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Spatial receptive fields 

LIGHT 

Video of visual neurons 	of 	a cat from 
Hubel & Wiesel’s experiments. 

Ali Moeeny.	 “Hubel & Wiesel – LGN 
Neuron.” April 23,	 2011. YouTube. 

Figure (annotated) from Introduction to Visual Prostheses	 on Webvision.	 License CC BY-NC. 
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https://www.youtube.com/watch?v=9qg9-nBjUTc
https://www.youtube.com/watch?v=9qg9-nBjUTc
https://www.ncbi.nlm.nih.gov/books/NBK391004/


	 	 	 	 	 	
	 	 	 	 	

	

	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	

Spatial receptive fields 

LIGHT 

Video of visual neurons 	of 	a cat – simple 
and complex cells - from Hubel	 & 
Wiesel’s experiments. 

Ali Moeeny.	 “Hubel & Wiesel – Cortical 
Neuron – V1.” April 23,	 2011. YouTube. 

Figure (annotated) from Introduction to Visual Prostheses	 on Webvision.	 License CC BY-NC. 
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https://www.youtube.com/watch?v=8VdFf3egwfg
https://www.youtube.com/watch?v=8VdFf3egwfg
https://www.ncbi.nlm.nih.gov/books/NBK391004/


 

         
     

         
         

        
      

           
           

   

Learning objectives for Lecture 9 

• To be able to mathematically describe a neural response as a 
linear filter followed by a nonlinear function. 
– A correlation of a spatial receptive field with the stimulus 
– A convolution of a temporal receptive field with the stimulus 

• To understand the concept of a Spatio-temporal Receptive 
Field (STRF) and the concept of ‘separability’ 

• To understand the idea of a Spike Triggered Average and how 
to use it to compute a Spatio-temporal Receptive Field and a 
Spectro-temporal Receptive Field (STRF). 

4 



 

         
     

         
         

        
      

           
           

   

Learning objectives for Lecture 9 

• To be able to mathematically describe a neural response as a 
linear filter followed by a nonlinear function. 
– A correlation of a spatial receptive field with the stimulus 
– A convolution of a temporal receptive field with the stimulus 

• To understand the concept of a Spatio-temporal Receptive 
Field (STRF) and the concept of ‘separability’ 

• To understand the idea of a Spike Triggered Average and how 
to use it to compute a Spatio-temporal Receptive Field and a 
Spectro-temporal Receptive Field (STRF). 
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Spatial receptive fields 
• How do we represent receptive fields mathematically? 

• At the simplest level, we think of the receptive field (RF) as the region 
of visual space that causes the neuron to spike. 

• But a visual neuron doesn’t respond to any stimulus within this RF. It 
responds selectively to certain ‘features’ in the stimulus. 

• We can think of a neuron as having a filter (G) that passes certain 
features in both space and time. 

• The better the stimulus ‘overlaps’ with the filter, the more the neuron 
will spike. 
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Spatial receptive fields 
• How do we represent receptive fields mathematically? 

Start by describing the spatial part of this filter. 

output spike 
filter x nonlinearity generator 

y 

I(x, y) L = [G I( )y, x ] [r = r0 + L]+ PT [n] 
stimulus Poisson 

process 
response filter stimulus firing rate 

Image of mouse in public domain.	 
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Spatial receptive fields 
• How do we represent receptive fields mathematically? 

We are going to consider the simplest case in which the response 
of a neuron is given by a linear filter acting on the stimulus. 

r = r0 + ∫∫G(x, y)I(x, y)dx dy 

Let’s look at this in one dimension 

x 

y 
G(x, y) 

G(x) 
x 
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r = r0 + ∫G(x)I(x)dx 
Like a correlation ∑Gi Ii 

i 



     

Spatial receptive fields 
• How do we represent receptive fields mathematically? 

G(x) 

x 

x 

I(x) 

G(x)I(x) 
x 

G(x)I(x) 

G(x) 

I(x) 

∫G(x)I(x)dx big ∫G(x)I(x)dx small 9 



   

Linearity 
• Response varies linearly with overlap 

G(x) 

I(x) 

G(x)I(x) 

G(x) 

x 

x 

I(x) 

G(x)I(x) 
x 

∫G(x)I(x)dx big ∫G(x)I(x)dx half as big 10 



            
  

 

  
 

 
 

Temporal receptive fields 

• We can also think of the response of a neuron as some 
function of the temporal variations in the stimulus. 

Time-dependent 
firing rate firing rate 

r(t) = r0 + D S(t) [ ] 

Stimulus Filter Spontaneous 
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Temporal receptive fields 
• We can think of ‘overlap’ in the time domain! That there 

is a particular ‘temporal profile’ of a stimulus that makes a 
neuron spike. 

S(t) time 

Does this look familiar? 
12 



      

          
    

 

Temporal receptive fields 
∞ 

Convolution!! r(t) = r0 + ∫ D(τ )S(t −τ )dτ 
−∞ 

D(τ ) 

τ 

Linear temporal response kernel. (Or ‘temporal kernel’) 

It is linear in the sense that if we make the stimulus partial, or 
weaker, the response changes linearly. 
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Learning objectives for Lecture 9 

• To be able to mathematically describe a neural response as a 
linear filter followed by a nonlinear function. 
– A correlation of a spatial receptive field with the stimulus 
– A convolution of a temporal receptive field with the stimulus 

• To understand the concept of a Spatio-temporal Receptive 
Field (STRF) and the concept of ‘separability’ 

• To understand the idea of a Spike Triggered Average and how 
to use it to compute a Spatio-temporal Receptive Field and a 
Spectro-temporal Receptive Field (STRF). 
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• This is called the spatio-temporal receptive field (STRF).

Spatio-temporal receptive fields

• Let’s imagine a stimulus that is a function of space and time, 
like the light falling on a retina: I(x, y,t)

• But now we are going to simplify things by considering only 
one spatial dimension: I(x,t)

r(t) = r0 + dxdτD(x,τ )I(x,t −τ )
−∞

∞

∫

• Now we are going to put the temporal receptive field and the 
spatial receptive field together in a single object.
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Here we are doing a correlation and a convolution at the same time! 
Correlation in the integral over space and a convolution in the integral 
over time!

Spatio-temporal receptive fields

r(t) = r0 + dxdτD(x,τ )I(x,t −τ )∫∫

16

convolution

r(t) = r0 + dτ
−∞

∞

∫ dxD(x,τ )I(x,t −τ )
−∞

∞

∫

correlation



• If a receptive field is separable in space and time, then 
we can decompose it into a spatial receptive field and a 
temporal receptive field.

Separability
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+-GS (x)

DT (τ )

D (x,τ )

τ

x
Separable

D (x,τ )

τ

x

Inseparable



• If a receptive field is separable in space and time, then 
we can decompose it into a spatial receptive field and a 
temporal receptive field:

Separability

D (x,τ ) =GS (x)DT (τ )

18

r(t) = r0 + dx
−∞

∞

∫ dτD(x,τ )I(x,t −τ )
−∞

∞

∫

 
S(t) = dxG(x) I(x,t)

−∞

∞

∫ Correlation

 
r(t) = r0 + dτ DT (τ )S(t −τ )

−∞

∞

∫ Convolution

where



Representing stimulus and receptive fields in 
space and time

time

space

1 6

4

2

Suppose our stimulus is a bar of light extending from x=2 to x=4
and that is turned on for times from t=1 to t=6

We represent it on a space-time plot as follows:

firing
rate

time

light

r.f.
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Representing stimulus and receptive fields in 
space and time

time

space

1 6

4

2

Suppose we now consider a receptive field D(t,x) with spatial as well
as temporal structure (but ‘space-time separable’: D(t,x) = D(t)D(x) )

firing
rate

time

light
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Response to a moving bar of light

time

space

1 6

4

2

Now suppose our stimulus is moving:

firing
rate

time

light
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Response to a moving bar of light

time

space

1 6

4

2

Now suppose our stimulus is moving in opposite direction:

firing
rate

time

light
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Learning objectives for Lecture 9

• To be able to mathematically describe a neural response as a 
linear filter followed by a nonlinear function.
– A correlation of a spatial receptive field with the stimulus
– A convolution of a temporal receptive field with the stimulus

• To understand the concept of a Spatio-temporal Receptive 
Field (STRF) and the concept of ‘separability’

• To understand the idea of a Spike Triggered Average and how 
to use it to compute a Spatio-temporal Receptive Field and a 
Spectro-temporal Receptive Field (STRF).
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Spike-Triggered Average

 S(t)

spikes

+

+

=

τ
  K(τ )
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K(τ ) = 1

n
S(ti −τ )

i=1

n

∑

Sum over n spikes

 
K(τ ) = 1

n
S(ti −τ )

i=1

n

∑
Trials

Average over trials



Measuring STRFs in the retina

25Marcus Meister Slides	pp	25-31	©	Marcus	Meister.	All	rights	reserved.	This	content	is	excluded	from	our	Creative	Commons	license.	
For	more	information,	see	https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use
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Simultaneous Recording from Retinal Ganglion Cells
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Rabbit ganglion cells responding to a natural movie
“Trees swaying in the breeze”
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27Marcus Meister Slides	pp	25-31	©	Marcus	Meister.	All	rights	reserved.	This	content	is	excluded	from	our	Creative	Commons	license.	
For	more	information,	see	https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use
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Measuring STRFs in the retina

Random flicker stimulus

Marcus Meister Slides	pp	25-31	©	Marcus	Meister.	All	rights	reserved.	This	content	is	excluded	from	our	Creative	Commons	license.	
For	more	information,	see	https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use


Stimulus

Response

Spike-triggered average

Reverse-Correlation to a Random Flicker Stimulus

29Marcus Meister Slides	pp	25-31	©	Marcus	Meister.	All	rights	reserved.	This	content	is	excluded	from	our	Creative	Commons	license.	
For	more	information,	see	https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use


Spatio-Temporal Receptive Fields (STRF)

30Marcus Meister Slides	pp	25-31	©	Marcus	Meister.	All	rights	reserved.	This	content	is	excluded	from	our	Creative	Commons	license.	
For	more	information,	see	https://ocw.mit.edu/help/faq-fair-use/.

See	Lecture	9	video	to	view	the	above	clips.

https://ocw.mit.edu/help/faq-fair-use
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Fig. 3
Expt 12/4/91
File s08
Cell 7
RF file "RF 3x3"
Filtered across 3 data points in
space and time with weights 1-2-1

-0.150 s 0.000 s-0.075 s-0.225 s-0.300 s-0.375 s-0.450 s-0.525 s

Fig. 2
Expt 12/4/91
File s08
Cell 7
RF file "RF 3x3"
Filtered across 3 data points in
space and time with weights 1-2-1
Plotted at 20x contrast. Selected
13x13 pixel region.

Mean Effective Stimulus for an ON cell
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Spectro-temporal receptive fields
We can use this same approach to describe the responses of 
neurons in the auditory system.

32

High frequency sound Low frequency sound

Microphone 
signal

We start by representing sounds in a spectral representation.



Spectrogram
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S( f ,t)

A spectrogram shows how much power there is in a sound at 
different frequencies and at different times.



Spectro-temporal receptive fields

Spectro-temporal receptive fields from A1 in monkey.
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Figures	removed	due	to	copyright	restrictions.	See	Lecture	9	video	or	Figure	1	in	
deCharms,	R.C.,	D.T.	Blake	and	M.M.	Merzenich.	“Optimizing	Sound	Features	for	
Cortical	Neurons.”	Science 280	No.	5368	(1998):	1439-1444.

https://science.sciencemag.org/content/280/5368/1439.long
https://science.sciencemag.org/content/280/5368/1439.long


Spectro-temporal receptive fields
Spectro-temporal receptive fields from A1 in monkey.

35deCharms,	Blake,	Merzenich,	Science,	1998

Figures	removed	due	to	copyright	restrictions.	See	Lecture	9	video	or	Figure	1	&	2	
in	deCharms,	R.C.,	D.T.	Blake	and	M.M.	Merzenich.	“Optimizing	Sound	Features	
for	Cortical	Neurons.”	Science 280	No.	5368	(1998):	1439-1444.

https://science.sciencemag.org/content/280/5368/1439.long
https://science.sciencemag.org/content/280/5368/1439.long


Learning objectives for Lecture 9

• To be able to mathematically describe a neural response as a 
linear filter followed by a nonlinear function.
– A correlation of a spatial receptive field with the stimulus
– A convolution of a temporal receptive field with the stimulus

• To understand the concept of a Spatio-temporal Receptive 
Field (STRF) and the concept of ‘separability’

• To understand the idea of a Spike Triggered Average and how 
to use it to compute a Spatio-temporal Receptive Field and a 
Spectro-temporal Receptive Field (STRF).
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Extra slides on nonlinear receptive 
fields

37



Non-linearities
Imagine a neuron with these responses to the following 
stimuli.

38

I(x)

Strong response

Stimulus 1

x
No response

I(x)
Stimulus 2

x
No response

I(x)
Stimulus 3

If this response was captured by a linear kernel, then, the response to 
Stimulus 2 and 3 would be half as large as to Stimulus 1. Thus…

G1(x) = 0

r = r0 + G1(x)I(x)dx∫Is this neuron linear?



Non-linearities
r = r0 + dx1 dx2G2 (x1, x2 ) I(x1) I(x2 )∫

39

I(x)
xx

I(x) I(x)
Stimulus 1 Stimulus 2 Stimulus 3

I(x1)I(x2 )

x2

x1

I(x1)I(x2 )

x2

x1

I(x1)I(x2 )

x2

x1



Non-linearities
r = r0 + dx1 dx2G2 (x1, x2 ) I(x1) I(x2 )∫

40

I(x1)I(x2 )

x2

x1

I(x1)I(x2 )

x2

x1

I(x1)I(x2 )

x2

x1

G(x1, x2 )
x2

x1

Stimulus 1 is the only 
one that has overlap 
with this nonlinear 

kernel.

This kernel 
implements an AND 

operation!



The Weiner-Volterra expansion is like a Taylor-series 
expansion for functions:

r = r0 + G1(x)I(x)dx∫
+ dx1 dx2G2 (x1, x2 ) I(x1) I(x2 )∫
+ dx1 dx2 dx3G3(x1, x2, x3) I(x1) I(x2 ) I(x3)∫∫∫
+ ...

41

Non-linearities



Spike-Triggered Average

 
K(τ ) = 1

n
S(ti −τ )

i=1

n

∑

42

• One can show that the spike triggered average is just the 
cross correlation of firing rate and the stimulus 

 
K(τ ) = r(t)S(t −τ )dt

−∞

∞

∫
reverse correlation
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