Virus engineering for neuroscience

Ian Wickersham MIT 10/16/2014

Why viruses?

- "Cell-type-specific" expression -> targeting based on gene expression
- "Circuit-specific" expression -> targeting based on synaptic connections

Why viruses?

- "Cell-type-specific" expression -> targeting based on gene expression
- "Circuit-specific" expression -> targeting based on synaptic connections

AAV: workhorse for transgene delivery

- high (but slow) expression levels, nontoxic
 specialist cores make high quality preps
 packaged as different "serotypes" (strains); s
 "tropism" (which cells it infects)
 - Reprinted by permission from Macmillan Publishers Ltd: *Gene Therapy* © 2003. Source: Sun, J. Y., V. Anand-Jawa, et al. "Immune Responses to Adeno-associated Virus and its Recombinant Vectors." *Gene Therapy* 10, no. 11 (2003): 964–76.
- expression of two genes from same virus is not high

small packaging capacity.

- nonenveloped virus so can't be easily recoated with other viruses' envelope proteins
- DNA genome -> can be made Cre (or Flp, etc.) dependent

AAV: workhorse for transgene delivery

- almost no viral sequences left in vector genome
- components of vector genome: ITRs, promoter, (kozak sequence), transgene, woodchuck posttranscriptional regulatory element, polyadenylation signal

- promoters: CAG, synapsin-1, EF1a, CamKII...
- genome must be <4.7 kB including ITRs

Targeting using promoters unsuccessful for many neuron types

- Interneuron subtypes in particular
- Cre lines method of choice

Atasoy, Deniz, Yexica Aponte, et al. "A FLEX Switch Targets Channelrhodopsin-2 to Multiple Cell Types for Imaging and Long-range Circuit Mapping." *The Journal of Neuroscience* 28, no. 28 (2008): 7025–30. CC license BY-NC-SA.

Figure 1.

Design and characterization of a FLEX switch for ChR2mCherry. A, FLEX switch recombination sequence for stable inversion proceeds in two steps: (1) inversion followed by (2) excision. loxP and lox2272 are orthogonal recombination sites. B, Construct design for FLEX-for-ChR2mCherry and FLEX-rev-ChR2mCherry. CAG, CMV enhancer/ β-globin chimeric promoter; WPRE, woodchuck hepatitis virus posttranscriptional regulatory element; ITR, inverted terminal repeat. C, Images showing mCherry fluorescence in HEK 293 cells for FLEX-for-ChR2mCherry and FLEX-rev-ChR2mCherry in the presence and absence of Cre. D, Colocalization of EGFP and mCherry fluorescence (yellow arrowheads) in HEK 293 cells cotransfected with FLEX-rev-ChR2mCherry and Cre-IRES-EGFP.

Figure 2.

Atasoy, Deniz, Yexica Aponte, et al. "A FLEX Switch Targets Channelrhodopsin-2 to Multiple Cell Types for Imaging and Long-range Circuit Mapping." *The Journal of Neuroscience* 28, no. 28 (2008): 7025–30. CC license BY-NC-SA.

Cre-dependent ChR2mCherry expression in transgenic mice using rAAV-FLEX-rev-ChR2mCherry. A, Distribution of fluorescent neurons resulting from a large coinjection (150 nl) of rAAV-ChR2-EGFP and rAAV-FLEX-rev-ChR2mCherry into the hypothalamus of wild-type mice. Extensive fluorescence from EGFP (left) but no fluorescence from mCherry in brain slices (right) shows the absence of background expression with rAAV-FLEX-rev-ChR2mCherry. The background image of the slice was obtained from 4',6'-diamidino-2-phenylindole fluorescence. B, Top, Schematic showing location of the imaged area in caudal arcuate nucleus. Bottom, mCherry fluorescence only in the arcuate nucleus after a large injection of rAAV-FLEX-rev-ChR2mCherry into the hypothalamus of pomc-cre;rosa26-loxSTOPlox-eyfp mice. Compare distribution of fluorescence with A. C, Colocalization of mCherry and EYFP fluorescence in arcuate nucleus. D, E, Similar to B and C; in this case, agrp-cre;rosa26-loxSTOPlox-eyfp mice were used with rAAV-FLEX-rev-ChR2mCherry virus injections. F, Top, Image showing neuron morphology from the arcuate nucleus of labeled POMC neurons. Bottom, Higher-magnification image of boxed area. G, H, Axonal projections of AGRP neurons infected with rAAV-FLEX-rev-ChR2mCherry. Strong axonal labeling was observed in the paraventricular nucleus of the hypothalamus (H). 3V, Third ventricle; D3V, dorsal third ventricle.

Atasoy, Deniz, Yexica Aponte, et al. "A FLEX Switch Targets Channelrhodopsin-2 to Multiple Cell Types for Imaging and Long-range Circuit Mapping." *The Journal of Neuroscience* 28, no. 28 (2008): 7025–30. CC license BY-NC-SA.

Figure 3.

Photostimulation of AGRP and POMC neurons in the hypothalamus. A, B, Whole-cell voltage-clamp recordings from mCherry positive neurons in hypothalamic slices from agrp-cre or pomc-cre mice infected with rAAV-FLEX-rev-ChR2mCherry. Light pulses (500 ms) of varying power elicited ChR2mCherry-mediated inward currents. C, D, The peak current is plotted as a function of laser power for AGRP (C) and POMC (D) neurons. E, F, Perisomatic repetitive stimulation with 1 ms light pulses at 10 Hz in AGRP (E) and POMC (F) neurons. Blue dashes mark timing of light flashes.

Atasoy, Deniz, Yexica Aponte, et al. "A FLEX Switch Targets Channelrhodopsin-2 to Multiple Cell Types for Imaging and Long-range Circuit Mapping." *The Journal of Neuroscience* 28, no. 28 (2008): 7025–30. CC license BY-NC-SA.

Figure 4.

Channelrhodopsin-assisted circuit mapping for hypothalamic neuronal circuits: $AGRP \rightarrow PVN$ and $POMC \rightarrow PVN$. A, Diagram of a sagittal hypothalamic section depicting anatomy of connections between ARC and PVN. The pink box denotes the plane of the coronal slice. B, Coronal slices containing PVN, but not arcuate nucleus, were used for whole-cell voltage-clamp recordings from PVN neurons. C, Fluorescence image showing POMC axonal projections to PVN. Blue box outlines region of laser

stimulation in E, PVN boundary is outlined in red, location of recorded cell body is marked by a star, and recording pipette is outlined in yellow. D, Overlay of POMC \rightarrow PVN IPSCs resulting from three photostimulation trials at a site perisomatic to a voltage-clamped PVN neuron. E, Synaptic input map shows mean current responses over 100 ms time window as a color map in voltage-clamped PVN neuron resulting from LSPS of axons originating from POMC neurons. The position of the soma is marked with a star. F–H, Similar to C–E, but in this case, projections arise from AGRP neurons.

Cre mice/rats: effective but limiting

- Only practical for targeting one or two cell types at a time
- Precludes use in most other species
- Mouse lines expensive to create and maintain, crossing takes time

How to achieve highly multiplexed investigation?

- Opsins: ChR2, NpHR, Arch, ArchT, Chrimson, Chronos, iC1C2, JAWS...
- Indicators: GCaMP6, ArcLight, ASAP1, B-GECO1, R-GECO1, R-CaMP1.07...
- Not to mention Cas9, dominant negative mutants, GRASP...

• But crossing mouse lines to achieve progeny expressing n recombinases (Cre, FlpO, KD, B2, B3...) does not scale well.

MULTIPLEXED OPTOGENETICS

Goal: cell-type-specific transgene expression in wild-type animals of any species

Courtesy of Kees de Vos on Flickr. CC license BY-NC-SA.

Courtesy of mars_discovery_district on Flickr. CC license BY-NC-SA.

Courtesy of Adrian S Jones on Flickr. CC license BY-NC-SA.

Courtesy of Bernard DUPONT on Flickr. CC license BY-NC-SA.

MULTIPLEXED OPTOGENETICS

CRISPR/Cas9: potential for "somatic knock-ins"?

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Wang, Haoyi, Hui Yang, et al. "One-step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-mediated Genome Engineering." *Cell* 153, no. 4 (2013): 910–18.

In progress: system for selective expression in cortical interneuronal subtypes

- targeting major categories of cortical & hippocampal interneurons
- NSF grant

Why viruses?

- "Cell-type-specific" expression -> targeting based on gene expression
- "Circuit-specific" expression -> targeting based on synaptic connections

Why viruses?

- "Cell-type-specific" expression -> targeting based on gene expression
- "Circuit-specific" expression -> targeting based on synaptic connections

"Circuit-specific" targeting: selective transgene expression in neurons based on their connectivity

- Retrograde
- "Anterograde" (monitoring/manipulating axons)
- Transsynaptic

"Circuit-specific" targeting: selective transgene expression in neurons based on their connectivity

- Retrograde
- "Anterograde" (monitoring/manipulating axons)
- Transsynaptic

L

N P M GFP

RABIES VIRUS

 carries own polymerase; can NOT use exogenous promoters, but strong expression in all cell types
 Wickersham et al. 2007a

RETROGRADE TARGETING WITH A RABIES VIRAL VECTOR

Wickersham et al. 2007a

Reprinted by permission from Macmillan Publishers Ltd: Nature Methods © 2007. Source: Wickersham, Ian R., Stefan Finke, et al. "Retrograde Neuronal Tracing with a Deletion-mutant Rabies Virus." *Nature Methods* 4, no. 1 (2007): 47–49.

RETROGRADE TRANSDUCTION WITH RV-CHR2(RVG) Praneeth Namburi, Tye Iab, 2014

Retrograde delivery of ChR2 using RV for patch confirmation of connectivity

Courtesy of the Society for Neuroscience.

Source: Kiritani, Taro, Ian R. Wickersham, et al. "Hierarchical Connectivity and Connection-specific Dynamics in the Corticospinal–corticostriatal Microcircuit in Mouse Motor Cortex." *The Journal of Neuroscience* 32, no. 14 (2012): 4992–5001. CC license BY-NC-SA.

LENTIVIRUS

LENTIVIRUS WITH RV ENVELOPE, RETROGRADELY INFECTIOUS Mazarakis et al. 2001 Wickersham et al. 2007a

35

Kato et al. 2011

Figure removed due to copyright restrictions.

Please see Figure 1A from Wickersham, Ian R., Heather A. Sullivan, et al. "Lentiviral Vectors for Retrograde Delivery of Recombinases and Transactivators." *Cold Spring Harbor Protocols* 2015, no. 4 (2015): pdb-prot075879.

RETROGRADE INFECTION WITH LV-CRE(RVG) Wickersham et al. in press

Figure removed due to copyright restrictions. Please see figure 2A from Cetin, Ali, and Edward M. Callaway. "Optical Control of Retrogradely Infected Neurons using Drug-regulated "TLoop" Lentiviral Vectors." *Journal of Neurophysiology* 111, no. 10 (2014): 2150–59.

"T-LOOP" LENTIS: HIGH, FAST, TET-REPRESSIBLE EXPRESSION FROM SINGLE COMPACT CASSETTE Cetin & Callaway '14

TRE tTA 2a GFP

LV-TTE(RVG)

RETROGRADE INFECTION WITH LV-TTE(RVG) Praneeth Namburi, Tye lab, 2014

"Circuit-specific" targeting: selective transgene expression in neurons based on their connectivity

- Retrograde
- "Anterograde" (monitoring/manipulating axons)
- Transsynaptic

"Circuit-specific" targeting: selective transgene expression in neurons based on their connectivity

- Retrograde
- "Anterograde" (monitoring/manipulating axons)
- Transsynaptic

- RNA genome -> can NOT be made Cre (or Flp, etc.) dependent
- enveloped virus -> can be easily recoated with other viruses' envelope proteins

Wickersham et al. 2013

Wickersham et al. 2013

Wickersham et al. 2013

GFP N P M SynPh-RFP

Wickersham et al. 2013

L

GFP N P M nBFP SynPh-RFP

Wickersham et al. 2013

L

Wickersham et al. 2013

Wickersham et al. 2013

Wickersham et al. 2013

Wickersham et al. 2013

Wickersham et al. 2013

Wickersham et al. 2013

mOrange2 PSD95-GFP

Wickersham et al. 2013

"Circuit-specific" targeting: selective transgene expression in neurons based on their connectivity

- Retrograde
- "Anterograde" (monitoring/manipulating axons)
- Transsynaptic

"Circuit-specific" targeting: selective transgene expression in neurons based on their connectivity

- Retrograde
- "Anterograde" (monitoring/manipulating axons)
- Transsynaptic

RABIES VIRUS

MONOSYNAPTICTRACING Wickersham et al. 2007b

MONOSYNAPTIC TRACING USING RETROGRADE COINFECTION

TARGETING INFECTION WITH ENVA/TVA Wickersham et al. 2007b

Wickersham et al. 2007b

Marshel et al. 2010 Rancz, Franks et al. 2011 Velez-Fort et al. 2014

Rancz, Franks et al. 2011

Reprinted by permission from Macmillan Publishers Ltd: Nature Neuroscience © 2011. Source: Rancz, Ede A., Kevin M. Franks, et al. "Transfection Via Whole-cell Recording in Vivo: Bridging Single-cell Physiology, Genetics and Connectomics." *Nature Neuroscience* 14, no. 4 (2011): 527-32.

Kodandaramaiah, Suhasa B., Giovanni Talei Franzesi, et al. "Automated Whole-cell Patch-clamp Electrophysiology of Neurons in Vivo." *Nature Methods* 9, no. 6 (2012): 585–87.

TARGETING CELLTYPES WITH AAV-FLEX-TVA-G + RV(ENVA)

Wall et al. '10

Courtesy of National Academy of Sciences, U. S. A. Used with permission.

Source: Wall, Nicholas R., Ian R. Wickersham, et al. "Monosynaptic Circuit Tracing in Vivo through Cre-dependent Targeting and Complementation of Modified Rabies Virus." *Proceedings of the National Academy of Sciences* 107, no. 50 (2010): 21848–53. Copyright © 2013 National Academy of Sciences, U. S. A.

4.7 kb packaging limit

┥

deposited with Addgene UNC vector core UPenn vector core

Reprinted by permission from Macmillan Publishers Ltd: Nature Neuroscience © 2014. Source: Kohara, Keigo, Michele Pignatelli, et al. "Cell Type-specific Genetic and Optogenetic Tools Reveal Hippocampal CA2 Circuits." *Nature Neuroscience* 17, no. 2 (2014): 269–79.

Kohara et al. 2014

Reprinted by permission from Macmillan Publishers Ltd: Nature Neuroscience © 2014.

Source: Kohara, Keigo, Michele Pignatelli, et al. "Cell Type-specific Genetic and Optogenetic Tools Reveal Hippocampal CA2 Circuits." Nature Neuroscience 17, no. 2 (2014): 269–79.

Kohara et al. 2014

Watabe-Uchida... & Uchida '12 *Hitti & Siegelbaum '14 Miyamichi... & Mizrahi '14 Krashes... & Lowell '14*

AAV-FLEX-TVA-mCherry VA950-mChemy EF-1a AAV-FLEX-RG CAG อษ lox2272 loxP SADAG-EGFP/EnvAl EGFP Rables virus) в Day 1 DAT-Cre AAV-FLEX-TVA-mCherry AAV-FLEX-RG Day 14 SADAG-EGFP(Env) VTA/SNO Day 21 Observe Input Starter ٨

А

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Watabe-Uchida, Mitsuko, Lisa Zhu, et al. "Whole-brain Mapping of Direct Inputs to Midbrain Dopamine Neurons." *Neuron* 74, no. 5 (2012): 858–73.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Betley, J. Nicholas, Zhen Fang Huang Cao, et al. "Parallel, Redundant Circuit Organization for Homeostatic Control of Feeding Behavior." *Cell* 155, no. 6 (2013): 1337–50.

Betley...& Sternson '13

Miyamichi...& Luo '11 Fu...& Stryker '14

Reprinted by permission from Macmillan Publishers Ltd: Nature © 2011. Source: Miyamichi, Kazunari, Fernando Amat, et al. "Cortical Representations of Olfactory Input by Trans-synaptic Tracing." *Nature* 472, no. 7342 (2011): 191–96. Stepien...& Arber '10 Tripodi...& Arber '11 Pivetta...& Arber '14 Levine...& Pfaff '14

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Stepien, Anna E., Marco Tripodi, et al. "Monosynaptic Rabies Virus Reveals Premotor Network Organization and Synaptic Specificity of Cholinergic Partition Cells." *Neuron* 68, no. 3 (2010): 456–72.

Reprinted by permission from Macmillan Publishers Ltd: Nature © 2011. Source: Yonehara, Keisuke, Kamill Balint, et al. "Spatially Asymmetric Reorganization of Inhibition Establishes a Motion-sensitive Circuit." *Nature* 469, no. 7330 (2011): 407–10.

Yonehara...& Roska '11

Lammel, Lim... & Malenka '13

Reprinted by permission from Macmillan Publishers Ltd: Nature © 2012. Source: Lammel, Stephan, Byung Kook Lim, et al. "Input-specific Control of Reward and Aversion in the Ventral Tegmental Area." *Nature* 491, no. 7423 (2012): 212–17.

Cruz-Martin... & Huberman '14

Reprinted by permission from Macmillan Publishers Ltd: Nature © 2014. Source:Cruz-Martín, Alberto, Rana N. El-Danaf, et al. "A Dedicated Circuit Links Direction-selective Retinal Ganglion Cells to the Primary Visual Cortex." *Nature* 507, no. 7492 (2014): 358–61.

Takatoh...& Wang '13

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Takatoh, Jun, Anders Nelson, et al. "New Modules are Added to Vibrissal Premotor Circuitry with the Emergence of Exploratory Whisking." *Neuron* 77, no. 2 (2013): 346–60.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Sun, Yanjun, Amanda Q. Nguyen, et al. "Cell-type-specific Circuit Connectivity of Hippocampal CA1 Revealed Through Cre-dependent Rabies Tracing." *Cell Reports* 7, no. 1 (2014): 269–80.

Sun...& Xu '14

Yonehara, Farrow... & Roska '13

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Yonehara, Keisuke, Karl Farrow, et al. "The First Stage of Cardinal Direction Selectivity is Localized to the Dendrites of Retinal Ganglion Cells." *Neuron* 79, no. 6 (2013): 1078–85.

Liu...& Lyon '13

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Liu, Yong-Jun, Markus U. Ehrengruber, et al. "Tracing Inputs to Inhibitory or Excitatory Neurons of Mouse and Cat visual Cortex with a Targeted Rabies Virus." *Current Biology* 23, no. 18 (2013): 1746–55.

Garcia...& Arenkiel '12

Figure removed due to copyright restrictions. Please see Figure 1 from Garcia, Isabella, Cynthia Kim, et al. "Genetic Strategies to Investigate Neuronal Circuit Properties using Stem Cell-derived Neurons." *Frontiers in Cellular Neuroscience* 6 (2012).

Li...& Gage '13

Courtesy of National Academy of Sciences, U. S. A. Used with permission. Source: Li, Yan, Floor J. Stam, et al. "Molecular Layer Perforant Path-associated Cells Contribute to Feed-forward Inhibition in the Adult Dentate Gyrus." *Proceedings of the National Academy of Sciences* 110, no. 22 (2013): 9106–11. Copyright © 2013 National Academy of Sciences, U. S. A.

Weible...& Kentros '10 Rowland...& Kentros '13

Weible, Aldis P., Leslie Schwarcz, et al. "Transgenic Targeting of Recombinant Rabies Virus Reveals Monosynaptic Connectivity of Specific Neurons." *The Journal of Neuroscience* 30, no. 49 (2010): 16509–13. CC license BY-NC-SA.

Rowland, David C., Aldis P. Weible, et al. "Transgenically Targeted Rabies Virus Demonstrates a Major Monosynaptic Projection from Hippocampal Area CA2 to Medial Entorhinal Layer II Neurons." *The Journal of Neuroscience* 33, no. 37 (2013): 14889–98. CC license BY-NC-SA.

Huang...& Hantman '13

Huang, Cheng-Chiu, Ken Sugino, et al. "Convergence of Pontine and Proprioceptive Streams onto Multimodal Cerebellar Granule Cells." *Elife* 2 (2013): e00400. CC license BY.

Zampieri...& Murray '14

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Zampieri, Niccolò, Thomas M. Jessell, et al. "Mapping Sensory Circuits by Anterograde Transsynaptic Transfer of Recombinant Rabies Virus." *Neuron* 81, no. 4 (2014): 766–78.

All are using first-generation system

Vector evolution: LV vs RV

LV:

Figure removed due to copyright restrictions. Please see Figure 1 from Cockrell, Adam S., and Tal Kafri. "Gene Delivery by Lentivirus Vectors." *Molecular Biotechnology* 36, no. 3 (2007): 184–204. Major limitations of first-generation monosynaptic tracing

1) Only retrograde

2) Typically labels only a fraction of presumed inputs

3) Double labeling of inputs to two populations not effective

4) **Cytotoxic** - doesn't allow long-term studies (imaging, gene knockout, cognitive and behavioral paradigms...)

Reprinted by permission from Macmillan Publishers Ltd: Nature Methods © 2007. Source: Wickersham, Ian R., Stefan Finke, et al. "Retrograde Neuronal Tracing with a Deletion-mutant Rabies Virus." Nature Methods 4, no. 1 (2007): 47–49.

In progress: system for **nontoxic** monosynaptic tracing

- for long-term monitoring & manipulation of identified synaptically connected neurons
- RV based
- progressing well:
- NIMH grant

<u>My Articles</u> > Genetic Neuroengineering Group Plasmids

Genetic Neuroengineering Group Plasmids

Not a published article

Enter Plasmids

Instructions: Enter plasmid name, plasmid type and a one sentence description of plasmid use and then click Add button. Click the "Enter Data" or "Finished/Update" button to enter or modify data. Please include only those plasmids that have been constructed in your lab. Your progress is currently saved to your Addgene account and you can return at anytime to edit or complete your deposit. Be aware that you will no longer be able to modify plasmid information once you have requested a deposit kit.

ID	Plasmid	Experimental Purpose	Status
52490	pRVdG-4BFP2	Expresses mTagBFP2 Edit	Submitted
52496	pRVdG-4Halo3Y	Expresses eNpHR 3.0-EYFP Edit	Submitted
52497	pRVdG-4GCaMP6s	Expresses GCaMP6s Edit	Submitted
52498	pRVdG-4BFP2-5postmGRASP	Expresses mTagBFP2 and postsynaptic mGRASP component Edit	Submitted
52499	pRVdG-4RFP-5premGRASP	Expresses TagRFP-T and presynaptic mGRASP component Edit	Submitted
59325	pRVdG-4ArchT-EGFP	Expresses ArchT-EGFP Edit	Submitted
59326	pRVdG-4ArchT-mCherry	Expresses ArchT-mCherry Edit	Submitted
59327	pRVdG-4Halo3-mCherry	Expresses eNpHR 3.0-mCherry Edit	Submitted
59328	pRVdG-4ChR2-mCherry	Expresses ChR2-mCherry Edit	Submitted
59329	pAAV-CAG-FLEX-splitTVA950	Expresses splitTVA950 Edit	Submitted
59330	pAAV-CAG-FLEX-splitTVA800	Expresses splitTVA800 Edit	Submitted
59331	DAAV-CAG-FLEX-EGFP	Expresses EGFP Edit	Submitted
59332	pAAV-CAG-FLEX-splitTVA-EGFP	Expresses splitTVA-P2A-EGFP Edit	Submitted
59333	pAAV-synP-FLEX-EGFP-B19G	Expresses EGFP-P2A-B19G Edit	Submitted

© Addgene, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Resources

- "A Plasmid Editor"
- addgene.org
- NCBI BLAST
- neb.com
- epochlifescience.com

- UPenn vector core (AAV)
- UNC vector core (AAV)
- MIT vector core (HSV)
- Salk vector core (RV)
- Duke vector core (RV)
- jaxmice.jax.org

Thanks to:

Heather Sullivan Catherine Xu Praneeth Namburi Kay Tye Klaus Conzelmann Matthias Schnell Carlos Lois Ed Boyden Sebastian Seung Ed Callaway Gerald Pao Inder Verma Gordon Shepherd Taro Kiritani Alfonso Apicella Susumu Tonegawa Takashi Kitamura Julie Johnston Arbans Sandhu Xinghua Zeng

Bob Desimone Li-Huei Tsai Jim DiCarlo Mriganka Sur

Suhasa Kodandaramaiah Craig Forest Greg Holst David Moeller Thomas Diefenbach Ali Cetin Jerry Chen Carlos Lois

Funding:

McGovern Institute for Brain Research Picower Institute for Learning & Memory MIT Department of Brain & Cognitive Sciences Simons Center for the Social Brain NSF BRAIN Initiative NIMH BRAIN Initiative NINDS BRAIN Initiative MIT OpenCourseWare http://ocw.mit.edu

9.123 / 20.203 Neurotechnology in Action Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.