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Learning Objectives for Lecture 17

* Eigenvectors and eigenvalues



Matrix transformations

y = A3

+ In general A maps the set of vectors in IR* onto another set of vectors

in R?.

N det(A)#0



Eigenvectors and eigenvalues

* Matrix transformations have special directions

A:( 1+6 0) A=(1_5 0 )
0 1 0 1+9

e L. // L.

0
These are all diagonal matrices A:[ A ]
0 A,



Eigenvectors and eigenvalues

« Some vectors are rotated, some are not.

e L, // L.

For a diagonal matrix, vectors along the axes are scaled, but not

rotated.



Eigenvectors and eigenvalues

« Diagonal matrices have the property that they map any vector parallel
to a standard basis vector into another vector along that standard basis
vector.

eigenvalue equation
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« Anyvector y thatis mapped by matrix A onto a parallel vectorAy
is called an eigenvector of A. The scale factor A is called the

—

eigenvalue of vector .

« Amatrixin R" has n eigenvectors and n eigenvalues.



Eigenvectors and eigenvalues

«  What are the special directions of our rotated transformations?

A:q)Aq)T:[ 15 05 ] A:[
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Eigenvectors and eigenvalues

« What are the eigenvectors and eigenvalues of our rotated

transformati®dndatrix ?
AX =aX Remember...
Aé =1 e ho 0
Iz - e. = AN e A=
DAY % =a X i = A6 0 2,
Q' PAD' X =D (aX) So we know the solution if (I)chi =¢,
AD'E =g D'F Ae=aé
Yy
él é — Cll-= )ul-
So the solution to the eigenvalue equation GA®" X =aXx Is
eigenvalues eigenvectors what is this?



Eigenvectors and eigenvalues

The eigenvectors are just the standard basis vectors rotated by the

|

i | ~
matrix @ ! _ (I)el.

o~

The eigenvectors are just the columns of @!



Eigenvectors and eigenvalues

In summary, a symmetric matrix A can always be written as follows:

A= DAD'

where (P is a rotation matrixand A is a diagonal matrix

The eigenvectors of A are the columns of @ ( the basis vectors, f )
O=(

The eigenvalue associated with each eigenvector f, is the diagonal
element A of A.

)




Eigenvectors and eigenvalues

* Note that eigenvectors are not unique...

It X, is an eigenvector of A then so is ax,

|

A% =A% A(ax) = A (ax)

l l
... so we usually write eigenvectors as unit vectors

« For a matrix in n-dimensions... there are n different unit eigenvectors

« For a symmetric matrix, the eigenvectors of A are orthogonal (and we
write them as unit vectors)...

... the eigenvectors of A form a complete orthonormal basis
set!



Eigenvectors and eigenvalues

What are the eigenvalues of a general 2-dim matrix A ?

AX=AX we only want solutions where
AX= AL 0
(A= A1)%=0 det(A-AI)=0

z(j Z] A—/II:[ “r d’jl] det(A—A1)=(a—A)(d—A)—bc

det(A—Al)=(a—A)(d—2A)—bc = 0
ad—Aa+d)+ A —bc =0
Characteristic equation of matrix A

/12—(a+d)7t+(ad—bc) =0



Eigenvectors and eigenvalues

« What are the eigenvalues of a general 2-dim matrix?

Characteristic equation of matrix A

A —(a+d)A+(ad—bc) = 0

 Solutions are given by the quadratic formula

2= (a+d)i%\/(a—d)2+4bc

\ J
) 4

1
2

eigenvalues can be real, complex, imaginary



Eigenvectors and eigenvalues

Ay =

) %(a+d)i%\/(a—d)2+4bc

* For a symmetric matrix

|

A=| @ D Ao 372 172
b d 1/2 1/2
2
2, =(a+d)t+Jla-d) + 45 A;(Ll)il (é_lj +4(
2 27, ) >0 To2\2 2) 2\\2 2
Y >
The eigenvalues of a symmetric matrix are
always real. A :1+£



Eigenvectors and eigenvalues

Let's consider a special case of a symmetric matrix

A:( a b ] lizé(a+d)i%\/(a—d)2+4b2
b a

A, =a+b A_=a-b
A% =A%



Eigen-decomposition

The process of writing a matrix A as A = @AD" is called eigen-
decomposition. It works for any symmetric matrix.

o the eigenvalues A, are real numbers

o the eigenvectors f, form an orthogonal basis set

A0

Let's rewrite... A =DAD A=
0 A,

AD = PAD' O

Eigenvalue equation

AD = DA

is equivalent to the set of equations Af=Af
l l l



Eigenvectors and eigenvalues

« MATLAB®has a function ‘eig’ to calculate eigenvectors and
eigenvalues

A=FVF'
>> [F,V]l=eig(A)
F =
>> A=[1.5 0.5;0.5 1-5] > F*V*F.
A - -0.7071  ©.7071
0.7071  0.7071 ans =
1.5000  0.5000 1.5000  0.5000
2:50680 15800 V = 0.5000  1.5000
1 0
0 2

18



Learning Objectives for Lecture 17

 Variance and multivariate Gaussian distributions



Variance

e Let's say we have m observations of a variable x;

. N(x)
X, j=1,2,3....m
\ M
jth observation of X < ? > X
U

« The mean of these observations is U= <x> — lzx(i)
m-_

« Thevarianceis ¢’ = i(x(” —,u)2

1
m



Variance

Now let’s say we have m simultaneous observations of variables

and . X, X, e
() oy
xl, , j=1,2,3.....m ‘uz—>%< L , X,
xz(J)) A TR

e The mean and variance of X, and X, are:

IS5 ,0 _1N D
Gz:li(xf”—pq)z Gz:li(x(”—,uz)z
1 ms 2 ms 2



Covariance

uncorrelated correlated
N 'xl N 'x2
o, K o, P K
< E — % < .._£ > X,
SR o,=0 " ...% o, >0
A\ A\

X, has the same variance in both of these cases... also X,

« So we need another measure to describe the relation between X, and X, -

covariance correlation

Gl 2

o0z X ) ) P T



(Gaussian distribution

« Many kinds of data can be fit by a Gaussian distribution

If x is a Gaussian random variable
P(x) probability ‘density’

1
1 =y
P(x)= e 20

> X o\2m

U

« Gaussian is defined by only its mean and variance.

To find the Gaussian that best fits our
data —

Just measure the mean and variance! <




(Gaussian distribution

*  We are going develop a description of Gaussian distributions in higher
dimensions

* Develop deep insights into high-dimensional data

We will develop this description using vector and matrix notation

o vectors and matrices are the natural format to manipulate
data sets

o very compact notation

o manipulations are trivial in MATLAB®



Multivariate Gaussian distribution

« We can create a Gaussian distribution in two dimensions

Two independent Gaussian random variables x; and X,

P(x,x)= P(x)P(x,)

1, 1,
SN TN
normalization to/
make total prob = 1 —%(X1Z+X22)
ldz

P(%) = Be 2

a’2=|5c’|2=x X

d = Mahalanobis Distance

X

P(Xz)/
N

X

N

::’;&
. =l
9

Isotropic multivariate Gaussian
distribution

25



Multivariate Gaussian distribution

Y

N

N

Isotropic

_LyTy
P(y) = Be 20

62

variance

N

Y

N

N
[] .. ‘h.'. °

A 4

Non-isotropic:
no correlation

17 a1

PG)=pe? "
ol 0
A=
0 o/’

variance matrix

N

N
i
\ 4
~

Y = OAD'

v

Non-isotropic:
with correlation

1 -T'sv—1=

~ —5Y XY
P(y) = Be 2
2
Z_ 0, O,
2
612 62

covariance matrix



Multivariate Gaussian distribution

. . . . . . 2)
isotropic: variance = isotropic: variance = O

X Y2

N N

. y
X o |° .
P(Xz)/ J/ / .o /
A A

\
YN B

N

N
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Multivariate Gaussian distribution

P(y) =? - = isotropic: variance = ¢~
y - Gx yz
1_7 1
. —5% X ~ y
P(xX) = Be 2 X=0y -/
P(yz) o Culye .
< - —T > N
What is the Mahalanobis distance? \ o
(o)
T
d>=¥%=(c"'v) (67'y \
(075) (o7'5) el
_ yTG—lg—ly P(y)
d2 — yTG—Zy



Multivariate Gaussian distribution

Isotropic Non-isotropic

X Y

N N

X

P(xz)/ -|/
g

\

N
N

FAN

AN OIS

P(x)

29



Multivariate Gaussian distribution

Y
- - - 1— N
y=38x x=85"y
P(y,) R
< ., y .-.KZ". > Y
What is the Mahalanobis distance? § LY IR
T v

P(y)
— yTS—lS—ly
=y 387y 2 i
- o) 0 _ O, 0
I A A'=5"= 0 5 A= .
"=y Ay %, 0 o,
1 (2 w2 matrix of variances
I A—l5 U o»
P(y) — ﬁe 2 — ﬁe 2 o, O,



Multivariate Gaussian distribution

Pes)/
\

S =

Isotropic

X

N

—

Non-isotropic:

with correlation
b))
N

N

PaN

N

y .
P(y,) | .° .
> X .':.':.': = >V

P(x,)

stretch matrix

|

0
0 o,

rotation matrix

O

31



Covariance matrix

y=0OS®'X =SS0y

Y2
N
. L y
What is the Mahalanobis distance? P(yz/
< .-:':-'.“: > yl
T °e® | o
d’= X% = (05'P'y) (05 'D'y) * Ll
=y OS5 'O PSPy
\ 4
— *T@S—Z(DTS; %\
P
= 7 OA' D'y O
2 Ty~ 2
d- = yXy - - 0, ©
y &~y > — AP’ Y — I 12
1 612 62
5y =pe 0 T = OAD
P(y) = Be 2 = covariance matrix

32



Multivariate Gaussian distribution

Y

N

N

Isotropic

_LyTy
P(y) = Be 20

62

variance

N

Y

N

N
[] .. ‘h.'. °

A 4

Non-isotropic:
no correlation

17 a1

PG)=pe? "
ol 0
A=
0 o/’

variance matrix

N

N
i
\ 4
~

Y = OAD'

v

Non-isotropic:
with correlation

1 -T'sv—1=

~ —5Y XY
P(y) = Be 2
2
Z_ 0, O,
2
612 62

covariance matrix



N

Eigen-decomposition of the
covariance matrix

32
1 STs-15

. —=V' X7y
P(y) = Be 2
> )

> =pA'D

Y = PAD'

\ 4

Thus, our covariance matrix is just a transformation matrix that turns an Isotropic
Gaussian distribution (of variance 1) into non-isotropic multivariate Gaussian.

The eigenvectors of the covariance matrix are just the basis vectors of the
rotated transformation.

And the eigenvalues of the covariance matrix are are the variances of the
Gaussian in the directions of these basis vectors.
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« Computing a covariance matrix from data



How do we fit a Gaussian to
multivariate data?

e |n 1-dimension
To find the Gaussian that best fits our ;
data - i o’
Just measure the mean and variance! <« : >

« Compute the covariance matrix! %

X9 i=1,2,3...m

* First we subtract the mean

—_

Z(J) — ¥ _ ﬁ ,L_i —

I [~
~
ﬂk
N




Computing the covariance matrix
from data

« Compute the covariance matrix of a set of multivariate
observations

A
X9 j=1,23....,m .
 First we subtract the mean < LH*\ > 7
< e J° o S|
o Y Vel o)
~ - . _ ~() /
z(”:x(“—,u ,u——Exf <
ms
A\

m
4 2 _ I (. _ I (')N
5 61 —mZZl Zl GIZ_ZZZIJ%]
Z _| 6 Op J=1 =1
T 2
621 62 1 m 1 m
— (J)(J) 2 __ 4 () (J)
\ ‘721—_222 g 0, —mzzz ")
m-i— j=1



Outer product

We are going to implement a useful trick called the vector
‘outer product’.

Inner product 7= 4
(4 2) 2 )
=T = 1 < —|=>
2 7= ! —‘Z‘
i
Ix2 2x1 I x1

. _ RGO f \
@) @),

2x1 1x2 2x?2



Computing the covariance matrix

()
» The covariance matrix has a simpler form using 0 Zl(])
outer product. 27 = ()
2
m m (), () (), ()
LZ =) (2D — iz 27" 8y
m 4 z7(27) = m 4 Do) oD



Computing the covariance matrix

Representing data as a matrix

We have m observations of vector 7 7U) = Nei=l.m
ZZJ
Put them in matrix form as follows
7 = (2(1) 7@ 73 Z(m))
j =1 2 3 ... m = number of samples
U Qi dimension of
Z = " data vector =2
V =
e o o Qm

nxm

40



Computing the covariance matrix

Now finding the covariance matrix is triviall

Y = Loz

m
,
anzl\
_ 1 41 Q2 Q3 Qp 42 22 012 P
- 4343 | T >
m\ 4, <& G370 Sp 0, Oy
\ mam )

2xm mx?2 2x?2



Subtracting the mean

The covariance calculation we just did assumes the data were
mean-subtracted. How to subtract the mean?

We have m observations of vector ¥

X = I P T .
X1 Xy Xz Xy,

nxm

First compute the mean in matrix notation and make a matrix
with m copies of this column vector.

Mu=mean(X,2); M= He B A
MU=repmat(mu,1,m); I U

nxm
Now subtract this from X to get Z

/=X-MU;

Hy
H

J

Hy
H

J

42
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* Principal Components Analysis (PCA)



Principal Components Analysis

* A method for finding the directions in high-dimensional data that

.. i Eigenfaces
contain information. 9

Genetic profiling Single-cell
transcriptional profiling

Screen shot © mikedusenberry.com. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/fag-fair-use/.

Eigenworm

Spike Sorting

Screen shot ©JoVE. All rights reserved. This content is
excluded from our Creative Commons license. For more

Figure 12 by Hwang, Wen-lyi, et al., “Efficient Architecture for Spike Sorting in Reconfigurable . . ) .
J y & y B & & information, see https://ocw.mit.edu/help/fag-fair-use/.

Hardware.” Sensors 13 no. 11 (2013): 14860-14887. MDPI Open Access. License: CC BY.



https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://doi.org/10.3390/s131114860
https://doi.org/10.3390/s131114860

PCA demo on Gaussian points

o L[ 1 - . V30
21 o (V3)
7=0SD' %
I
X m=500; 7

X=randn(2,m);

R=[1-1;1 1]/sqrt(2);
S=[1.73 0;0 0.577];
%

Z=R*S*R'*X;



PCA demo on Gaussian points

Q\
O
o
{ PC1
Z — —z777 Fe 0.72 -0.70
m 0.70 0.72 ~ —
z,=F
>=FVF' s 328 0
B 0 0.31
Q=2*Z'/m,; F=-fliplr(F); Zf=F"*Z,

[FV]=eig(Q); V=flip(sum(V));



Clustering

PC2

PC1

Q=2*Z'/m;
[FV]=eig(Q); Zf=F'*Z;



PCA on time-domain signals

* Let’s look at a problem in the time domain.
* Here we have many examples of a noisy signal in time.

Each example has 100 time points

()
X
¥ = X |1 n=100
)
There are 200 different vectors
X = ( FD 2 23 g<m>) X=| nxm 100

m =200 200



Covariance matrix

Do PCA

o Subtract the mean

o Compute the covariance matrix

o Find the eigenvectors and 2

eigenvalues

Mu=mean(X,2);
MU=repmat(mu,1,m);
/=X-MU;

Q=Z*Z'/m;

[FV]=eig(cov);

— 77"



[FV]=eig(cov);
var=flip(sum(V));

The first two eigen-
values are much larger
than all the rest

The first two eigen-
values explain over
60% of the total

variance.

Eigenvalues

7 signal

noise

50



Eigenvectors

« Since there were only two large eigenvalues, we look at the
eigenvectors associated with these eigenvalues

* These are just the first two columns of the F matrix olot(F(:,3), 'r")
plot(F(:,4), 'g’)

plot(F(:,1), 'r’)
plot(F(:,2), 'g’)



Principal components

* Principal components are just the projections of each of the original
data vectors onto the two principal eigenvectors.

* Remember, this is just a change of basis using the matrix F

s =FT7 Zf=F'*Z;
;=12

plot(zf(1,:),2f(2,:), ‘0’) plot(zf(2,:),2f(3,:), ‘0’)



Filtering using PCA

Only the first two entries in the column vectors Zf (in the rotated
basis) have signal. So keep only the first two and set the rest to

zero.
Zf=F'*Z;
Zffilt=Zf;

Then rotate back to the original basis set Zffilt(3:end, :)=0;
Zflt=F*Zffilt;
Xflt=Zflt+MU;

Before filtering After filtering



Learning Objectives for Lecture 17

Eigenvectors and eigenvalues
Variance and multivariate Gaussian distributions
Computing a covariance matrix from data

Principal Components Analysis (PCA)
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