k_{i}\right)= & \frac{\Gamma(n+\alpha+\beta)}{\Gamma\left(k_{i}+\alpha\right) \Gamma\left(n-k_{i}+\beta\right)} \\
& \quad \times p_{i}^{k_{i}+\alpha-1}\left(1-p_{i}\right)^{n-k_{i}+\beta-1}
\end{aligned}
$$

Algorithm 10.1 (Bayesian Comparison)

$$
\text { Sum }=0
$$

For $j=1, \ldots, 10,000$

1. Draw $p_{p, j}$ from $f_{p}\left(p \mid k_{p}\right)$ and $p_{i, j}$ from $f_{i}\left(p \mid k_{i}\right)$
2. If $p_{i, j}>p_{p, j}$ Sum $\leftarrow \operatorname{Sum}+1$
3. If $j=10,000$ then compute $\operatorname{Pr}\left(p_{i}>p_{p}\right) \doteq 10,000^{-1}$ Sum

Make a histogram of $\quad p_{i, j}-p_{p, j}$
which is the probability density of the differences of the probabilities.

Lecture 10 Bayesian Methods

Example 5.3: Analysis of Dendritic Spine Growth Data

95\% Credibility Interval : (0.0869 0.1760) 99\% Credibility Interval: (0.0728 0.1919)

$$
\operatorname{Pr}\left(p_{I}>p_{p}\right)=0.9999
$$

Reanimation from General Anesthesia by Administering Ritalin Animals are anesthetized with propofol.

Group 1: Saline Group 0 of 6 animals
have return of righting

Group 2: Ritalin Group
11 of 12 animals have return of righting

Are animals more likely to have return of the righting reflex after Ritalin than after saline?

Probability Model: Binomial
Is \mathbf{p} in one group different from p in the other group?
$\begin{array}{ll}\text { Group 1: Binomial }(n=6, k=0) & \text { Group 2: Binomial }(n=12, k=11) \\ p=0 / 6=0 & p=11 / 12=0.92\end{array}$
Chemali et al. Anesthesiology 2012

Two Beta Posterior Densities

Probability Density of the Difference in the Probabilities

Conclusion: There is greater than a 0.95 probability that the probability of an animal awakening after receiving Ritalin (MPH or methylphenidate) is greater than the probability of wakening after receiving the placebo.

MIT OpenCourseWare
https://ocw.mit.edu
9.07 Statistics for Brain and Cognitive Science

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

