Introduction to Neural Computation

Michale Fee MIT BCS 9.40 — 2018 Video Module on Nernst Potential Part 1

A mathematical model of a neuron

• Equivalent circuit model

Alan Hodgkin Andrew Huxley, 1952

A neuron is a leaky capacitor

- I_c = membrane capacitive current
- I_L = membrane ionic current

$$V_m + \tau \frac{dV_m}{dt} = V_{\infty} \qquad \text{where} \quad \tau = R_L C$$
$$V_{\infty}(t) = R_L I_e(t)$$

Response to current injection

Let's see what happens when we inject current into our model neuron with a leak conductance.

A neuron is a leaky capacitor

Outline of HH model

Voltage and time-dependent ion channels are the 'knobs' that control membrane potential.

- Some ion channels push the membrane potential positive.
- Other ion channels push the membrane potential negative.
- Together these channels give the neural machinery flexible control of voltage!

Where do the batteries of a neuron come from?

1) Ion concentration gradients

2) Ion-selective permeability of ion channels

There will be some electric field strength such that the 'drift' will exactly balance the diffusion produced by the concentration gradient...

Nernst Potential

• Where do the 'batteries' of a neuron come from?

1) Ion concentration gradients

2) Ion-selective pores (channels)

• How big is the battery (how many volts?)

This is determined by a balance between diffusion down a concentration gradient balanced by 'drift' in the opposing electric field.

Electrodiffusion and the Nernst Potential

One can use Ohm's law and Fick's first law to derive the Nernst potential

— At this voltage, the drift current in the electric field exactly balances current due to diffusion

$$I_{Tot} = I_{Drift} + I_{Diffusion} = 0$$

Ohm's Law

Fick's First Law

$$I_{Drift} = \frac{Aq^2\varphi(x)D}{kT} \frac{\Delta V}{L}$$

$$I_{\text{Diffusion}} = -AqD \frac{\partial \varphi}{\partial x}$$

$$\Delta V = \frac{kT}{q} \ln \left(\frac{\varphi_{out}}{\varphi_{in}} \right) \qquad \text{at equilibrium}$$

Derive Nernst potential using the Boltzmann equation

The Boltzmann equation describes the ratio of probabilities of a particle being in any two states, at thermal equilibrium:

Derive Nernst potential using the Boltzmann equation

The Boltzmann equation describes the ratio of probabilities of a particle being in any two states, at thermal equilibrium:

Derive Nernst potential using the Boltzmann equation

The Boltzmann equation describes the ratio of probabilities of a particle being in any two states, at thermal equilibrium:

Nernst Potential

We can compute the equilibrium potential using the Boltzmann equation:

$$\frac{P_{in}}{P_{out}} = e^{-\frac{U_{in}-U_{out}}{kT}} = e^{-\frac{q(V_{in}-V_{out})}{kT}}$$

$$U = qV$$
 = electrical potential (J)

q = charge of ion

 $q = 1.6 \times 10^{-19} C$ for monovalent ion

Nernst Potential

We can compute the equilibrium potential using the Boltzmann equation:

$$\frac{P_{in}}{P_{out}} = e^{-\frac{U_{in}-U_{out}}{kT}} = e^{-\frac{q(V_{in}-V_{out})}{kT}}$$

$$V_{in} - V_{out} = -\frac{kT}{q} \ln\left(\frac{P_{in}}{P_{out}}\right)$$

$$\Delta V = V_{in} - V_{out} = 25 \, mV \, \ln\left(\frac{P_{out}}{P_{in}}\right)$$

$$\Delta V = 25 \, mV \ln\left(\frac{\left[K\right]_{out}}{\left[K\right]_{in}}\right) = E_K$$

- U = qV = electrical potential (J)
- q = charge of ion

 $q = 1.6 \times 10^{-19} C$ for monovalent ion

$$\frac{kT}{q} = 25mV$$
 for monovalent ion

Don't get confused by this notation. E_K is the equilibrium potential (voltage) for the K ion. 'E' here does not refer to an electric field.

The Nernst potential for potassium

Intracellular and extracellular concentrations of ionic species, and the Nernst potential

$$E_{k} = \frac{kT}{q} \ln \left(\frac{20}{400} \right) \qquad \qquad \frac{kT}{q} = 25 \text{mV at } 300 \text{K (room temp)}$$
for monovalent ion

$$E_{K} = 25 mV(-3.00) = -75 mV$$

How to implement an ion specific conductance as a battery in our model neuron

Introduction to Neural Computation

Michale Fee MIT BCS 9.40 — 2018 Video Module on Nernst Potential Part 2

The Nernst potential for potassium

Intracellular and extracellular concentrations of ionic species, and the Nernst potential

$$\Delta V = \frac{kT}{q} \ln \left(\frac{\left[K \right]_{out}}{\left[K \right]_{in}} \right) \qquad \qquad \frac{kT}{q} = 25 \text{mV at 300K (room temp)}$$
for monovalent ion

$$E_{K} = 25mV(-3.00) = -75mV$$

How to implement an ion specific conductance as a battery in our model neuron

Potassium I-V relation

One of the best ways to study the function of an ion channel is to plot the current-voltage relation (I-V curve). This can be measured as the current required to hold the neuron at a given voltage.

For a potassium conductance

- If you hold the voltage above the equilibrium potential, K current will flow out through the membrane (positive current)
- If you hold the cell below E_K , then the current will flow into the cell.

Note that the current <u>reverses</u> at the equilibrium potential, so this is often referred to as the 'reversal potential'

I-V relation

 I_{K}

 E_{K}

This relation turns out to be monotonic and roughly linear for ion channels in the open state. So we can write:

$$I_{K} = G_{K}(V - E_{K})$$
, $G_{K} = R_{K}^{-1}$

We can model this as a battery in series with a resistor! Why?

Our equation is now:

$$I_{K} + C \frac{dV}{dt} = I_{e}$$

$$G_{K}(V - E_{K}) + C \frac{dV}{dt} = I_{e}$$
, $R_{K} = G_{k}^{-1}$, $\tau = R_{K}C$

$$V + \tau \frac{dV}{dt} = \underbrace{E_K + R_K I_e}_{V_{\infty}}$$

$$V + \tau \frac{dV}{dt} = V_{\infty}, \qquad V_{\infty} = E_K + R_K I_e$$

Response to current injection

A mathematical model of a neuron

• Equivalent circuit model

Alan Hodgkin Andrew Huxley, 1952

The Nernst Potential is different for different ions

Intracellular and extracellular concentrations of ionic species, and the Nernst potential

lon	Cytoplasm (mM)	Extracellular (mM)	Nernst (mV)
K+	400	20	-75
Na ⁺	50	440	

$$E_{Na} = 25mV\ln\left(\frac{440}{50}\right) = 25mV(2.17) = 54.3mV$$

Na+

Na⁺

Na+

Na+

The Nernst Potential is different for different ions

Intracellular and extracellular concentrations of ionic species, and the Nernst potential

lon	Cytoplasm (mM)	Extracellular (mM)	Nernst (mV)
K+	400	20	-75
Na ⁺	50	440	+54
Cl-	52	560	

$$E_{Cl} = -25mV \ln\left(\frac{560}{52}\right) = -25mV(2.38) = -59.4mV$$

The negative here comes from the negative charge of the Cl⁻ ion (q=-e)

The Nernst Potential is different for different ions

Intracellular and extracellular concentrations of ionic species, and the Nernst potential

lon	Cytoplasm (mM)	Extracellular (mM)	Nernst (mV)
K+	400	20	-75
Na ⁺	50	440	+55
Cl⁻	52	560	-59
Ca++	10-4	2	+124

$$E_{Ca} = 12.5 mV \ln\left(\frac{2}{.0001}\right) = 124 mV$$

Why is this 12.5mV?

Outline of HH model

Voltage and time-dependent ion channels are the 'knobs' that control membrane potential.

- Na⁺channels push the membrane potential toward +50mV.
- K⁺ channels push the membrane potential toward -80mV.
- Together these channels give the neural machinery flexible control of voltage!
- for example to generate an action potential

Introduction to Neural Computation

Michale Fee MIT BCS 9.40 Video Module on Integrate and Fire Neuron

Outline of HH model

Voltage and time-dependent ion channels are the 'knobs' that control membrane potential.

- Na⁺ conductance pushes the membrane potential toward +55mV.
- K⁺ conductance pushes the membrane potential toward -75mV.
- Together these conductances (and batteries) give the neuron flexible control of voltage!
 - for example to generate an action potential

We are going to replace the fancy spike generating mechanism in a real neuron with a simplified 'spike generator'.

Louis Lapique, 1907 Knight, 1972

A simplified model of a neuron

spikes as δ – functions

- While APs (spikes) are important, they are not what neurons spend most of their time doing. Spikes are very fast (~1ms in duration).
 - This is much shorter than the typical interval between spikes (~100ms). Most of the time, a neuron is 'integrating' its inputs. (Separation of timescales)
 - All spikes are the same. (No information carried in the details of action potential waveforms.)
 - Spikes tend to occur when the voltage in a neuron reaches a particular membrane potential, called the spike threshold.

The spike generator is very simple. When the voltage reaches the threshold V_{th} , it resets the neuron to a hyper-polarized voltage V_{res} .

Louis Lapique, 1907

Removed due to copyright restrictions: Figure 2D1: Subthreshold membrane potential oscillations in RA neuron. Mooney, R. "<u>Synaptic</u> <u>basis for developmental plasticity in a birdsong nucleus</u>." Journal of Neuroscience 1 July 1992, 12 (7) 2464-2477.

• Let's calculate the firing rate of our neuron

• Let's calculate the firing rate of our neuron

Integrate and fire with leak

What happens just at threshold?

The time to reach thresholo t_t) is:

- very long
- very sensitive to injected current

Lets calculate the injected current required to reach threshold (rheobase).

$$V_{\infty} = V_{th}$$
$$E_L + R_L I_e = V_{th}$$
$$I_{th} = I_e = G_L (V_{th} - E_L)$$

Integrate and fire with leak

$$e^{-\Delta t/\tau} = rac{V_{\infty} - V_{th}}{V_{\infty} - V_{res}}$$

$$\Delta t = -\tau \ln \left(\frac{V_{\infty} - V_{th}}{V_{\infty} - V_{res}} \right)$$

$$f = \Delta t^{-1} = \left[\tau \ln \left(\frac{V_{\infty} - V_{res}}{V_{\infty} - V_{th}}\right)\right]^{-1}$$

Integrate and fire

At high input currents, the solution has a simple approximation

 $V_{\infty} \gg V_{th}, V_{res}$

$$f = \left[\tau \ln \left(\frac{V_{\infty} - V_{res}}{V_{\infty} - V_{th}}\right)\right]^{-1}$$

 $\ln(1+\alpha) \sim \alpha$

$$f = \frac{1}{C\Delta V} (I_e - I_{th})$$

$$I_{th} = G_L (V_{th} - E_L)$$

Integrate and fire

This equation is linear in injected current I_{e} , just like the case of no leak!

$$f = \frac{1}{C\Delta V} (I_e - I_{th})$$

The F-I curve of many neurons look approximately like this!

Figure courtesy of Luo, et al. License: CC BY. Source: "<u>Comparison of the Upper Marginal Neurons of Cortical</u> Layer 2 with Layer 2/3 Pyramidal Neurons in Mouse Temporal Cortex." *Front. Neuroanat.*, 21 December 2017.

We have replaced the fancy spike generating mechanism in a real neuron with a simplified 'spike generator'.

Louis Lapique, 1907 Knight, 1972 MIT OpenCourseWare https://ocw.mit.edu/

9.40 Introduction to Neural Computation Spring 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.