
MITOCW | 16: Basic Sets - Intro to Neural Computation

MICHALE FEE: OK, let's go ahead and get started. All right, so today, we're going to continue
talking about feed-forward neural networks, and we're going to keep working on
some interesting aspects of linear algebra-- matrix transformations. We're going to
introduce a new idea from linear algebra, the idea of basis sets. We're going to
describe some interesting and important properties of basis sets, such as linear
independence. And then we're going to end with just a very simple formulation of
how to change between different basis sets.

So let me explain a little bit more, motivate a little bit more why we're doing these
things. So as people, as animals, looking out at the world, we are looking at high-
dimensional data. We have hundreds of millions of photoreceptors in our retina.
Those data get compressed down into about a million nerve fibers that go through
our optic nerve up to our brain. So it's a very high-dimensional data set.

And then our brain unpacks that data and tries to make sense of it. And it does that
by passing that data through layers of neural circuits that make transformations.
And we've talked about how in going from one layer of neurons to another layer of
neurons, there's a feed-forward projection that essentially does what looks like a
matrix multiplication, OK? So that's one of the reasons why we're trying to
understand what matrix multiplications do.

Now, we talked about some of the matrix transformations that you can see when
you do a matrix multiplication. And one of those was a rotation. Matrix
multiplications can implement rotations. And rotations are very important for
visualizing high-dimensional data. So this is from a website at Google research,
where they've implemented different viewers for high-dimensional data, ways of
taking high-dimensional data and reducing the dimensionality and then visualizing
what that data looks like.

And one of the most important ways that you visualize high-dimensional data is by
rotating it and looking at it from different angles. And what you're doing when you
do that is you take this high-dimensional data, you rotate it, and you project it into a
plane, which is what you're seeing on the screen. And you can see that you get a lot
out of looking at different projections and different rotations of data sets.



Also, when you're zooming in on the data, that's another matrix transformation. You
can stretch and compress and do all sorts of different things to data. Now, one of
the cool things is that when we study the brain to try to figure out how it does this
really cool process of rotating data through its transformations that are produced
by neural networks, we record from lots of neurons. There's technology now where
you can image from thousands, or even tens of thousands, of neurons
simultaneously. And again, it's this really high-dimensional data set that we're
looking at to try to figure out how the brain works.

And so in order to analyze those data, we try to build programs or machines that act
like the brain in order to understand the data that we collect from the brain. It's
really cool. So it's kind of fun. As neuroscientists, we're trying to build a brain to
analyze the data that we collect from the brain.

All right, so the cool thing is that the math that we're looking at right now and the
kinds of neural networks that we're looking at right now are exactly the kinds of
math and neural networks that you use to explain the brain and to look at data in
very powerful ways, all right? So that's what we're trying to do. So let's start by
coming back to our two-layer feed-forward network and looking in a little bit more
detail about what it does.

OK, so I introduced the idea, this two-layer feed-forward network. We have an input
layer that has a vector of firing rates, a firing rate that describes each of those input
neurons, a vector of firing rates. That, again, is a list of numbers that describes the
firing rate of each neuron in the output layer. And the connections between these
two layers are a bunch of synapses, synaptic weights, that we can use to calculate
to transform the firing rates at the input layer into the firing rates at the output
layer.

So let's look in a little bit more detail now at what that collection of weights looks
like. So we describe it as a matrix. That's called the weight matrix. The matrix has in
it a number for the weight from each of the input neurons to each of the output
neurons. The rows are a vector of weights onto each of the output neurons. And
we'll see in a couple of slides that the columns are the set of weights from each
input neuron to all the output neurons.



A row of this weight matrix is a vector of weights onto one of the output neurons. All
right, so we can compute the firing rates of the neurons in our output layer for the
case of linear neurons in the output layer simply as a matrix product of this weight
vector times the vector of input firing rates. And that matrix multiplication gives us
a vector that describes the firing rates of the output layer.

So let me just go through what that looks like. If we define a column vector of firing
rates of each of the output neurons, we can write that as the weight matrix times
the column vector of the firing rates of the input layer. We can calculate the firing
rate of the first neuron in the output layer as the dot product of that row of the
weight matrix with that vector of firing rates, OK? And that gives us the firing rate.
v1 is then W of a equals 1 dot u.

That is one particular way of thinking about how you're calculating the firing rates
in the output layer. And it's called the dot product interpretation of matrix
multiplication, all right? Now, there's a different sort of complementary way of
thinking about what happens when you do this matrix product that's also important
to understand, because it's a different way of thinking about what's going on.

We can also think about the columns of this weight matrix. And we can think about
the weight matrix as a collection of column vectors that we put together into matrix
form. So in this particular network here, we can write down this weight matrix, all
right? And you can see that this first input neuron connects to output neuron one, so
there's a one there. The first input neuron connects to output neuron two, so there's
a one there. The first input neuron does not connect to output neuron three, so
there's a zero there, OK?

All right. So the columns of the weight matrix represent the pattern of projections
from one of the input neurons to all of the output neurons. All right, so let's just take
a look at what would happen if only one of our input neurons was active and all the
others were silent. So this neuron is active. What would the output vector look like?
What would the pattern of firing rates look like for the output neurons in this case?

Anybody? It's straightforward. It's not a trick question. [INAUDIBLE]?

AUDIENCE: So--



MICHALE FEE: If this neuron is firing and these weights are all one or zero.

AUDIENCE: The one neuron, a--

MICHALE FEE: Yes? This--

AUDIENCE: Yeah, [INAUDIBLE].

MICHALE FEE: --would fire, this would fire, and that would not fire, right? Good. So you can write
that out as a matrix multiplication. So the firing rate vector, in this case, would be
the dot product of this with this, this with this, and that with that. And what you
would see is that the output firing rate vector would look like this first column of the
weight matrix. So the output vector would look like 1, 1, 0 if only the first neuron
were active.

So you can think of the output firing rate vector as being a contribution from neuron
one-- and that contribution from neuron one is simply the first column of the weight
matrix-- plus a contribution from neuron two, which is given by the second column
of the weight matrix, and a contribution from input neuron three, which is given by
the third column of the weight matrix, OK? So you can think of the output firing rate
vector as being a linear combination of a contribution from the first neuron, a
contribution from the second neuron, and a contribution from the third neuron.
Does that make sense?

It's a different way of thinking about it. In the dot product interpretation, we're
asking, what is the-- we're summing up all of the weights onto neuron one from
those synapses. We're summing up all the weights onto neuron two from those
synapses and summing up all the weights onto neuron three from those synapses.
So we're doing it one output neuron at a time.

In this other interpretation of this matrix multiplication, we're doing something
different. We're asking, what is the contribution to the output from one of the input
neurons? What is the contribution to the output from another input neuron? And
what is the contribution to the output from yet another input neuron? Does that
makes sense? OK.

All right, so we have a linear combination of contributions from each of those input



neurons. And that's called the outer product interpretation. I'm not going to explain
right now why it's called that, but that's how that's referred to. So the output pattern
is a linear combination of contributions.

OK, so let's take a look at the effect of some very simple feed-forward networks,
OK? So let's just look at a few examples. So if we have a feed forward-- this is sort of
the simplest feed-forward network. Each neuron in the input layer connects to one
neuron in the output layer with a weight of one. So what is the weight matrix of this
network?

AUDIENCE: Identity.

MICHALE FEE: It's the identity matrix. And so the firing rate of the output layer will be exactly the
same as the firing rates in the input layer, OK? So there's the weight matrix, which is
just the identity matrix, the firing rate. And the output layer is just the identity matrix
times the firing rate of the input layer. And so that's equal to the input firing rate,
OK?

All right, let's take a slightly more complex network, and let's make each one of
those weights independent. They're not all just equal to one, but they're scaled by
some constant-- lambda 1, lambda 2, and lambda 3. The weight matrix looks like
this. It's a diagonal matrix, where each of those weights is on the diagonal. And in
that case, you can see that the output firing rate is just this diagonal matrix times
the input firing rate. And you can see that the output firing rate is just the input
firing rate where each component of the input firing rate is scaled by some
constant. Pretty straightforward.

Let's take a look at a case where the weight matrix now corresponds to a rotation
matrix, OK? So we're going to let the weight matrix look like this rotation matrix that
we talked about on Tuesday, where are the diagonal elements are cosine of sum
rotation angle, and the off-diagonal elements are plus and minus sine of the
rotation angle.

So you can see that this weight matrix corresponds to this network, where the
projection from input neuron one to output neuron one is cosine phi. Input neuron
two to output neuron two is cosine phi. And then these cross-connections are a plus
and minus sine phi. OK, so what does that do?



So we can see that the output firing rate vector is just a product of this rotation
matrix times the input firing rate vector. And you can write down each component
like that. All right, so what does that do? So let's take a particular rotation angle.
We're going to take a rotation angle of pi over 4, which is 45 degrees. That's what
the weight matrix looks like. And we can do that multiplication to find that the
output firing rate vector looks like-- one of the neurons has a firing rate that looks
like the sum of the two input firing rates, and the other output neuron has a firing
rate that looks like the difference between the two input firing rates.

And if you look at what this looks like in the space of firing rates of the input layer
and the output layer, we can see what happens, OK? So what we'll often do when we
look at the behavior of neural networks is we'll make a plot of the firing rates of the
different neurons in the network. And what we'll often do for simple feed-forward
networks, and we'll also do this for recurrent networks, is we'll plot the input firing
rates as in the plane of u1 and u2.

And then we can plot the output firing rates in the same plane. So, for example, if
we have an input state that looks like u1 equals u2, it will be some point on this
diagonal line. We can then plot the output firing rate on this plane, v1 versus v2.
And what will the output firing rate look like? What will the firing rate of v1 look like
in this case?

AUDIENCE: [INAUDIBLE]

MICHALE FEE: Yeah let's say this is one and one. So what will the firing rate of this neuron look
like? [INAUDIBLE]?

AUDIENCE: [INAUDIBLE]

MICHALE FEE: What's that?

AUDIENCE: [INAUDIBLE]

MICHALE FEE: So the firing rate of v1 is just this quantity right here, right? So it's u1 plus u2, right?
So it's like 1 plus 1 over root 2. So it will be big. What will the firing rate of neuron v2
look like? It'll be u2 minus u1, which is?



AUDIENCE: Zero.

MICHALE FEE: Zero. So it will be over here, right? So it will be that input rotated by 45 degrees.
And input down here-- so the firing rate of the one will be the sum of those two.
Those two inputs are both negative. So v1 for this input will be big and negative. And
v2 will be the difference of u1 and u2, which for anything on this line is?

AUDIENCE: Zero.

MICHALE FEE: Zero. OK. And so that input will be rotated over to here. So you can think of it this
way-- any input in this space of u1 and u2, in the output will be just rotate by, in this
case, it's minus 45 degrees. So that's clockwise, are the minus rotations. So you can
just predict the output firing rates simply by taking the input firing rates in this plane
and rotating them by minus 45 degrees.

All right, any questions about that? It's very simple. So this little neural network
implements rotations of this input space. That's pretty cool. Why would you want a
network to do rotations? Well, this solves exactly the problem that we were working
on last time when we were talking about our perceptron, where we were trying to
classify stimuli that could not be separated in one dimension, but rather, can be
separated in two dimensions.

So if we have different categories-- dogs and non-dogs-- that can be viewed along
different dimensions-- how furry they are-- but can't be separated-- the two
categories can't be separated from each other on the basis of just one dimension of
observation. So in this case, what we want to do is take this base of inputs and
rotate it into a new what we'll call a new basis set so that now we can take the firing
rates of these output neurons and use those to separate these different categories
from each other. Does that make sense?

OK, so let me show you a few more examples of that. So this is one way to think
about what we do when we do color vision, OK? So you know that we have different
cones in our retina that are sensitive to different wavelengths. Most colors are
combinations of those wavelengths. So if we look at the activity of, let's say, a cone
that's sensitive to wavelength one and the activity in a cone that's sensitive to
wavelength two, we might see-- and then we look around the world. We'll see a
bunch of different objects or a bunch of different stimuli that activate those two



different cones in different ratios.

And you might imagine that this axis corresponds to, let's say, how much red there
is in a stimulus. This axis corresponds to how much green there is in a stimulus. But
let's say that you're in an environment where there's some cloud of contribution of
red and green. So what would this direction correspond to in this cloud? This
direction corresponds to more red and more green. What would that correspond to?

AUDIENCE: Brown.

MICHALE FEE: So what I'm trying to get at here is that the sum of those two is sort of the
brightness of the object, right? Something that has little red and little green will look
the same color as something that has more red and more green, right? But what's
different about those two stimuli is that the one's brighter than the other. The
second one is brighter than the first one.

But this dimension corresponds to what? Differences in the ratio of those two colors,
right? Sort of changes in the different [AUDIO OUT] wavelengths, and that
corresponds to color. So if we can take this base of stimuli and rotate it such that
one axis corresponds to the sum of the two colors and the other axis corresponds to
the difference of the two colors, then this axis will tell you how bright it is, and this
axis will tell you what the hue is, what the color is. Does that makes sense?

So there's a simple case of where taking a rotation of a inputs base, of a set of
sensors, will give you different information than you would get if you just had one of
those stimuli. If you were to just look at the activity of the cone that's giving you a
red signal, if one object has more activity in that cone, you don't know whether that
other object is just brighter or if it's actually more red, that looked red. Does that
makes sense?

So doing a rotation gives us signals in single neurons that carries useful information.
It can disambiguate different kinds of information. All right, so we can use that
simple rotation matrix to perform that kind of separation. So brightness and color.
Here's another example.

I didn't get to talk about this in this class, but there are-- so barn owls, they can very
exquisitely localize objects by sound. So they hunt, essentially, at night in the dark.



They can hear a mouse scurrying around in the grass. They just listen to that sound,
and they can tell exactly where it is, and then they dive down and catch the mouse.

So how did they do that? Well, they used timing differences to tell which way the
sound is coming from side to side, and they use intensity differences to tell which
way the sound is coming from up and down. Now, how do you use intensity
differences? Well, one of their ears, their right ear pointed slightly upwards. And
their left ear is pointed slightly downwards.

So when they hear a sound that's slightly louder in the right ear and slightly softer in
the left ear, they know that it's coming from up above, right? And if it's the other
way around, if it's slightly louder in the left ear and softer in the right ear, they know
it's coming from below horizontal. And it's extremely precise system, OK?

So here's an example. So if they're sitting there listening to the intensity, the
amplitude of the sound in the left ear and the amplitude of the sound in the right
ear, some sounds will be up here with high amplitude in both ears. Some sounds will
be over here, with more amplitude in the right ear and less amplitude in the left ear.
What does this dimension correspond to? That dimension corresponds to?

AUDIENCE: Proximity.

MICHALE FEE: Proximity or, overall, the loudness of the sound, right? And what does this dimension
correspond to?

AUDIENCE: Direction.

MICHALE FEE: The difference in intensity corresponds to the elevation of the sound relative to the
horizontal. All right? So, in fact, what happens in the owl's brain is that these two
signals undergo a rotation to produce activity in some neurons that's sensitive to the
overall loudness and activity in other neurons that's sensitive to the difference
between the intensity of the two sounds. It's a measure of the elevation of the
sounds.

All right, so this kind of rotation matrix is very useful for projecting stimuli into the
right dimension so that they give useful signals. All right, so let's come back to our
matrix transformations and look in a little bit more detail about what kinds of
transformations you can do with matrices.



So we talked about how matrices can do stretch, compression, rotation. And we're
going to talk about a new kind of transformation that they can do. So you
remember we talked about how a matrix multiplication implements a
transformation from one set of vectors into another set of vectors? And the inverse
of that matrix transforms back to the original set of vectors, OK? So you can make a
transformation, and then you can undo that transformation by multiplying by the
inverse of the matrix.

OK, so we talked about different kinds of transformations that you can do. So if you
take the identity matrix and you make a small perturbation to both of the diagonal
elements, the same perturbation to both diagonal elements, you're basically taking
a set of vectors and you're stretching them uniformly in all directions. If you make a
perturbation to just one of the components of the identity matrix, you can take the
data and stretch it in one direction or stretch it in the other direction. If you add
something to the first component and subtract something from the second
component, you can stretch in one direction and compress in another direction.

We talked about reflections and inversions through the origin. These are all
transformations that are produced by diagonal matrices. And the inverse of those
diagonal matrices is just one over the diagonal elements. OK, we also talked about
rotations that you can do with this rotation matrix. And then the inverse of the
rotation matrix is, basically, you compute the inverse of a rotation matrix simply by
computing the rotation matrix with a minus sign for this, using the negative of the
rotation angle.

And we also talked about how a rotation matrix-- for a rotation matrix, the inverse is
also equal to the transpose. And the reason is that rotation matrices have this
antisymmetry, where the off-diagonal elements have the opposite sign. One of the
things we haven't talked about is-- so we talked about how this kind of matrix can
produce a stretch along one dimension or a stretch along the other dimension of
the vectors. But one really important kind of transformation that we need to
understand is how you can produce stretches in an arbitrary direction, OK? So not
just along the x-axis or along the y-axis, but along any arbitrary direction.

And the reason we need to know how that works is because that formulation of how



you write down a matrix to stretch data in any arbitrary direction is the basis of a lot
of really important data analysis methods, including principal component analysis
and other methods. So I'm going to walk you through how to think about making
stretches in data in arbitrary dimensions. OK, so here's what we're going to walk
through.

Let's say we have a set of vectors. I just picked-- I don't know, what is that-- 20 or so
random vectors. So I just called a random number generator 20 times and just
picked 20 random vectors. And we're going to figure out how to write down a matrix
that will transform that set of vectors into another set of vectors that stretched
along some arbitrary axis. Does that make sense?

So how do we do that? And remember, we know how to do two things. We know how
to stretch a set of vectors along the x-axis. We know how to stretch vectors along
the y-axis, and we know how to rotate a set of vectors. So we're just going to
combine those two ingredients to produce this stretch in an arbitrary direction. So
now I've given you the recipe-- or I've given you the ingredients. The recipe's pretty
obvious, right?

We're going to take this set of initial vectors. Good. Lina?

AUDIENCE: You [INAUDIBLE]. That's it.

MICHALE FEE: Bingo. That's it. OK, so we're going to take-- all right, so we're going to rotate this
thing 45 degrees. We take this original set of vectors. We're going to-- OK, so first of
all, the first thing we do when we want to take a set of points and stretch it along an
arbitrary direction, we pick that angle that we want to stretch it on-- in this case, 45
degrees. And we write down a rotation matrix corresponding to that rotation,
corresponding to that angle. So that's the first thing we do.

So we've chosen 45 degrees as the angle we want to stretch on. So now we write
down a rotation matrix for a 45-degree rotation. Then what we're going to do is
we're going to take that set of points and we're going to rotate it by minus 45
degrees.

So how do we do that? How do we take any one of those vectors x and rotate it by--
so this that rotation matrix is for plus 45. How do we rotate that vector by minus 45?



AUDIENCE: [INAUDIBLE] multiply it by the [INAUDIBLE].

MICHALE FEE: Good. Say it.

AUDIENCE: Multiply by the inverse of that.

MICHALE FEE: Yeah, and what's the inverse of a--

AUDIENCE: Transpose.

MICHALE FEE: Transpose. So we don't have to go to Matlab and use the inverse matrix in inversion.
We can just do the transpose. OK, so we take that vector and we multiply it by
transpose. So that does a minus 45-degree rotation of all of those points. And then
what do we do? Lina, you said it. Stretch it. Stretch it along?

AUDIENCE: The x-axis?

MICHALE FEE: The x-axis, good. What does that matrix look like that does that? Just give me-- yup?

AUDIENCE: 5, 0, 0, 1.

MICHALE FEE: Awesome. That's it. So we're going to stretch using a stretch matrix. So I use phi for
a rotation matrix, and I use lambda for a stretch matrix, a stretch matrix along x or y.
Lambda is a diagonal matrix, which always just stretches or compresses along the x
or y direction. And then what do we do?

AUDIENCE: [INAUDIBLE]

MICHALE FEE: Good. By multiplying by? By this. Excellent. That's all. So how do we write this down?
So, remember, here, we're sort of marching through the recipe from left to right.
When you write down matrices, you go the other way. So when you do matrix
multiplication, you take your vector x and you multiply it on the left side by phi
transpose. And then you take that and you multiply that on the left side by lambda.
And then you take that.

That now gives you these. And now to get the final answer here, you multiply again
on the left side by phi. That's it. That's how you produce an arbitrary stretch-- a
stretch or a compression of a data in an arbitrary direction, all right? You take the
data, the vector. You multiply it by a rotation matrix transpose, multiply it by a



stretch matrix, a diagonal matrix, and you multiply it by a rotation matrix. Rotate,
stretch, unrotate.

So let's actually do this for 45 degrees. So there's our rotation matrix-- 1, minus 1, 1,
1. The transpose is 1, 1, minus 1, 1. And here's our stretch matrix. In this case, it was
stretched by a factor of two. So we multiply x by phi transpose, multiply by lambda,
and then multiply by phi. So we can now write that down.

If you just do those three matrix multiplications-- those two matrix multiplications,
sorry, yes? One, two. Two matrix multiplications. You get a single matrix that when
you multiply it by x implements this stretch. Any questions about that? You should
ask me now if you don't understand, because I want you to be able to do this for an
arbitrary-- so I'm going to give you some angle, and I'll tell you, construct a matrix
that stretches data along a 30-degree axis by a factor of five. You should be able to
write down that matrix.

All right, so this is what you're going to do, and that's what that matrix will look like,
something like that. Now, we can stretch these data along a 45-degree axis by some
factor. It's a factor of two here. How do we go back? How do we undo that stretch?
So how do you take the inverse of a product of a bunch of matrices like this?

So the answer is very simple. If we want to take the inverse of a product of three
matrices, what we do is we just-- it's, again, a product of three matrices. It's a
product of the inverse of those three matrices, but you have to reverse the order.
So if you want to find the inverse of matrix A times B times C, it's C inverse times B
inverse times A inverse. And you can prove that that's the right term as follows.

So ABC inverse times ABC should be the identity matrix, right? So let's replace this
by this result here. So C inverse B inverse A inverse times ABC would be the identity
matrix. And you can see that right here, A inverse times A is i. So you can get rid of
that. B inverse times B is i. C inverse times C is i. So we just proved that that is the
correct way of taking the inverse of a product of matrices, all right?

So the inverse of this kind of matrix that stretches data along an arbitrary direction
looks like this. It's phi transpose inverse lambda inverse phi inverse. So let's figure
out what each one of those things is. So what is phi transpose inverse, where phi is
a rotation matrix?



AUDIENCE: Just phi.

MICHALE FEE: Phi, good. And what is phi inverse?

AUDIENCE: [INAUDIBLE]

MICHALE FEE: [INAUDIBLE]. Good. And lambda inverse we'll get to in a second. So the inverse of
this arbitrary rotated stretch matrix is just another rotated stretch matrix, right?
Where the lambda now has-- lambda inverse is just given by the inverse of each of
those diagonal elements. So it's super easy to find the inverse of one of these
matrices that computes this stretch in an arbitrary direction.

You just keep the same phi. It's just phi times some diagonal matrix times phi
transpose, but the diagonals are inverted. Does that makes sense?

All right, so let's write it out. We're going to undo this 45-degree stretch that we just
did. We're going to do it by rotating, stretching by 1/2 instead of stretching by two.
So you can see that compresses now along the x-axis. And then we rotate back, and
we're back to our original data. Any questions about that?

It's really easy, as long as you just think through what you're doing as you go
through those steps, all right? Any questions about that? OK. Wow. All right. So you
can actually just write those down and compute the single matrix that implements
this compression along that 45-degree axis, OK? All right.

So let me just show you one other example. And I'll show you something interesting
that happens if you construct a matrix that instead of stretching along a 45-degree
axis does compression along a 45-degree axis. So here's our original data. Let's
take that data and rotate it by plus 45 degrees. Multiplied by lambda, that
compresses along the x-axis and then rotates by minus 45 degrees.

So here's an example where we can take data and compress it along an axis of
minus 45 degrees, all right? So you can write this down. So we're going to say we're
going to compress along a minus 45 degree axis. We write down phi of minus 45.

Notice that when you do this compression or stretching, there are different ways
you can do it, right? You can take the data. You can rotate it this way and then squish



along this axis. Or you could rotate it this way and squish along this axis, right? So
there are choices for how you do it. But in the end, you're going to end up with the
same matrix that does all of those equivalent transformations.

OK, so here we are. We're going to write this out. So we're writing down a matrix that
produces this compression along a minus 45-degree axis. So there's 5 minus 45.
There's lambda, a compression along the x-axis. So here, it's 0.2001. And here's the
phi transpose. So you write all that out, and you get 0.6, 0.4, 0.4, 0.4.

Let me show you one more. What happens if we accidentally take this data, we
rotate it, and then we squish the data to zero? Yes?

AUDIENCE: [INAUDIBLE]

MICHALE FEE: It doesn't. You can do either one. Let me go back. Let me just go back to the very
first one. So here, we rotated clockwise and then stretched along the x-axis and
then unrotated. We could have taken these data, rotated counterclockwise,
stretched along the y-axis, and then rotated back, right? Does that make sense?

You'll still get the same answer. You'll still get the same answer for this matrix here.
OK, now watch this. What happens if we take these data, we rotate them, and then
we compress data all the way to zero? So by compressing the data to a line, we're
multiplying it by zero. We put a zero in this element of the stretch matrix, all right?
And what happens? The data get compressed right to zero, OK?

And then we can rotate back. So we've taken these data. We can write down a
matrix that takes those data and squishes them to zero along some arbitrary
direction. Now, can we take those data and go back to the original data? Can we
write down a transformation that takes those and goes back to the original data?
Why not?

AUDIENCE: Lambda doesn't [INAUDIBLE].

MICHALE FEE: Say it again.

AUDIENCE: Lambda doesn't [INAUDIBLE].

MICHALE FEE: Good. What's another way to think about that?



AUDIENCE: We've lost [INAUDIBLE].

MICHALE FEE: You've lost that information. So in order to go back from here to the original data,
you have to have information somewhere here that tells you how far out to stretch
it again when you try to go back. But in this case, we've compressed everything to a
line, and so there's no information how to go back to the original data.

And how do you know if you've done this? Well, you can take a look at this matrix
that you created. So let's say somebody gave you this matrix. How would you tell
whether you could back to the original data? Any ideas? Abiba?

AUDIENCE: [INAUDIBLE]

MICHALE FEE: Good. You look at the determinant. So if you calculate the determinant of this
matrix, the determinant is zero. And as soon as you see a zero determinant, you
know right away that you can't go back. After you've made this transformation, you
can't go back to the original data. And we're going to get into a little more detail
about why that is and what that means.

And the reason here is that the determinant of lambda is zero. The determinant of
a product matrices like this is the product of the determinants. And in this case, the
determinant of the lambda matrix is zero, and so the determinant of the product is
zero, OK?

All right, so now let's talk about basis sets. All right, so we can think of vectors in
abstract directions. So if I hold my arm out here and tell you this is a vector-- there's
the origin. The vectors pointing in that direction. You don't need a coordinate
system to know which way I'm pointing. I don't need to tell you my arm is pointing
80 centimeters in that direction and 40 centimeters in that direction and 10
centimeters in that direction, right?

You don't need a coordinate system to know which way I'm pointing, right? But if I
want to quantify that vector so that-- if you want to quantify that vector so that you
can maybe tell somebody else precisely which direction I'm pointing, you need to
write down those numbers, OK? So you can think of vectors in abstract directions,
but if you want to actually quantify it or write it down, you need to choose a
coordinate system.



And so to do this, you choose a set of vectors, special vectors, called a basis set.
And now we just say, here's a vector. How much is it pointing in that direction, that
direction, and that direction? And that's called a basis set. So we can write down our
vector now as a set of three numbers that simply tell us how far that vector is
overlapped with three other vectors that form the basis set.

So the standard way of doing this is to describe a vector as a component in the x
direction, which is a vector 1, 1, 0, sort of in the standard notation; a component in
the y direction, which is 0, 1, 0; and a component in the z direction, 0, 0, 1. So we
can write those vectors as standard basis vectors. The numbers x, y, and z here are
called the coordinates of the vector. And the vectors e1, e2, and e3 are called the
basis vectors. And this is how you would write that down for a three-dimensional
vector, OK?

Again, the little hat here denotes that those are unit vectors that have a length one.
All right, so in order to describe an arbitrary vector in a space of n real numbers, Rn,
the basis vectors each need to have n numbers. And in order to describe an
arbitrary vector in that space, you need to have n basis vectors. You need to have--
in n dimensions, you need to have n basis vectors, and each one knows basis
vectors has to have n numbers in them.

So these vectors here-- 1, 0, 0; 0, 1, 0; and 0, 0, 1-- are called the standard basis.
And each one of these values has one element that's one and the rest are zero.
That's the standard basis. The standard basis has the property that any one of those
vectors dotted into itself is one. That's because they're unit vectors. They have
length one.

So i dot ei is the length squared of the i-th vector. And if the length is one, then the
length squared is one. Each vector is orthogonal to all the other vectors. That
means that each e1 dot e2 is zero, and e1 dot e3 is zero, and e2 dot e3 is zero. You
can write down as e sub i dot e sub j equals zero for i not equal to j.

You can write all of those properties down in one equation-- e sub i dot e sub j
equals delta i j. Delta i j is what's called the Kronecker delta function. The Kronecker
delta function is a one if i equals j and a zero if i is not equal to j, OK? So it's a very
compact way of writing down this property that each vector is a unit vector and



each vector is orthogonal to all the other vectors.

And the set with that property is called an off an orthonormal basis set. All right,
now, the standard basis is not the only basis-- sorry. I'm trying to do x, y, and z here.
So if you have x, y, and z, that's not the only orthonormal basis set. Any basis set
that is a rotation of those three vectors is also an orthonormal basis.

Let's write down two other orthogonal unit vectors. We can write down our vector v
in this other basis set as follows. We just take our vector v. We can plot the basis
vectors in this other basis. And we can simply project v onto those other basis
vectors. So we can project v onto f1, and we can project v onto f2.

So we can write v as a sum of a vector in the direction of f1 and a vector in the
direction of f2. You can write down this vector v in this different basis set as a vector
with two components. This is two dimensional. This is R2. You can write it down as a
two-component vector-- v dot f1 and v dot f2. So that's a simple intuition for what
[AUDIO OUT] in two dimensions. We're going to develop the formalism for doing this
in arbitrary dimensions, OK? And it's very simple.

All right, these components here are called the vector coordinates of this vector
basis f. All right, now, basis sets, or basis vectors, don't have to be orthogonal to
each other, and they don't have to be normal. They don't have to be unit vector. You
can write down an arbitrary vector as a sum of components that aren't orthogonal
to each other.

So you can write down this vector v as a sum of a component here in the f1
direction and a component in the f2 direction, even if f1 and f2 are not orthogonal
to each other and even if they're not unit vectors. So, again, v is expressed as a
linear combination of a vector in the f1 direction and a vector in the f2 direction. OK,
so let's take a vector and decompose it into an arbitrary basis set f1 and f2.

So v equals c1 f1 plus c2 f2. The coefficients here are called the coordinates of the
vector in this basis. And the vector v sub f-- these numbers, c1 and c2, when
combined into this vector, is called the coordinate vector of v in the basis f1 and f2,
OK? Does that makes sense? Just some terminology.

OK, so let's define this basis, f1 and f2. We just pick two vectors, an arbitrary two



vectors. And I'll explain later that not all choices of vectors work, but most of them
do. So here are two vectors that we can choose as a basis-- so 1, 3, which is sort of
like this, and minus 2, 1 is kind of like that.

And we're going to write down this vector v in this new basis. So we have a vector v
that's 3, 5 in the standard basis, and we're going to rewrite it in this new basis, all
right? So we're going to find the vector coordinates of v in the new basis. So we're
going to do this as follows.

We're going to write v as a linear combination of these two basis vectors. So c1
times f1-- 1, 3-- plus c2 times f2-- minus 2, 1-- is equal to 3, 5. That make sense? So
what is that? That is just a system of equations, right? And what we're trying to do is
solve for c1 and c2. That's it.

So we already did this problem in the last lecture. So we have this system of
equations. We can write this down in the following matrix notation. F times vf-- vf is
just c1 and c2-- equals v. So there's F-- 1, 3; minus 2, 1. Those are our two basis
vectors. Times c1 c2-- the vector c1, c2-- is equal to 3, 5. And we solve for vf. In other
words, we solve for c1 and c2 simply by multiplying v by the inverse of this matrix F.

So the coordinate vector in this new base is said is just the old vector times f
inverse. And what is f inverse? F inverse is just a matrix that has the basis vectors as
the columns of the matrix. So the coordinates of this vector in his new basis set are
given by f inverse times v. We can find the inverse of f. So if that's our f, we can
calculate the inverse of that.

Remember, you flip the diagonal elements. You multiply the off-diagonals by minus
1, and you divide by the determinant. So f inverse is this times v is that, and v sub f
is just 13/7 over minus 4/7. So that's just a different way of writing v. So there's v in
the standard basis. There's v in this new basis, all right? And all you do to go from
the standard basis to any arbitrary new basis is multiply the vector by f inverse.

And when you're actually doing this in Matlab, this is really simple. You just write
down a matrix F that has the basis sets in the columns. You just use the matrix
inverse function, and then you multiply that by the data matrix, by the data vector.
All right, so I'm just going to summarize again. In order to find the coordinate vector
for v in this new basis, you construct a matrix F, whose columns are just the



elements of the basis vectors.

So if you have two basis vectors, it's a two-- remember, each of those basis vectors.
In two dimensions, there are two basis vectors. Each has two numbers, so this is a 2
by 2 matrix. In n dimensions, you have n basis vectors. Each of the basis vectors has
n numbers. And so this matrix F is an n by n matrix, all right?

You know that you can write down v as this basis times v sub f. You solve for v sub f
by multiplying both sides by f inverse, all right? That performs whats called change
of basis. Now, that only works if f has an inverse. So if you're going to choose a new
basis to write down your vector, you have to be careful to pick one that has an
inverse, all right? And I want to show you what it looks like when you pick a basis
that doesn't have an inverse and what that means.

All right, and that gets to the idea of linear independence. All right, so, remember I
said that if in n dimensions, in Rn, in order to have a basis in Rn, you have certain
requirements? Not any vectors will work. So let's take a look at these vectors. Will
those work to describe an-- will that basis set work to describe an arbitrary vector in
three dimensions? No? Why not?

AUDIENCE: [INAUDIBLE] vectors, so if you're [INAUDIBLE].

MICHALE FEE: Right. So the problem is in which coordinate, which axis?

AUDIENCE: Z-axis.

MICHALE FEE: The z-axis. You can see that you have zeros in all three of those vectors, OK? You
can't describe any vector with this basis that has a non-zero component in the z
direction. And the reason is that any linear combination of these three vectors will
always lie in the xy plane. So you can't describe any vector here that has a non-zero
z component, all right?

So what we say is that this set of vectors doesn't span all of R3. It only spans the xy
plane, which is what we call a subspace of R3, OK? OK, so let's take a look at these
three vectors. The other thing to notice is that you can write any one of these
vectors as a linear combination of the other two.

So you can write f3 as a sum of f1 and f2. The sum of those two vectors is equal to



that one. You can write f2 as f3 minus f1. So any of these vectors can be written as a
linear combination of the others. And so that set of vectors is called linearly
dependent. And any set of linearly dependent vectors cannot form a basis.

And how do you know if a set of vectors that you choose for your basis is linearly
dependent? Well, again, you just find the determinant of that matrix. And if it's zero,
those vectors are linearly dependent. So what that corresponds to is you're taking
your data and when you transform it into a new basis, if the determinant of that
matrix F is zero, then what you're doing is you're taking those data and transforming
them to a space where they're being collapsed.

Let's say if you're in three dimensions, those data are being collapsed onto a plane
or onto a line, OK? And that means you can't undo that transformation, all right?
And the way to tell whether you've got that problem is looking at the determinant.

All right, let me show you one other cool thing about the determinant. There's a
very simple geometrical interpretation of what the determinant is, OK? All right,
sorry. So if f maps your data onto a subspace, then the mapping is not reversible.

OK, so what does the determinant correspond to? Let's say in two dimensions, if I
have two orthogonal unit vectors, you can think of those vectors as kind of forming
a square in this space. Or in three dimensions, if I have three orthogonal vectors,
you can think of those vectors as defining a cube, OK? And if there unit vectors,
then they define a cube of volume one.

Here, you have the square of area one. So let's think about this unit volume. If I
transform those two vectors or those three vectors in 3D space by a matrix A, those
vectors get rotated and transformed. They point in different directions, and they
define-- it's no longer a cube, but they define some sort of rhombus, OK?

You can ask, what is the volume of that rhombus? The volume of that rhombus is
just the determinant of that matrix A. So now what happens if I have a cube in
three-dimensional space and I multiply it by a matrix that transforms it into a
rhombus that has zero volume? So let's say I have those three vectors. It transforms
it into, let's say, a square.

The volume of that square in three dimensional space is zero. So what that means



is I'm transforming my vectors into a space that has zero volume in the original
dimensions, OK? So I'm transforming things from 3D into a 2D plane. And what that
means is I've lost information, and I can't go back.

OK, notice that a rotation matrix, if I take this cube and I rotate it, has exactly the
same volume as it did before I rotated it. And so you can always tell when you have
a rotation matrix, because the determinant of a rotation matrix is one. So if you
take a matrix A and you find the determinant and you find that the determinant is
one, you know that you have a pure rotation matrix.

What does it mean if the determinant is minus one? What it means is you have a
rotation, but that one of the axes is inverted, is flipped. There's a mirror in there. So
you can tell if you have a pure rotation or if you have a rotation and one of the axes
is flipped. Because in the pure rotation, the determinant is one. And in an impure
rotation, you have a rotation and a mirror flip.

All right, and I just want to make a couple more comments about change of basis,
OK? All right, so let's choose a set of basis vectors for our new basis. Let's write
those into a matrix F. It's going to be our matrix of basis vectors. If the determinant
is not equal to zero, then these vectors, that set of vectors, are linearly
independent. That means you cannot write one of those vectors as a linear
combination of-- any one of those vectors as a linear combination of the others.

Those vectors form a complete basis in that n dimensional space. The matrix F
implements a change of basis, and you can go from the standard basis to F by
multiplying your vector by F inverse to get the coordinate vector and your new
basis. And you can go back from that rotated or transformed basis back to the
coordinate basis by multiplying by F, OK? Multiply by F inverse transforms to the new
basis. Multiplying by F transforms back.

If that set of vectors is an orthonormal basis, then-- OK, so let's take this matrix F
that has columns that are the new basis vectors. And let's say that those form an
orthonormal basis. In that case, we can write down-- so, in any case, we can write
down the transpose of this matrix, F transpose. And now the rows of that matrix are
the basis vectors.

Notice that if we multiply F transpose times F, we have basis vectors in rows here



and columns here. So what is F transpose F for the case where these are unit
vectors that are orthogonal to each other? What is that product?

AUDIENCE: [INAUDIBLE]

MICHALE FEE: It's what?

AUDIENCE: [INAUDIBLE]

MICHALE FEE: Good. Because F1 dot F1 is one. F1 dot F2 is zero. F2 dot F1 is zero, and F2 dot F2 is
0. So that's equal to the identity matrix, right? So F transpose equals F inverse. If the
inverse of a matrix is just its transpose, then that matrix is a rotation matrix. So F is
just the rotation matrix.

All right, now let's see what happens. So that means the inverse of F is just this F
transpose. Let's do this coordinate-- let's [AUDIO OUT] change of basis for this case.
So you can see that v sub f, the coordinate vector in the new basis, is F transpose v.
Here's F transpose-- the basis vectors are in the rows-- times v. This is just v dot F1, v
dot F2, right?

So this shows how for a orthonormal basis, the transpose, which is the inverse of F--
taking the transpose of F times v is just taking the dot product of v with each of the
basis vectors, OK? So that ties it back to what we were showing before about how to
do this change of basis, OK? Just tying up those two ways of thinking about it.

So, again, what we've been developing when we talk about change of basis are
ways of rotating vectors, rotating sets of data, into different dimensions, into
different basis sets so that we can look at data from different directions. That's all
we're doing. And you can see that when you look at data from different directions,
you can get-- some views of data, you have a lot of things overlapping, and you
can't see them. But when you rotate those data, now, all of a sudden, you can see
things clearly that used to be-- things get separated in some views, whereas in other
views, things are kind of mixed up and covering each other, OK?

And that's exactly what neural networks are doing when they're analyzing sensory
stimuli. They're doing that kind of rotations and untangling the data to see what's
there in that high-dimensional data, OK? All right, that's it.


