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Learning Objectives for Lecture 17 

• Eigenvectors and eigenvalues 

• Variance and multivariate Gaussian distributions 

• Computing a covariance matrix from data 

• Principal Components Analysis (PCA) 
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Matrix transformations 
y = Ax 

• In general A maps the set of vectors in R2 onto another set of vectors 

in R2 . 

A 

A−1 

det(A) ≠ 0 
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Eigenvectors and eigenvalues 
• Matrix transformations have special directions 

A = 
⎛ 1+ δ 0 ⎞ 
⎝⎜ 0 1 ⎠⎟ 

A = 
⎛ 
⎜
⎝ 

1−δ 0 
0 1+δ 

⎞ 
⎟
⎠ 

⎛ λ1 0 ⎞ 
These are all diagonal matrices Λ = ⎜ ⎟ 

⎜ 0 λ2 ⎟ 5 ⎝ ⎠ 



          

Eigenvectors and eigenvalues 
• Some vectors are rotated, some are not. 

• For a diagonal matrix, vectors along the axes are scaled, but not 
rotated. 

⎛ 
⎜ 

0 ⎞ λ1 ⎛ 1
0 

⎞ ⎛ 
⎠⎟ 
= λ1 

1
0 

⎞ Λ ê1 = λ1 ê1 ⎟ 
⎝⎜ ⎝⎜ ⎠⎟ 0 λ2 ⎜⎝ ⎟⎠ 

⎛ 
⎜ 

0 ⎞ λ1 ⎛ 0
1 

⎞ ⎛ 
⎠⎟ 
= λ2 

0
1 

⎞ Λ ê2 = λ2 ê2 ⎟ 
⎝⎜ ⎝⎜ ⎠⎟ λ2 ⎜⎝ ⎟⎠ 0
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Eigenvectors and eigenvalues 
• Diagonal matrices have the property that they map any vector parallel 

to a standard basis vector into another vector along that standard basis 
vector. 

eigenvalue equation 
⎛ λ1 0 0 

0 λ2 0 

0 0 λ3 

⎞ 
⎜ 
⎜ 
⎜⎜⎝ 

⎟ 
⎟ 
⎟⎟⎠ 

Λ êi = λi êi , i = 1,2....n Λ = 

 • Any vector v that is mapped by matrix A onto a parallel vector v 
is called an eigenvector of A. The scale factor λ is called the 

λ 
 

 
eigenvalue of vector v . 

• A matrix in Rn has n eigenvectors and n eigenvalues. 
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Eigenvectors and eigenvalues 
• What are the special directions of our rotated transformations? 

⎛ 1.5 0.5 ⎞ ⎛ 2 0 ⎞ ⎛ 1 −1 1 A = ΦΛΦT = Φ(450) Λ = 
⎝⎜ ⎠⎟ = 0.5 1.5 ⎝⎜ 0 1 ⎠⎟ ⎜

⎝ 1 1 2 

⎞ 
⎟
⎠ 

8 



         
                    

 

 

 

 

 
  

 

                             

  

Eigenvectors and eigenvalues 
• What are the eigenvectors and eigenvalues of our rotated 

transformation matrix ? A = ΦΛΦT 

 A 
 Remember… xi = ai xi ⎛ λ1 0 ⎞ 
  Λ êi = λi êi Λ = ⎜ ⎟ ΦΛΦT xi = ai xi ⎜⎝ 0 λ2 ⎟⎠ 
  ΦT ΦΛΦT xi = ΦT (ai xi ) So we know the solution if ΦT x i = êi 

Λ êi = ai êi 

êi êi ⇒ ai = λi 

 So the solution to the eigenvalue equation ΦΛΦT x i = ai xi is: 

eigenvalues 
xi = Φêi 

eigenvectors what is this? 

ai = λi 

Λ ΦT xi = ai Φ
T xi 
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Eigenvectors and eigenvalues 

1
1 

• The eigenvectors are just the standard basis vectors rotated by the 
 matrix Φ ! xi = Φêi 

⎞ 
⎠⎟ ⎞ 

⎠⎟ 

1
1 

⎛ ⎞ 1 −1 1 Φ(450) = 
2 ⎜⎝ 

⎟
⎠ 1 1 

f̂1 = 
1 

2 

−1 
1 

⎛ 

⎝ 
⎜

⎞ 

⎠ 
⎟

1 ⎛ f̂1 = 
⎝⎜ 2 ⎛ ⎞ 1 −1 ⎛ 

x! 1 Φ ê1 

1 ⎛ ⎞ 1 ⎜⎜ ⎜
⎝ 
⎟⎟ ⎟

⎠ 
= = = 

⎝⎜ 1 1 0 2 ⎝ ⎠ 

⎛ 
⎟
⎠ 

1
1 ⎜

⎝ 2 

− ! 1 ⎛ 1 −1 ⎞ ⎛ 0 ⎞ = Φ ê2 = = x2 ⎜ ⎟ 2 ⎝ 1 1 ⎠ ⎝⎜ 1 ⎠⎟ 

1 

2 

⎞ 1 

The eigenvectors are just the columns of Φ! 
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Eigenvectors and eigenvalues 
• In summary, a symmetric matrix A can always be written as follows: 

A = ΦΛΦT 

where Φ         is a rotation matrix and  Λ is a diagonal matrix 

• The eigenvectors of A are the columns of Φ ( the basis vectors, f̂  i ) 

Φ = ( f̂1 f̂2 ) 
• The eigenvalue associated with each eigenvector f̂  i is the diagonal 

element λi of Λ . 
⎛ λ1 0 ⎞ 

Λ = ⎜ ⎟ 
⎜ 0 λ2 ⎟ ⎝ ⎠ 
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Eigenvectors and eigenvalues 
• Note that eigenvectors  unique… not are 

xi 

  If xi is an eigenvector of A then so is axi 
 A 

xi = λi xi A(a 
xi ) = λi ( a ) 

… so we usually write eigenvectors as unit vectors 

• For a matrix in n-dimensions… there are n different unit eigenvectors 

• For a symmetric matrix, the eigenvectors of A are orthogonal (and we 
write them as unit vectors)… 

… the eigenvectors of A form a complete orthonormal basis 
set! 
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Eigenvectors and eigenvalues 
• What are the eigenvalues of a general 2-dim matrix A ? 

A 
x = λ x we only want solutions where 

x ≠ 0 A 
x = λI x 

(A − λI ) x = 0 det(A − λI ) = 0 

⎛ a b ⎞ ⎛ a − λ b ⎞ 
A = A − λI = det(A− λI ) = (a − λ )(d − λ ) − bc 

⎝⎜ c d ⎠⎟ ⎝⎜ c d − λ ⎠⎟ 

det(A− λI ) = (a − λ )(d − λ ) − bc = 0 

ad − λ (a + d) + λ2 − bc = 0 

Characteristic equation of matrix A 

λ2 − (a + d)λ + (ad − bc) = 0 13 



       

    

   

   

Eigenvectors and eigenvalues 
• What are the eigenvalues of a general 2-dim matrix? 

Characteristic equation of matrix A 

λ2 − (a + d)λ + (ad − bc) = 0 

• Solutions are given by the quadratic formula 

λ± = 
1 

2 

1 

2 
( ( ) ± )2 + 4bc a + d a − d 

eigenvalues can be real, complex, imaginary 
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Eigenvectors and eigenvalues 
1 1 

2 
( )2 + 4bc ( ) ± a + d a − d λ± = 

• For a symmetric matrix 

2 

⎛ a b ⎞ ⎛ 3 / 2 1/ 2 ⎞ A = A = 
⎝⎜ b d ⎠⎟ ⎝⎜ 1/ 2 1/ 2 ⎠⎟ 

⎛ 
⎝⎜ ⎠⎟ ⎝⎜ ⎠⎟ 

2 2 1 1 
λ± = 

1 

2 
⎛ 
⎝⎜ 
3 1 1 3 1 1 ( ⎞ 

⎠⎟ ± ⎞ ⎛ ⎞ )2 + 4b2 

2 
(a + d) ± a − d + 4 λ± = − + 2 2 2 2 2 2 2 ≥ 0 

The eigenvalues of a symmetric matrix are 
always real. 2 λ± = 1 ± 

2 
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Eigenvectors and eigenvalues 
• Let’s consider a special case of a symmetric matrix 

1 1 ⎛ a b ⎞ λ± = 
2 
(a + d) ± (a − d)2 + 4b2 

A = 2 
⎝⎜ b a ⎠⎟ 

λ+ = a + b λ− = a − b  Ax+ = λ+ x+ 

⎛ ⎞  a b = (a + b)  x+ x+ ⎝⎜ b a ⎠⎟ 

⎛ a b ⎞  ⎛ a + b 0 ⎞  x+ = x+ ⎝⎜ b a ⎠⎟ ⎝⎜ 0 a + b ⎠⎟ 

⎛ −b b ⎞ x+ = 0 ⎜⎜ ⎟⎟ b −b ⎝ ⎠ 

⎛ −1 1 ⎞ ⎛ x1 
⎞ ⎛ ⎞  1 x1 = s  1 1 ⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟ 
= 0 x+ = x− = 

⎝ 1 −1 ⎠ ⎝ x2 ⎠ x2 = s 2 ⎝⎜1⎠⎟ 2 

−1 
1 

⎞ 
⎟
⎠ 

⎛ 
⎜
⎝ 
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Eigen-decomposition 
• The process of writing a matrix A as A = ΦΛΦT is called eigen-

decomposition. It works for any symmetric matrix. 

o the eigenvalues λi are real numbers 

o the eigenvectors f̂  i form an orthogonal basis set 

⎛ λ1 0 ⎞ 
• Let’s rewrite… A = ΦΛΦT Λ = ⎜ ⎟ 

⎜ 0 λ2 ⎟ ⎝ ⎠ 
AΦ = ΦΛΦT Φ 

• Eigenvalue equation AΦ = ΦΛ 

is equivalent to the set of equations A f̂  i = λi f̂  i 

17 



      
 

Eigenvectors and eigenvalues 
• MATLAB® has a function ‘eig’ to calculate eigenvectors and 

eigenvalues 

A = FV FT 

18 



Learning Objectives for Lecture 17

• Eigenvectors and eigenvalues

• Variance and multivariate Gaussian distributions

• Computing a covariance matrix from data

• Principal Components Analysis (PCA)
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• Let’s say we have m observations of a variable     .

20

Variance

x

x( j ) , j = 1,2,3....,m

x

N(x)

jth observation of x

= 1
m

x(i )
i=1

m

∑• The mean of these observations is µ = x

µ

σ 2 = 1
m

x(i ) − µ( )2
i=1

m

∑• The variance is

σ 2
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Variance
• Now let’s say we have m simultaneous observations of variables      

and     . x1 x2

, j = 1,2,3....,m
x1
( j )

x2
( j )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x1

x2

µ1 =
1
m

x1( j )
j=1

m

∑

σ1
2 = 1

m
x1( j ) − µ1( )2

j=1

m

∑

µ2 =
1
m

x2( j )
j=1

m

∑

σ2
2 = 1

m
x2( j ) − µ2( )2

j=1

m

∑

• The mean and variance of      and      are:x1 x2

σ1
2

µ1

σ2
2

µ2
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Covariance

x1

x2

x1

x2
uncorrelated correlated

• has the same variance in both of these cases… alsox1 x2

σ12 = 0

• So we need another measure to describe the relation between     and     . x1 x2

σ12 > 0

σ12 =
1
m

x1
( j ) − µ1( ) x2( j ) − µ2( )

j=1

m

∑

covariance

ρ =
σ12
σ1

2σ2
2

correlation

σ1
2 σ1

2

σ2
2 σ2

2
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Gaussian distribution
• Many kinds of data can be fit by a Gaussian distribution

P(x) = 1
σ 2π

e−
1
2σ 2 (x−µ )2

probability ‘density’ 

If       is a Gaussian random variablex

x

P(x)

σ

µ

• Gaussian is defined by only its mean and variance.

x

To find the Gaussian that best fits our 
data –

Just measure the mean and variance!

σ 2

µ
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Gaussian distribution
• We are going develop a description of Gaussian distributions in higher 

dimensions

• We will develop this description using vector and matrix notation

o vectors and matrices are the natural format to manipulate 
data sets

o very compact notation 

o manipulations are trivial in MATLAB®

• Develop deep insights into high-dimensional data
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Multivariate Gaussian distribution

 P(
!x) = β e−

1
2d

2

P(x1)P(x2 )

x1

x2

 
x

= β e−
1
2 x1

2+x22( )

= β e−
1
2x1

2

e−
1
2x2

2

 d
2 = !x 2 = !xT !x

• We can create a Gaussian distribution in two dimensions

Two independent Gaussian random variables        and x1 x2

P (x1, x2 ) =

Isotropic multivariate Gaussian 
distribution

P(x1)∝e
−12x1

2

x1

P(x2 )

x2

normalization to 
make total prob = 1

d = Mahalanobis Distance
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Multivariate Gaussian distribution

y1

y2

 P(
y) = β e−

1
2
yTΣ−1y

Σ = σ1
2 σ12

σ12 σ2
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Non-isotropic: 
with correlation

covariance matrix

Non-isotropic: 
no correlation

Λ =
σ1
2 0

0 σ2
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 P(
y) = β e−

1
2
yTΛ−1y

variance matrix

y1

y2

 P(
y) = β e

− 1
2σ2

yT y

Isotropic

σ 2

variance

y1

y2

Σ = ΦΛΦT
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σ

σ

P(x1)

x1

x2

P(x2 )
 
x

y1

y2
isotropic: variance = 

 
y =σ x

 
y

σ 2isotropic: variance = 1 

Multivariate Gaussian distribution

1
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 P(
x) = β e−

1
2
xT x

 
x =σ−1y

 
y =σ x

 
d 2 = !xT !x = σ−1!y( )T σ−1!y( )

 = β e
−12

y 2

σ2 P(
y) = β e

−12
yT y
σ2

⎛

⎝⎜
⎞

⎠⎟

 =
yTσ−1σ−1y

 d
2 = !yTσ−2 !y

Multivariate Gaussian distribution

P(y1)

σ

P(y2 )

σ

y1

y2
isotropic: variance = 

 
y

σ 2
 P(
y) = ?

What is the Mahalanobis distance?
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y

S =
σ1 0
0 σ2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

σ1

σ2

P(x1)

x1

x2

P(x2 )
 
x

Isotropic

y1

y2
Non-isotropic

 
y = S x

Multivariate Gaussian distribution
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x = S−1y 

y = Sx

 
d 2 = !xT !x = S−1!y( )T S−1!y( )

= β e
−12

y1
2

σ1
2 +

y2
2

σ2
2

⎛

⎝⎜
⎞

⎠⎟

y1

y2

P(y2 )  
y

σ2

P(y1)

σ1

 P(
y) = β e−

1
2
yTΛ−1y

 =
yTS−1S−1y

 d
2 = !yTΛ−1!y

Λ−1 = S−2 =
σ1

−2 0

0 σ2
−2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Multivariate Gaussian distribution

 =
yTS−2 y

Λ =
σ1
2 0

0 σ2
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

matrix of variances

What is the Mahalanobis distance?
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P(x1)

x1

x2

P(x2 )
 
x

y1

y2

P(y2 )
 
y

σ2

P(y1)

σ1

Φ
rotation matrixS =

σ1 0
0 σ2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

stretch matrix

Isotropic Non-isotropic: 
with correlation

Multivariate Gaussian distribution

 
y = ΦSΦT x
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Σ−1 = ΦΛ−1ΦT

 
x = ΦS−1ΦT y 

y = ΦSΦT x

 
d 2 = !xT !x = ΦS−1ΦT !y( )T ΦS−1ΦT !y( )

 P(
!y) = β e−

1
2
!yTΣ−1!y

 =
yTΦS−1ΦTΦS−1ΦT y

 =
yTΦS−2ΦT y

 =
yTΦΛ−1ΦT y

Covariance matrix

 d
2 = !yTΣ−1!y Σ = σ1

2 σ12
σ12 σ2

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

covariance matrix

y1

y2

P(y2 )
 
y

σ2

P(y1)

σ1

What is the Mahalanobis distance?

Σ = ΦΛΦT
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Multivariate Gaussian distribution

y1

y2

 P(
y) = β e−

1
2
yTΣ−1y

Σ = σ1
2 σ12

σ12 σ2
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Non-isotropic: 
with correlation

covariance matrix

Non-isotropic: 
no correlation

Λ =
σ1
2 0

0 σ2
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 P(
y) = β e−

1
2
yTΛ−1y

variance matrix

y1

y2

 P(
y) = β e

− 1
2σ2

yT y

Isotropic

σ 2

variance

y1

y2

Σ = ΦΛΦT
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Σ−1 = ΦΛ−1ΦT
 P(
y) = β e−

1
2
yTΣ−1y

Eigen-decomposition of the 
covariance matrix

Σ = ΦΛΦT

• Thus, our covariance matrix is just a transformation matrix that turns an isotropic 
Gaussian distribution (of variance 1) into non-isotropic multivariate Gaussian.

• The eigenvectors of the covariance matrix are just the basis vectors of the 
rotated transformation.  

• And the eigenvalues of the covariance matrix are are the variances of the 
Gaussian in the directions of these basis vectors. 

y1

y2



Learning Objectives for Lecture 17

• Eigenvectors and eigenvalues

• Variance and multivariate Gaussian distributions

• Computing a covariance matrix from data

• Principal Components Analysis (PCA)
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• Compute the covariance matrix!

36

How do we fit a Gaussian to 
multivariate data?

 

µ

• First we subtract the mean

 
x( j )

 
x( j ) , j = 1,2,3....,m

 


µ = 1

m
x( j )

j=1

m

∑ 
z( j ) = x( j ) −


µ

x1

x2

 
z( j )

x

To find the Gaussian that best fits our 
data –

Just measure the mean and variance!

σ 2

µ

• In 1-dimension



• Compute the covariance matrix of a set of multivariate 
observations

37

Computing the covariance matrix 
from data

• First we subtract the mean

 
x( j ) , j = 1,2,3....,m

 


µ = 1

m
x( j )

j=1

m

∑

σ12 =
1
m

z1( j )z1( j )
j=1

m

∑ σ12 =
1
m

z1( j )z2( j )
j=1

m

∑

σ22 =
1
m

z2( j )z2( j )
j=1

m

∑σ21 =
1
m

z2( j )z1( j )
j=1

m

∑

= σ1
2 σ12

σ21 σ2
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟Σ

z1

 
z( j )

z2

 
z( j ) = x( j ) −


µ

=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟



• We are going to implement a useful trick called the vector 
‘outer product’.

38

Outer product

 

z =
z1
z2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 
z zT =

Outer product

z1 z2( )z1
z2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
z1z1 z1z2
z1z2 z2z2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Inner product

 
zT z =  =

z 2
z1 z2( ) z1

z2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1 x 2 2 x 1 1 x 1

1 x 22 x 1 2 x 2



• The covariance matrix has a simpler form using 
outer product.
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z( j ) =
z1
( j )

z2
( j )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

σ1
2 σ12

σ21 σ22
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟Σ =

Computing the covariance matrix

 
z( j ) (z( j ) )T = z1

( j )z1
( j ) z1

( j )z2
( j )

z2
( j )z1

( j ) z2
( j )z2

( j )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
m j=1

m

∑ 1
m j=1

m

∑



• Representing data as a matrix
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z( j) = z1
( j )

z2
( j )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
, j = 1...m

 

Z =
z11 z12 z13  z1m
z21 z22 z23  z2m

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

n x m

n dimension of 
data vector =2

= number of samples

Computing the covariance matrix

j = 1 2 3 ... m

• We have m observations of vector   
z

 
Z = z(1) z(2) z(3)  z(m )( )

• Put them in matrix form as follows



• Now finding the covariance matrix is trivial!
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= 1
m

z11 z12 z13  z1m
z21 z22 z23  z2m

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

z11 z21
z12 z22
z13 z23

z1mz2m

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=
σ1
2 σ12

σ21 σ22
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
m
Z ZTΣ =

2 x m m x 2 2 x 2

Computing the covariance matrix
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Subtracting the mean

Mu=mean(X,2);
MU=repmat(mu,1,m);

 

X =
x11 x12 x13  x1m
x21 x22 x23  x2m

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

n x m

• We have m observations of vector   
x

• The covariance calculation we just did assumes the data were 
mean-subtracted. How to subtract the mean?

• First compute the mean in matrix notation and make a matrix 
with m copies of this column vector.

 

Μ =
µ1 µ1 µ1  µ1
µ2 µ2 µ2  µ2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

n x m
• Now subtract this from X to get Z

Z=X-MU;

µ1
µ2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟



Learning Objectives for Lecture 17

• Eigenvectors and eigenvalues

• Variance and multivariate Gaussian distributions

• Computing a covariance matrix from data

• Principal Components Analysis (PCA)
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Principal Components Analysis
Eigenfaces

• A method for finding the directions in high-dimensional data that 
contain information.

Eigenworm

Single-cell 
transcriptional profiling

Spike Sorting

Genetic profiling

Screen	shot	©JoVE.	All	rights	reserved.	This	content	is	
excluded	from	our	Creative	Commons	license.	For	more	
information,	see	https://ocw.mit.edu/help/faq-fair-use/.

Screen	shot	©mikedusenberry.com.	All	rights	reserved.	This	
content	is	excluded	from	our	Creative	Commons	license.	For	
more	information,	see	https://ocw.mit.edu/help/faq-fair-use/.

Figure	12	by	Hwang,	Wen-Jyi,	et	al.,	“Efficient	Architecture	for	Spike	Sorting	in	Reconfigurable	
Hardware.”	Sensors 13	no.	11	(2013):	14860-14887.	MDPI	Open	Access.	License:	CC	BY.

https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://doi.org/10.3390/s131114860
https://doi.org/10.3390/s131114860
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PCA demo on Gaussian points

R=[1	-1;1	1]/sqrt(2);
S=[1.73		0	;	0		0.577];
%
Z=R*S*R’*X;

Φ = 1
2

1 −1
1 1

⎛

⎝
⎜

⎞

⎠
⎟ S =

3 0

0 3( )−1
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 
z = ΦSΦT x

m=500;
X=randn(2,m);

X Z
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PCA demo on Gaussian points

Q=Z*Z’/m;	
[F,V]=eig(Q);	

Zf=F’*Z;F=-fliplr(F);
V=flip(sum(V));

1
m
Z ZTΣ =

 
zf = F

T z
F =

0.72 −0.70
0.70 0.72

⎛

⎝
⎜

⎞

⎠
⎟

V =
3.28 0
0 0.31

⎛

⎝
⎜

⎞

⎠
⎟Σ = FVFT

PC1

PC
2
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Clustering

Q=Z*Z’/m;	
[F,V]=eig(Q);	 Zf=F’*Z;

PC1

PC
2
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PCA on time-domain signals
• Let’s look at a problem in the time domain.

• Here we have many examples of a noisy signal in time.

Each example has 100 time points

 

x j =

x1
x2

xn

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

n = 100

 
X = x(1) x(2) x(3)  x(m )( )

There are 200 different vectors

m = 200

X =
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

200

n x m 100
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Covariance matrix
• Do PCA

1
m
Z ZTΣ =

o Subtract the mean

o Compute the covariance matrix

o Find the eigenvectors and 
eigenvalues

Mu=mean(X,2);
MU=repmat(mu,1,m);
Z=X-MU;
Q=Z*Z'/m;

[F,V]=eig(cov);
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Eigenvalues

• The first two eigen-
values are much larger 
than all the rest

• The first two eigen-
values explain over 
60% of the total 
variance.

signal

noise

[F,V]=eig(cov);
var=flip(sum(V));
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Eigenvectors
• Since there were only two large eigenvalues, we look at the 

eigenvectors associated with these eigenvalues

• These are just the first two columns of the F matrix

plot(F(:,1),	'r’)
plot(F(:,2),	’g’)

plot(F(:,3),	'r’)
plot(F(:,4),	’g’)
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Principal components
• Principal components are just the projections of each of the original 

data vectors onto the two principal eigenvectors.

Zf=F’*Z;
 
zf = F

T z

• Remember, this is just a change of basis using the matrix F

plot(Zf(1,:),Zf(2,:),	‘o’) plot(Zf(2,:),Zf(3,:),	‘o’)
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Filtering using PCA
• Only the first two entries in the column vectors  Zf (in the rotated 

basis) have signal. So keep only the first two and set the rest to 
zero.

• Then rotate back to the original basis set

Zf=F'*Z;							
Zffilt=Zf;
Zffilt(3:end,:)=0;
Zflt=F*Zffilt;
Xflt=Zflt+MU;

Before filtering After filtering



Learning Objectives for Lecture 17

• Eigenvectors and eigenvalues

• Variance and multivariate Gaussian distributions

• Computing a covariance matrix from data

• Principal Components Analysis (PCA)

54



MIT OpenCourseWare 
https://ocw.mit.edu/ 
 

 
 
9.40 Introduction to Neural Computation 
Spring 2018 
 
 
 
For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.  
 

https://ocw.mit.edu/
https://ocw.mit.edu/terms

