

9.40 Introduction to Neural Computation Problem Set #6

Learning objectives and goals:

In the first half of this problem set, we will build a perceptron neural network that performs binary
classification. We will derive the weight vector for the perceptron in two ways: via analytical work,
and by performing numerical simulations in MATLAB that implement the perceptron learning and
weights update rule.

In the second half of this problem, we will use Principal Component Analysis to reduce
dimensionality of a relatively large neuronal data set. We will use this dimensionality reduction to
generate meaningful visualization of the data set, and also to build a crude and rudimentary decoder
for neuronal activity

The topics of this PSET were covered in lectures 14-17 and recitations 10-11.

These two problems are a great way to put all the linear algebra we have learned so far to work.
They are also helpful in emphasizing the two roles that matrices play: to represent and to transform
data. By the end of this PSET, you should be familiar with:

• Dot products, unit vectors, matrix multiplication and change of basis.
• Performing linear transformations such as rotations and scaling.
• Implementing the perceptron algorithm in MATLAB
• Perform mean subtraction, construct covariance matrices and compute eigenvectors and

eigenvalues in MATLAB
• Use Principal Component Analysis to find the directions of maximum variance of a given

dataset.
• Use Principal Component Analysis to perform a change of basis and generate novel data

visualizations.

MATLAB functions you will need:

The following functions will be helpful:

repmat Replicate and tile array (repeat copies of an array)
eig Compute the eigenvectors and eigenvalues of a matrix
cumsum Cumulative sum of array elements.

Problem 1: Neural Networks and Linear Algebra

We will use this exercise to start gaining insight on how feed-forward neural networks transform
input data. In class, we discussed modeling a network of neurons where each input neuron has a
firing rate and specified synaptic weights onto a set of output neurons. Such a network can perform
matrix multiplications. To get us warmed up we will start with a simple question.

1. Construct a feed-forward neural network with 2 input neurons and 2 output neurons
that performs a 60 degrees clockwise rotation in 2D space.

1

9.40 Introduction to Neural Computation Problem Set #6

Problem 2: The Perceptron Learning Algorithm

In this exercise, you will build neural networks that not transform their inputs, but that are capable
of performing binary classification. To illustrate the principle behind the perceptron learning
algorithm, you will construct a neural network that classifies stimuli into two categories. The
perceptron receives two inputs, which represent two stimulus features. The stimuli are plotted
below in this 2D feature-space, colored according to their category. Your perceptron should fire
for stimuli in the blue category and not for stimuli in the red category.

6

4

2

-4 -2 2 4 6

-2

-4

1. On the above plot, draw a decision boundary and weight vector that would distinguish
the two categories.

2. Draw a diagram of your perceptron and its inputs. Find the weights and label your
diagram accordingly. Use binary threshold units as described in class, with outputs 0
or 1 and a threshold θ=1.

3. In this case, you were able to compute the weights by hand. But in higher dimensions,
with more complicated inputs, that can be impossible. We will now implement the
perceptron-learning algorithm, which automatically determines the weights by
starting from a random guess and updating that guess whenever it makes an error.

• The file perceptron.m implements the perceptron-learning algorithm in
MATLAB for the example above. The blue category has label 1 and the red
category has label 0. The main for-loop is incomplete. Your job is to complete
it, with help from the comments in the code.

• Once completed, the file plots the original points and the final decision
boundary.

4. Include the plot generated by perceptron.m in your write-up. How do the
automatically determined weights compare to the weights you derived by hand?

 2

9.40 Introduction to Neural Computation Problem Set #6

Problem 3: Combining Multiple Perceptrons

The following figure illustrates a binary classification problem that cannot be solved with a single
perceptron.

−6 −5 −4 −3 −2 −1 0 1 2 3 4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1. Why is this problem not solvable by a single perceptron?
2. Find, draw, and label properly a multilayer perceptron that correctly classifies the

dots and the squares. Use binary threshold units as described in class, with outputs 0
or 1 and a threshold θ=1.

Problem 4: Reducing Dimensionality of Motor Cortex Activity During a Reaching Task

In this problem, we will use PCA to visualize the activity of a large population of neurons recorded
in macaque motor cortex during a center-out reaching task. Based on the results of the PCA, we
will design an algorithm that could control a simple prosthetic arm to move according to the
monkey’s motor cortex commands. The data were collected in Nicho Hatsopolous’s lab at
University of Chicago, and are contained in the file ReachData.mat.

The matrix R contains the firing rate of each of 143 neurons for a total of 158 trials. The vector
direction specifies the reach direction for each of the 158 trials. Direction 1 corresponds to a
rightward reach (0 degrees), direction 2 to 45 degrees, direction 3 to 90 degrees (straight up), etc,
with direction 8 corresponding to 315 degrees. Think about the orientation of the matrix R before
you proceed. If needed, transpose R to flip the rows and columns.

1. Center the data from each neuron by subtracting off the average firing rate of that
neuron, using repmat as described in class. Why do we do this before performing

3

9.40 Introduction to Neural Computation Problem Set #6

PCA? Hint: think about, in 2D, what goes wrong if you perform PCA on a cloud of
data that is not centered at 0.

2. Compute the covariance matrix that we will use to determine the principal neuronal
components. What size is this matrix? What does the ij-th entry of this matrix
represent?

3. Use the MATLAB eig command to compute the eigenvectors and eigenvalues of the
covariance matrix. What do the eigenvectors represent?

4. In two subplots, plot the eigenvalues in descending order, and the percentage of
variance explained (cumsum may be helpful). How much variance is explained by
the first two principal components?

5. We will now visualize the neuronal data in two dimensions to observe how the
population of neurons in motor cortex fires differently when the monkey reaches in
different directions.

• Write MATLAB code to plot two dimensions of the mean-subtracted data.
Each point on your plot should represent a trial, with a different color for
each reach direction. This will help you visualize how well the neuronal
activity clusters according to reach direction. Later, you will use this code
to plot the first two principal components of your data. To debug, check
that your plot of responses from neurons 7 and 8 matches the figure below
(note a lack of clear clustering). The MATLAB commands jet and
legend may be helpful. Note that you can set the color in a plot as
follows: plot(x,y,’.’, ‘Color’, [1 0 0]), where [1 0 0]
refers to the RGB channels. Also you can see a list of possible properties to
set by (for example): set(plot(x,y,’.’)

-2

-1

0

1

2

3

4

5

6

7

ne
ur

on
 8

0 deg
45 deg
90 deg
135 deg
180 deg
225 deg
270 deg
315 deg

-6 -4 -2 0 2 4 6 8
neuron 7

• Rotate the mean-subtracted data into the eigenvector basis. (Hint: this is
just matrix multiplication). The first two elements of each vector in this
rotated basis correspond to the projection of the data onto the first two
eigenvectors. This is called the first two principal components.

4

 	 	

9.40 Introduction to Neural Computation Problem Set #6

6. Plot the first two principal components of your data. Each point should correspond
to a different trial and should be colored according to the reach direction for that
trial. What do you notice?

Problem 5: Principal Components to Decode Neuronal Activity

Now we will consider a simple way of decoding the neuronal activity in motor cortex to move an
artificial hand. Suppose we have a simple robotic hand that we want the monkey to control. The
simple hand has two motors: positive voltage to motor A makes the hand move right, and positive
voltage to motor B makes the hand move up (negative voltage to either motor makes the hand
move in the opposite direction as positive voltage does). For each motor, we assign each neuron
a weight, which determines how much the voltage to that motor is influenced by the activity of
that neuron. Specifically, � = ∑ �"' ⋅ �', where � is the voltage to motor A, �"' is the weight " ' "

from neuron i to motor A, and �' is the mean-subtracted firing rate of neuron (See the diagram
below).

1. Suppose we connected each neuron to motor A with the weights specified by the first
principal component. What would happen when the monkey tried to reach up (90
degrees reach direction)?

2. Suppose we also connected each neuron to motor B with the weights specified by the
second component. What would happen now when the monkey tried to reach up?

3. What linear algebra technique could we use to correct the weights so that the artificial
hand moves in the correct direction?

5

MIT OpenCourseWare
https://ocw.mit.edu/

9.40 Introduction to Neural Computation
Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

