
MITOCW | 18: Recurrent Networks - Intro to Neural Computation

MICHALE FEE: All right, let's go ahead and get started. So we're starting a new topic today. This is
actually one of my favorite lectures, one of my favorite subjects in computational
neuroscience. All right, so brief recap of what we've been doing. So we've been
working on circuit models of neural networks. And we've been working on what we
call a rate model, in which we replaced all the spikes of a neuron with, essentially, a
single number that characterizes the rate at which a neuron fires.

We introduced a simple network in which we have an input neuron and an output
neuron with a synaptic connection of weight w between them. And that synaptic
connection leads to a synaptic input that's proportional to w times the firing rate of
the input neuron. And then we talked about how we can characterize the output, the
firing rate of the output neuron, as some nonlinear function of the total input to this
output neuron.

We've talked about different F-I curves. We've talked about having what's called a
binary threshold unit, which has zero firing below some threshold. And then actually,
there are different versions of the binary threshold unit. Sometimes the firing rate is
zero for inputs below the threshold. And in other models, we use a minus 1. And
then a constant firing rate of one above that threshold.

And we also talked about linear neurons, where we can write down the firing rate of
the output neuron just as a weighted sum of the inputs. And remember that these
neurons are kind of special in that they can have negative firing rates, which is not
really biophysically plausible, but mathematically, it's very convenient to have
neurons like this.

So we took this simple model and we expanded it to the case where we have many
input neurons and many output neurons. So now we have a vector of input firing
rates, u, and a vector of output firing rates, u. And for the case of linear neurons, we
talked about how you can write down the vector of firing rates of the output neuron
simply as a matrix product of a weight matrix times the vector of input firing rates.
And we talked about how this can produce transformations of this vector of input
firing rates.



So in this high-dimensional space of inputs, we can imagine stretching that input
vector along different directions to amplify certain directions that may be more
important than others. We talked about how you can do that, stretch in arbitrary
directions, not just along the axes. And we talked about how that vector of-- that,
sorry, matrix of weights can produce a rotation.

So we can have some set of inputs where, let's say, we have clusters of different
input values corresponding to different things. And you can rotate that to put
certain features in particular output neurons. So now you can discriminate one class
of objects from another class of objects by looking at just one dimension and not
the whole high-dimensional space.

So today, we're going to look at a new kind of network called a recurrent neural
network, where not only do we have inputs to our output neurons from an input
layer, but we also have connections between the neurons in the output layer. So
these neurons in a recurrent network talk to each other. And that imbues some
really cool properties onto these networks.

So we're going to develop the math and describe how these things work to develop
an intuition for how recurrent networks respond to their inputs. We're going to get
into some of the computations that recurrent networks can do. They can act as
amplifiers in particular directions. They can act as integrators, so they can
accumulate information over time. They can generate sequences. They can act as
short-term memories of either continuous variables or discrete variables. It's a very
powerful kind of circuit architecture.

And on top of that, in order to describe these mathematically, we're going to use all
of the linear algebra tools that we've been developing so far. So, hopefully, a bunch
of things will kind of connect together. OK, so mathematical description of recurrent
networks. We're going to talk about dynamics in these recurrent networks, and
we're going to start with the very simplest kind of recurrent network called an
autapse network. Then we're going to extend that to the general case of recurrent
connectivity.

And then we're going to talk about how recurrent networks store memories. So we'll
start talking about a specific circuit models for storing short-term memories. And I'll



touch on recurrent networks for decision-making. And this will kind of lead into the
last few lectures of the class, where we get into how sort of specific cases of looking
at how networks can store memories.

OK, mathematical description. All right, so the first thing that we need to do is-- the
really cool thing about recurrent networks is that their activity can evolve over time.
So we need to talk about dynamics, all right? The feed-forward networks that we've
been talking about, we just put in an input. It gets weighted by synaptic strength,
and we get a firing rate in the output, just sort of instantaneously. We've been
thinking of you put an input, and you get an output.

In general, neural networks don't do that. You put an input, and things change over
time until you settle at some output, maybe, or it starts doing something interesting,
all right? So the time course of the activity becomes very important, all right? So
neurons don't respond instantaneously to inputs. There are synaptic delays. There
are integration of membrane potential. Things change over time.

And a specific example of this that we saw in the past is that if you have an input
spike, you can produce a postsynaptic current that jumps up abruptly as the
synaptic conductance turns on. And then the synaptic conductance decays away as
the neurotransmitter unbinds from the neurotransmitter receptor, and you get a
synaptic current that decays away over time, OK? So that's a simple kind of time
dependence that you would get.

And that could lead to time dependence in the firing rate of the output neuron. OK,
dendritic propagation, membrane time constant, other examples of how things can
take time in a neural network. All right, so we're going to model the firing rate of our
output neuron in the following way. If we have an input firing rate that's zero and
then steps up to some constant and then steps down, we're going to model the
output, the firing rate of the output neuron, using exactly the same kind of first
order linear differential equation that we've been using all along for the membrane
potential, for the Hodgkin-Huxley gating variables. The same kind of differential
equation that you've seen over and over again.

So that's the differential equation we're going to use. We're going to say that the
time derivative of the firing rate of the output neuron times the time constant is just



equal to minus the firing rate of the output non plus v infinity. And so you know that
the solution to this equation is that the firing rate of the output neuron will just relax
exponentially to some new v infinity.

And the v infinity that we're going to use is just this non-linear function times the
weighted input to our neuron. So we're going to take the formalism that we
developed for our feed-forward networks to say, what is the firing rate of the output
neuron as a function of the inputs? And we're going to use that firing rate that we've
been using before as the v infinity for our network with dynamics. Any questions
about that?

All right, so that becomes our differential equation now for this recurrent network,
all right? So it's just a first order linear differential equation, where the v infinity, the
steady state firing rate of the output neuron, is just this nonlinear function times the
weighted sum of all the inputs. All right, and actually, for most of what we do today,
we're going to just take the case of a linear neuron.

All right. So this I've already said. This I've already said. And actually, what I'm doing
here is just extending this. So this was the case for a single output neuron and a
single input neuron. What we're doing now is we're just extending this to the case
where we have a vector of input neurons with a firing rate represented by a firing
rate vector u, and a vector of output neurons with a fine rate vector v. And we're
just going to use this same differential equation, but we're going to write it in vector
notation.

So each one of these output neurons has an equation like this, and we're going to
combine them all together into a single vector. Does that make sense? All right, so
there is our vector notation of the activity in this recurrent network. Sorry, I forgot to
put the recurrent connections in there.

So the time dependence is really simple in this feed-forward network, right? So in a
feed-forward network, the dynamics just look like this. But in a recurrent network,
this thing can get really interesting and start doing interesting stuff.

All right, so let's add recurrent connections now and add these recurrent
connections to our equation. So in addition to this weight matrix w that describes
the connections from the input layer to the output layer, we're going to have



another weight matrix that describes the connections between the neurons in the
output layer. And this weight matrix, of course, has to be able to describe a
connection from any one of these neurons to any other of these neurons.

And so this weight matrix is going to be a function of the postsynaptic neuron, the
weight-- the synaptic strength is going to be a function of the postsynaptic neuron
and the presynaptic-- the identity of the postsynaptic neuron and the identity of the
presynaptic neuron. Does that make sense?

OK, so there are two kinds of input-- a feed-forward input from the input layer and a
recurrent input due to connections within the output layer. Any questions about
that? OK, so there is the equation now that describes the time rate of change of the
firing rates in the output layer. It's just this first order linear differential equation.
And the infinity is just this non-linear function of the inputs, of the net input to this
neuron, to each neuron.

And the net input to this set of neurons is a contribution from the feed-forward
inputs, given by this weight matrix w, and this contribution from the recurrent
inputs, given by this weight matrix, m. So that is the crux of it, all right? So I want to
make sure that we understand where we are. Does anybody have any questions
about that? No? All right, then I'll push ahead.

All right, so what is this? So we've seen this before. This product of this weight
matrix times this vector of input firing rates just looks like this. You can see that the
input to this neuron, this first output neuron, is just the dot product of these weights
onto the first neuron and the dot product of that vector of weights, that row of the
weight matrix, with the vector of input firing rates.

And the feed-forward contribution to this neuron is just the dot product of that row
weight of this input weight matrix with the vector of input firing rates, and so on. If
we look at the recurrent input to these neurons, the recurrent input to this first
neuron is just going to be the dot product of this row of the recurrent weight matrix
and the vector of firing rates in the output layer.

The recurrent inputs to the second neuron is going to be the dot product of this row
of the weight matrix and the vector of firing rates. Yes?



AUDIENCE: So I guess I'm a little confused, because I thought it was from A. Oh, to A. OK.

MICHALE FEE: Yeah, it's always post, pre. Post, pre in a weight matrix. That's because we're usually
writing down these vectors the way that I'm defining this notation. This vector is a
column matrix, a column vector.

All right, so we're going to make one simplification to this. When we work with the
recurrent networks, we're usually going to simplify this input. And rather than write
down this complex feed-forward component, writing this out as this matrix product,
we're just going to simplify the math. And rather than carry around this w times u,
we're just going to replace that with a vector of inputs onto each one of those
neurons, OK?

So we're just going to pretend that the input to this neuron is just coming from one
input, OK? And the input to this neuron is coming from another single input. And so
we're just going to replace that feed-forward input onto this network with this vector
h. So that's the equation that we're going to use moving forward, all right? Just
simplifies things a little bit so we're not carrying around this w u.

So now, that's our equation that we're going to use to describe this recurrent
network. This is a system of coupled equations. What does that mean? You can see
that the time derivative of the firing rate of this first neuron is given by a
contribution from the input layer and a contribution from other neurons in the
output layer. So the time rate of change of this neuron depends on the activity in all
the other neurons in the network. And the time rate of change in this neuron
depends on the activity of all the other neurons in the network.

So that's a set of coupled equations. And that, in general, can be-- you know, it's not
obvious, when you look at it, what the solution is, all right? So we're going to
develop the tools to solve this equation and get some intuition about how networks
like this behave in response to their inputs.

So the first thing we're going to do is to simplify this network to the case of linear
neurons. So we don't have-- so the neurons just fire. Their firing rate is just linear
with their input. And so that's the equation for the linear case. All we've done is
we've just gotten rid of this non-linear function f.



All right, so now let's take a very simple case of a recurrent network and use this
equation to see how it behaves, all right? So the simplest case of a recurrent
network is the case where the recurrent connections within this layer are given by--
the weight matrix is given by a diagonal matrix. Now, what does that correspond to?
What that corresponds to is this neuron making a connection onto itself with a
synapse of weight lambda one, right there.

And that kind of recurrent connection of a neuron onto itself is called an autapse,
like an auto synapse. And we're going to put one of those autapses on each one of
these neurons in our output layer, in our recurrent layer. So now we can write down
the equation for this network, all right? And what we're going to do is simply
replace-- sorry, let me just bring up that equation again. Sorry, there's the equation.

And we're simply going to replace this weight matrix m, this recurrent weight
matrix, with that diagonal matrix that I just showed you. So there it is. So that time
rate of change of this vector of output neurons is just minus v plus this diagonal
matrix times [INAUDIBLE] plus the inputs.

So now you can see that if we write out the equation separately for each one of
these output neurons-- so here it is in vector notation. We can just write that out for
each one of our output neurons. So there's a separate equation like this for each
one of these neurons. But you can see that these are all uncoupled. So we can
understand how this network responds just by studying this equation for one of
those neurons.

OK, so let's do that. We have an independent equation. The firing rate change-- the
time derivative of the firing rate of neuron one depends only on the firing rate of
neuron one. It doesn't depend on any other neurons. As you can see, it's not
connected to any of the other neurons.

OK, so let's write this equation. And let's see what that equation looks like. So we're
going to rewrite this a little bit. We're just going to factor out the va all right here.
This parameter, 1 minus lambda a, controls what kind of solutions this equation has.
And there are three different cases that we need to consider. We need to consider
the case where 1 minus lambda is greater than zero, equal to zero, or less than
zero.



Those three different values of that parameter 1 minus lambda give three different
kinds of solutions to this equation. We're going to start with the case where lambda
is less than one. And if lambda is less than 1, then this term right here is greater
than zero. If we do that, then we can rewrite this equation as follows.

We're going to divide both sides of this equation by 1 minus lambda, and that's what
we have here. And you can see that this equation starts looking very familiar, very
simple. We have a first order linear differential equation, where we have a time
constant here, tau over 1 minus lambda, and a v infinity here, which is the input, the
effective input onto that neuron, divided by 1 minus lambda. So that's tau dv dt
equals minus v plus v infinity.

But now you can see that the time constant and the v infinity depend on lambda,
depend on the strength of that connection, all right? And the solution to that we've
seen before, to this equation. It's just exponential relaxation toward v infinity.

OK, so here's our v infinity. There's our tau. True for the case of lambda between--
let's just look at these solutions for the case of lambda between zero and one. So
I'm going to plot v as a function of time when we have an input that goes from zero
and then steps up and then is held constant.

All right, so let's look at the case of lambda equals zero. So this lambda zero means
there's no autapse. It's just not connected. So you can see that, in this case, the
solution is very simple. It's just exponential relaxation toward infinity. v infinity is just
given by h, the input, and tau is just the original tau, 1 minus 0, right? So it's just
exponential relaxation to h. That make sense?

And it relaxes with a time constant tau, tau m. We're going to now turn up the
synapse a little bit so that it has a little bit of strength. You see that what happens
when lambda is 0.5, that v infinity gets bigger. v infinity goes to 2h. Why? Because
it's h divided by 1 minus 0.5. So it's h over 0.5, so 2h. And what happens to the time
constant? Well, it becomes two tau.

All right, and if we make lambda equal to 0.3-- sorry, 0.66. We turn it up a little bit.
You can see that the response of this neuron gets even bigger. So you can see that
what's happening is that when we start letting this neuron feed back to itself,
positive feedback, the response of the neuron to a fixed input-- the input is the



same for all of those. The response of the neuron gets bigger. And so having
positive feedback of that neuron onto itself through an autapse just amplifies the
response of this neuron to its input.

Now, let's consider the case where-- so positive feedback amplifies the response.
And what also does it do? It slows the response down. The time constants are
getting longer, which means the response is slower. All right, let's look at what
happens when the lambdas are less than zero. What does lambda less than zero
correspond to here?

AUDIENCE: [INAUDIBLE]

MICHALE FEE: Yeah, which is, in neurons, what does that correspond to?

AUDIENCE: [INAUDIBLE]

MICHALE FEE: Inhibition. So this neuron, when you put an input in, it tries to activate the neuron.
But that neuron inhibits itself. So what do you think's going to happen? So positive
feedback made the response bigger. Here, the neuron is kind of inhibiting itself. So
what's going to happen? You put in that same h that we had before, what's going to
happen when we have inhibition?

AUDIENCE: Response is [INAUDIBLE].

MICHALE FEE: What's that?

AUDIENCE: The response is going to be smaller.

MICHALE FEE: The response will just be smaller, that's right. So let's look at that. So here's firing
rate of this neuron is a function of time for a step input. You can see for a lambda
equals zero, we're going to respond with an amount h. But if we put in-- in a time
constant tau. If we put in a lambda of negative one-- that means you put this input
in-- that neuron starts inhibiting itself, and you can see the response is smaller.

But another thing that's real interesting is that you can see that the response of the
neuron is actually faster. So if the feedback-- if the lambda is minus one, you can
see that v infinity is h over 1 minus negative 1. So it's h over 2. All right, and so on.
The more we turn up that inhibition, the more suppressed the neuron is, the weaker



the response that neuron is to its input, but the faster it is. So negative feedback
suppresses the response of the neuron and speeds up the response.

OK, now, there's one other really important thing about recurrent networks in this
regime, where this lambda is less than one. And that is that the activity always
relaxes back to zero when you turn the input off. OK, so you put a step input in, the
neuron responds, relaxing exponentially to sum of v infinity. But when you turn the
input off, the network relaxes back to zero, OK?

So now let's go to the more general case of recurrent connections. Oh, and first, I
just want to show you how we actually show graphically how a neuron responds--
sorry, how one of these networks respond. And a typical way that we do that is we
plot the firing rate of one neuron versus the firing rate of another neuron. That's
called a state-space trajectory. And we plot that response as a function of time after
we put in an input.

So we can put an input in described as some vector. So we put in some h1 and h2,
and we then plot the response of the neuron-- the response of the network in this
output state space. So let me show you an example of what that looks like. So here
is the output of this little network for different kinds of inputs. So Daniel made this
nice little movie for us.

Here, you can see that if you put an input into neuron one, neuron one responds. If
you put a negative input into neuron one, the neuron goes negative. If you put an
input into neuron two, the neuron responds. And if you put a negative input into
neuron two, it responds. Now, why did it respond bigger in this direction than in this
direction?

AUDIENCE: That's [INAUDIBLE].

MICHALE FEE: Good. Because neuron one had--

AUDIENCE: Positive?

MICHALE FEE: Positive feedback. And neuron two had negative feedback. So neuron one, this
neuron one, amplified its input and gave a big response. Neuron two suppressed the
response to its input, and so it had a weak response.



Let's look at another interesting case. Let's put an input into these neurons-- not
one at a time, but simultaneously. So now we're going to put an input into both
neurons one and two simultaneously. It's like Spirograph. Did you guys play with
Spirograph? It's kind of weird, right? It's like making little butterflies for spring.

So why does the output-- why does the response of this neuron to an input, positive
input to both h1 and h2, look like this? Let's just break this down into one of these
little branches. We start at zero. We put an input into h1 and h2, and the response
goes quickly like this and then relaxes up to here. So why is that? Lena?

AUDIENCE: [INAUDIBLE] so there was [INAUDIBLE] and then because it's negative, it's shorter.

MICHALE FEE: Yup. The response in the v2 direction is weak but fast.

AUDIENCE: Yeah.

MICHALE FEE: So it goes up quickly. And then the response in the v1 direction is?

AUDIENCE: Slow, but [INAUDIBLE].

MICHALE FEE: Good. That's it. It's slow, but [AUDIO OUT]. It's amplified in this direction, suppressed
in this direction. But the response is fast this way and slow this way. So it traces this
out. Now, when you turn the input off, again, it relaxes. v2 relaxes quickly back to
zero, and v1 relaxes slowly back to zero. So it kind of traces out this kind of
hysteretic loop. It's not really hysteresis.

Then it's exactly mirror image when you put in a negative input. And when you put
in h1 positive and v1 negative, it just looks like a mirror image. All right, so any
questions about that? Yes, Lena?

AUDIENCE: If there was nothing, like no kind of amplified or [INAUDIBLE], would it just be like a
[INAUDIBLE]?

MICHALE FEE: Yeah, so if you took out the recurrent connections, what would what would it look
like?

AUDIENCE: An x?

MICHALE FEE: Yeah, the output-- so let's say that you just literally set those to zero. Then the



response will be the identity matrix, right? You get the output as a function of input.
Let's just go back to the equation. Can always, always get the answer by looking at
the equation. Too many animations.

No, it's a very good question. Here we go. There it is right there. So you're asking
about-- let's just ask about the steady state response. So we can set dv dt equal to
zero. And you're asking, what is v? And you're saying, let's set lambda to zero, right?
We're going to set all these diagonal elements to zero. And so now v equals h.

OK, great question. Now, let's go to the case of fully recurrent networks. We've been
working with this simplified case of just having neurons have autapses. And the
reason we've been doing that is because the answer you get for the autapse kind of
captures almost all the intuition that you need to have. What we're going to do is
we're going to take a fully recurrent neural network, and we're going to do a
mathematical trick that just turns it into an autapse network.

And the answer for the fully recurrent network is just going to be just as simple as
what you saw here. All right, so let's do that. Let's take this fully recurrent network.
Our weight matrix m now, instead of just having diagonal elements, also has off-
diagonal elements.

And I'll say that one of the things that we're going to do today is just consider the
simplest case of this fully recurrent network, where the connections are symmetric,
where a connection from v1 to v2 is equal to the connection from v2 to v1, all right?
We're going to do that because that's the next thing to do to build our intuition, and
it's also mathematically simpler than the fully general case, OK?

So we saw how the behavior of this network is very simple if m is diagonal. So what
we're going to do is we're going to take this arbitrary matrix m, and we're going to
just make it diagonal. So let's do that. So we're going to rewrite our weight matrix m
as-- so we're going to rewrite m in this form, where this phi-- sorry, where this
lambda is a diagonal matrix.

So we're going to take this network with recurrent connections between different
neurons in the network, and we're going to transform it into sort of an equivalent
network that just has autapses. So how do we write m in this form, with a rotation
matrix times a diagonal matrix times a rotation matrix? We just solve this



eigenvalue equation, OK? Does that make sense?

We're just going to do exactly the same thing we did in PCA, where we find the
covariance matrix. And we rewrote the covariance matrix like this. Now we're going
to take a weight matrix of this recurrent network, and we're going to rewrite it in
exactly the same way. So that process is called diagonalizing the weight matrix.

So the elements of lambda here are the eigenvalues of m. And the columns of the
phi are the eigenvectors of m. And we're going to use these quantities, these
elements, to build a new network that has the same properties as our recurrent
network. So let me just show you how we do that.

So remember that what this eigenvalue-- this is an eigenvalue equation written in
matrix notation. What this means is this is set of eigenvalues equations that have--
it's a set of n eigenvalue equations like this, where there's one of these for each
neuron in the network. OK, so let me just go through that.

OK, so here's the eigenvalue equation. If M is a symmetric matrix, then the
eigenvalues are real and phi is a rotation matrix. And the eigenvectors give us an
orthogonal basis, all right? So everybody remember this from a few lectures ago?

If M is symmetric-- and this is why we're going to, at this point on, consider just the
case where M is symmetric, then the eigenvectors, the columns of that matrix phi,
give us an orthogonal set of vectors and their unit vectors. So it satisfies this
orthonormal condition. And phi transpose phi is an identity matrix, which means phi
is a rotation matrix.

OK, so now what we're going to do is rewrite. The first thing we're going to do to use
this trick to rewrite our matrix, our network, is to rewrite the vector of firing rates v
in this new basis. What are we going to do? Well take the vector and all we're going
to do is to rewrite that vector in this new basis set. We're just going to do a change
of basis of our firing rate vector into a new basis set that's given by the columns of
phi.

Another way of saying it is that we're going to rotate this firing rate vector v using
the phi rotation matrix. So we're going to project v onto each one of those new basis
vectors. So there's v in the standard basis. There's our new basis, f1 and f2. We're



going to project v onto f1 and f2 and write down that scalar projection, c1 and c2.
So we're going to write down the scalar projection of v onto each one of those basis
vectors.

So we can write that c sub alpha-- that's the alpha-th component-- is just v dot the
alpha-th basis vector. So now we can express v as a linear combination in this new
basis. So it's c1 times f1 plus c2 times f2 plus c3-- that's supposed to be a three--
times f3 and so on.

And of course, remember, we're doing all of this because we want to understand
the dynamics. So these things are time dependent. So v is v changes in time. We're
not going to be changing our basis vectors in time. So if we want to write down a
time dependent v, it's really these coefficients that are changing in time, right?
Does that make sense?

So we can now write our vector v, our firing rate vector, as a sum of contributions in
all these different directions corresponding to the new basis. And each one of those
coefficients, c is just the time dependent v projected onto one of those basis
vectors. And questions? No? OK.

And remember, we can write that in matrix notation using this formalism that we
developed in the lecture on basis sets. So v is just phi c, and c is just phi transpose v.
So we're just taking this vector v, and we're rotating it into a new basis set, and we
can rotate it back.

All right, so now what we're going to do is we're going to take this v expressed in this
new basis set and were going to rewrite our equation in that new basis set. Watch
this. This is so cool. All right, you ready? We're going to take this, and we're to plug it
into here. So dv dt is phi dc dt. V is just phi c. v is phi c, and h doesn't change.

So now what is that? Do you remember?

AUDIENCE: Phi [INAUDIBLE].

MICHALE FEE: Right. We got phi as the solution to the eigenvalue equation. What was the
eigenvalue equation? The eigenvalue equation was m phi equals phi lambda. So the
phi here, this rotation matrix, is the solution to this equation, all right? So we're
given m, and we're saying we're going to find a phi and a lambda such that we can



write m phi is equal to phi lambda.

So when we take that matrix m and we run eig on it in Matlab, Matlab sends us back
a phi and a lambda such that this equation is true. So literally, we can take the
weight matrix m stick it into Matlab, and get a phi and a lambda such that m phi is
equal to phi lambda. So m phi is equal to what? Phi lambda. That becomes this.

Now, all of a sudden, this thing is just going to simplify. So how would we simplify this
equation? We can get rid of all of these things, all of these phi's, by doing what?
How do you get rid of phi's?

AUDIENCE: Multiply [INAUDIBLE] phi transpose.

MICHALE FEE: You multiply by phi transpose, exactly. So we're going to multiply each term in this
equation by phi transpose. So what do you have? Phi transpose phi, phi transpose
phi, phi transpose phi. What is phi transpose phi equal to? The identity matrix.
Because it's a rotation matrix, phi transpose is just the inverse of phi. So phi inverse
phi is just equal to the identity matrix. And all those things disappear. And you're left
with this equation-- tau dc dt equals minus c plus lambda c plus h, hf.

And what is hf? hf is just h rotated into the new basis set. So this is the equation for a
recurrent network with just autapses, which we just understood. We just wrote down
what the solution is, right? And we plotted it for different values of lambda.

So now let's just look at what some of these look like. So we've rewritten our weight
matrix in a new basis set. We've rebuilt our network and a new basis set, in a rotated
basis set where everything simplifies. So we've taken this complicated network with
recurrent connections and we've rewritten it in a new network, where each of these
neurons in our new network corresponds to what's called a mode of the fully
recurrent network.

So the activities c alpha c1 and c2 of the network modes represent kind of an
activity in a linear combination of these neurons. So we're going to go through what
that means now. So the first thing I want to do is just calculate what the steady state
response is in this neuron. And I'll just do it mathematically, and then I'll show you
what it looks like graphically.



So there's our original network equation. We've rewritten it a set of differential
equations for the modes of this network. I'm just rewriting this by putting an I here,
minus I times c. That's the only change I made here. I just rewrote it like this.

Let's find a steady state. So we're going to set dc dt equal to zero. We're going to
ask, what is c in steady state? So we're going to call that c infinity, all right? I minus
lambda times c infinity equals phi transpose h. OK, don't panic. It's all going to be
very simple in a second. c infinity is just I minus lambda inverse phi transpose h.

But I is diagonal. Lambda is diagonal. So I minus lambda inverse is just the-- it's a
diagonal matrix with these elements with one over all those diagonal elements. Now
let's calculate v infinity. v infinity is just phi times v infinity. So here, we're multiplying
on the left by phi. That's just v infinity. So v infinity is just this.

So what is this? This just says v infinity is some matrix-- it's a rotated stretch matrix--
times the input. So v infinity is just this matrix times h. And now let's look at what
that is. v infinity is a matrix times h. We're going to call that g. v infinity is a gain
matrix. We're going to think of that as a gain times the input. So it's just a matrix
operation on the input.

This matrix has exactly the same eigenvectors as m. And the eigenvalues are just 1
over 1 minus lambda. Hang in there. So what this means is that if an input is
parallel to one of the eigenvectors of the weight matrix, that means the output is
parallel to the input.

So if the input is in the direction of one of the eigenvectors, v infinity is g times f. But
g times f-- f is an eigenvector v. And what that means is that v infinity is parallel to f
with a scaling factor 1 over 1 minus lambda. All right? So hang in there. I'm going to
show you what this looks like.

So in steady state, the output will be parallel to the input if the input is in the
direction of one of the eigenvectors of the network. So if the input is in the direction
of one of the eigenvectors of the network, that means you're activating only one
mode of the network. And only that one mode responds, and none of the other
modes respond.

The response of the network will be in the direction of that input, and it will be



amplified or suppressed by this gain factor. And the time constant will also be
increased or decreased by that factor. So now let's look at-- so I just kind of whizzed
through a bunch of math. Let's look at what this looks like graphically for a few
simple cases. And then I think it will become much more clear.

Let's just look at a simple network, where we have two neurons with an excitatory
connection from neuron one to neuron two, an excitatory connection from neuron
two to neuron one. And we're going to make that weight 0.8. OK, so what is the
weight matrix M look like? Just tell me what the entries are for M.

AUDIENCE: Does it not have the autapse?

MICHALE FEE: No, so there's no connection of any of these neurons onto themselves.

AUDIENCE: So you have, like, zeros on the diagonal.

MICHALE FEE: Zeros on the diagonal. Good.

AUDIENCE: All the diagonals.

MICHALE FEE: Good. Like that? Good. Connection from neuron one to itself is zero. The connection
from post, pre is row, column. So onto neuron one from neuron two is 0.8. Onto
neuron two from neuron one is 0.8. And neuron two onto neuron two is zero.

So now we are just going to diagonalize this weight matrix. We're going to find the
eigenvectors and eigenvalues. The eigenvectors are the columns of phi. And the
eigenvalues are the diagonal elements of lambda. Let's take a look at what those
eigenvectors are. So this vector here is f1. This vector here is another eigenvector,
f2.

And how did I get this? How did I get this from this? How would you do that? If I gave
you this matrix, how would you find phi?

AUDIENCE: Eig M.

MICHALE FEE: Good, eig of M. Now, remember in the last lecture when we were talking about
some simple cases of matrices that are really easy to find the eigenvectors of? If
you have a symmetric matrix, where the diagonal elements are equal to each other,
the eigenvectors are always 45 degrees here and 45 degrees there. And the



eigenvalues are just the diagonal elements plus or minus the off-diagonal elements.

So the eigenvalues here are 0.8 and minus 0.8. All right, so those are the two
eigenvectors of this matrix, of this network. Those are the modes of the network.
Notice that one of the modes corresponds to neuron one and neuron two firing
together. The other mode corresponds to neuron one and neuron two firing with
opposite sign-- minus one, one.

So the lambda-- the diagonal elements of the lambda matrix are the eigenvalues.
They're 0.8 and minus 0.8, a plus or minus b. Now, this gain factor, what this says is
that if I have an input in the direction of f1, the response is going to be amplified by
a gain. And remember, we just derived, on the previous slide, that that gain factor is
just 1 over 1 minus the eigenvalue for that eigenvector.

In this case, the eigenvalue for mode one is 0.8. So 1 over 1 minus 0.8 is 5. So the
gain in this direction is 5. The gain for an input in this direction is 1 over 1 minus
negative 0.8, which is 1 over 1.8. Does that makes sense? OK, let's keep going,
because I think it will make even more sense once we see how the network
responds to its inputs.

So zero input. Now we're going to put an input in the direction of this mode one. And
you can see the mode responds a lot. Put a negative input in, it responds a lot. If we
put a mode input in this direction or this direction, the response is suppressed by an
amount of about 0.5. Because here, the gain is small. Here, the gain is big.

So you see what's happening? This network looks just like an autapse network, but
where we've taken this input and output space and just rotated it into a new
coordinate system, into this new basis. Yes?

AUDIENCE: Why did it kind of loop around on the one side [INAUDIBLE]?

MICHALE FEE: OK, it's because these things are relaxing exponentially back to zero. And we got a
little bit impatient and started the next input before it had quite gone away. OK,
good question. It's just that if you really wait for a long time for it to settle, then the
movie just takes a long time. But maybe it would be better to do that.

So input this way and this way lead to a large response, because those inputs
activate mode one, which has a big gain. Inputs in this direction and this direction



have a small response, because they activate mode two, which has small gain. But
notice that when you activate mode one-- when you put an input in this direction, it
only activates mode one. And it doesn't activate mode two at all.

If you put an input in this direction, then it only activates mode two, and it doesn't
activate mode one at all. So it's just like the autapse network, but rotated. So now
let's do the case where we have an input that activates both modes. So let's say we
put an input in this direction. What does that direction correspond to h up. What is
that input mean here in terms of h1 and h2?

Let's say we just put an input-- remember, this is a plot on axes h1 versus h2. So this
input vector h corresponds to just putting an input on h2, into this neuron. So you
can see that when we put an input in this direction, we're activating-- that input has
a projection onto mode one and mode two. So we're activating both modes. You can
see that the input h has a projection onto f1 and projection onto f2.

So what you do is-- well, here, I'm just showing you what the steady state response
is mathematically. Let me just show you what that looks like. What this says is that if
we put an h in this direction, it's going to activate a little bit of mode one with a big
gain and a little bit of mode two with a very small gain. And so the steady state
response will be the sum of those two. It'll be up here.

So the steady state response to this input in this direction is going to be over here.
Why? Because that input activates mode one and mode two both. But the response
of mode one is big, and the response of mode two is really small. And so the steady
state response is going to be way over here because of the big response, the
amplified response of mode two, which is in this direction, OK?

So when we put an input straight up, the response of the network's going to be all
the way over here. How is it going to get there? Let's take a look. We're going to put
an input-- sorry, that was first in this direction. Now let's see what happens when we
put an input in this direction. You can see the response is really big along the mode
one direction, in this direction, and it's really small in this direction.

So input up in the upward direction onto just this neuron produces a large response
in mode, which is this way, and a very small response in mode two, which is this way.



The response in mode two is very fast, because the lambda, the 1 over 1 minus
lambda, is small, which makes the time constant faster and the response smaller.

So, again, it's just like the response of the autapse network, but rotated into a new
coordinate system. All right, any questions about that? So you can see we basically
understood everything we needed to know about recurrent networks just by
understanding simple networks with just autapses. And all these more complicated
networks are just nothing but rotated versions of the response of a network with
just autapses.

Any questions about that? OK, let's do another network now where we have
inhibitory connections. That's called mutual inhibition. And let's make that inhibition
minus 0.8. The weight matrix is just zeros on the diagonals, because there's no
autapse here. And minus 0.8 on the off-diagonals. What are the eigenvectors for
this matrix, for this network?

AUDIENCE: The same.

MICHALE FEE: Yeah, because the diagonal elements are equal to each other, and the off-diagonal
elements are equal to each other. It's a symmetric network with equal diagonal
elements. The eigenvectors are always at 45 degrees. And what are the
eigenvalues?

AUDIENCE: [INAUDIBLE]

MICHALE FEE: Well, the two numbers are going to be the same. It's zero plus and minus 0.8, plus
and minus negative 0.8, which is just 0.8 and minus 0.8, right? Good. So the
eigenvalues are just 0.8 and minus 0.8. But the eigenvalues correspond to different
eigenvectors. So now the eigenvalue mode in the 1, 1 direction is now minus 0.8,
which means it's suppressing the response in this direction.

And the eigenvalue for the eigenvector in the minus 1, 1 direction is now close to 1,
which means that mode has a lot of recurrent feedback. And so its response in this
direction is going to be big. It's going to be amplified. So unlike the case where we
had positive recurrent synapses, where we had amplification in this direction, now
we're going to have amplification in this direction. Does that make sense?

Think of it this way-- if we go back to this network here, you can see that when



these two neurons-- when this neuron is active, it tends to activate this neuron. And
when this neuron is activate, it tends to activate that neuron. So this network, if you
were to activate one of these neurons, it tends to drive the other neuron also. And
so the activity of those two neurons likes to go together. When one is big, the other
one wants to be big.

And that's why there's a lot of gain in this direction. Does that make sense? With
these recurrent excitatory connections, it's hard to make this neuron fire and make
that neuron not fire. And that's why the response is suppressed in this direction, OK?
With this network, when this neuron is active, it's trying to suppress that neuron.
When that neuron has positive firing rate, it's trying to make that neuron have a
negative firing rate.

When that neuron is negative, it tries to make that one go positive. And so this
network likes to have one firing positive and the other neuron going negative. And
so that's what happens. What you find is that if you put an input into the first
neuron, it tends to suppress the activity in the second neuron, in v2. If you put
neuron into neuron two, it tends to suppress the activity, or make v1 go negative.

So it's, again, exactly like the autapse network, but just, in this case, rotated minus
45 degrees instead of plus 45 degrees, OK? Any questions about that? All right. So
now let's talk about how-- yes, Linda?

AUDIENCE: So we just did, those were all symmetric matrices, right?

MICHALE FEE: Yes.

AUDIENCE: So [INAUDIBLE] can we not do this strategy if it's not symmetric?

MICHALE FEE: You can do it for non-symmetric matrices, but non-symmetric matrices start doing
all kinds of other cool stuff that is a topic for another day. So symmetric matrices
are special in that they have very simple dynamics. They just relax to a steady state
solution.

Weight matrices that are not symmetric, or even anti-symmetric, tend to do really
cool things like oscillating. And we'll get to that in another lecture, all right? OK, so
now let's talk about using recurrent networks to store memories.



So, remember, all of the cases we've just described, all of the networks we've just
described, had the properties that the lambdas were less than one. So what we've
been looking at are networks for which lambda is less than one and they're
symmetric weight matrices. So that was kind of a special case, but it's a good case
for building intuition about what goes on.

But now we're going to start branching out into more interesting behavior. So let's
take a look at what happens to our equation. This is now our equation different
modes of a network. What happens to this equation when lambda is actually equal
to one?

So when lambda is equal to one, this term goes to zero, right? So we can just cross
this out and rewrite our equation as tau dc dt equals f1 f dot h. So what is this? What
does that look like? What's the solution to c for this differential equation? Does this
exponentially relax toward a v infinity?

What is v infinity here? It's not even defined. If you set dc dt equal to zero, there's
not even a c to solve for, right? So what is this? The derivative of c is just equal to--
if we put in an input that's constant, what is c?

AUDIENCE: [INAUDIBLE]

MICHALE FEE: This is an integrator, right? This c, the solution to this equation, is that c is the
integral of this input. c is some initial c plus the integral over time. So if we have an
input-- and again, what we're plotting here is the activity of one of the modes of our
network, c1, which is a function of the projection of the input along the eigenvector
of mode one.

So we're going to plot h, which is just how much the input overlaps with mode one.
And as a function of time, let's start at one equals zero. What will this look like? This
will just increase linearly. And then what happens? What happens here? Raymundo?

AUDIENCE: R just stays constant.

MICHALE FEE: Good. We've been through that, like, 100 times in this class. Now, what's special
about this network is that remember, when lambda was less than one, the network
would respond to the input. And then what would it do when we took the input



away? It would decay back to zero. But this network does something really special.

This network, you put an input in and then take the input away, this network stays
active. It remembers what the input was. Whereas, if you have a network where
lambda is less than one, the network very quickly forgets what the input was.

All right, what happens when lambda is greater than one? So when lambda is
greater than one, this term is now-- this thing inside the parentheses is negative,
multiplied by a negative number. This whole coefficient in front of the c1 becomes
positive. So we're just going to write it as lambda minus one. And so this because
positive. And what does that solution look like? Does anyone know what that looks
like? dc dt equals a positive number times c.

Nobody? Are we all just sleepy? What happens? So if this is negative, if this
coefficient were negative, dc-- if c is positive, then dc dt is negative, and it relaxes
to zero, right? Lets think about this for a minute. What happens if this quantity is
positive? So if c is positive-- cover that up.

If this is positive and c is positive, then dc dt is positive. So that means if c is
positive, it just keeps getting bigger, right? And so what happens is you get
exponential growth. So if we now take an input and we put it into this network,
where lambda is greater than one, you get exponential growth.

And now what happens when you turn that input off? Does it go away? What
happens? draw with their hand what happens here. So just look at the equation.
Again, h dot f1 is zero here, so that's gone. This is positive. c is positive. So what is
dc dt? Good. It's positive. And so what is--

AUDIENCE: [INAUDIBLE]

MICHALE FEE: It keeps growing. So you can see that this network also remembers that it had input.
So this network also has a memory. So anytime you have lambda less than one the
network just-- as soon as the input goes away, the network activity goes to zero, and
it just completely forgets that it ever had input. Whereas, as long as lambda is equal
to or greater than one, then this network remembers that it had input.

So if lambda is less than one, then the network relaxes exponentially back to zero
after the input goes away. If you have lambda equal to one, you have an integrator,



and the network activity persists after the input goes away. And if you have
exponential growth, the network activity also persists after the input goes away.

And so that right there is one of the best models for short-term memory in the
brain. The idea that you have neurons that get input, become activated, and then
hold that memory by reactivating themselves and holding their own activity high
through recurrent excitation. But that excitation has to be big enough to either just
barely maintain the activity or continue increasing their activity.

OK, now, that's not necessarily such a great model for a memory, right? Because we
can't have neurons whose activity is exploding exponentially, right? So that's not so
great. But it is quite commonly thought that in neural networks involved in memory,
the lambda is actually greater than one.

And how would we rescue this situation? How would we save our network from
having neurons that blow up exponentially? Well, remember, this was the solution
for a network with linear neurons. But neurons in the brain are not really linear, are
they? They have firing rates that saturate. At higher inputs, firing rates tend [AUDIO
OUT]. Why? Because sodium channels become inactivated, and the neurons can't
respond that fast, right?

All right, this I've already said. So we use what are called saturating non-linearities.
So it's very common to write down models in which we can still have neurons that
are-- we can still have them approximately linear. So it's quite often to have neurons
that are linear for small [INAUDIBLE]. They can go plus and minus, but they saturate
on the plus side or the minus.

So now you can have an input to a neuron that activates the neuron. You can see
what happens is you start activating this neuron. It keeps activating itself, even as
the input goes away. But now, what happens is that activity starts getting up into the
regime where the neuron can't fire any faster. And so the activity becomes stable at
some high value of firing. Does that make sense?

And this kind of neuron, for example, can remember a plus input, or it can
remember a minus input. Does that make sense? So that's how we can build a
simple network with a neuron that can remember its previous inputs with a lambda



that's greater than one. And this right here, that basic thing, is one of the models for
how the hippocampus stores memories, that you have hippocampal neurons that
connect to each other with a lot of recurrent connections [AUDIO OUT] in the
hippocampus has a lot of recurrent connections.

And the idea is that those neurons activate each other, but then those neurons
saturate so they can't fire anymore, and now you can have a stable memory of
some prior input. And I think we should stop there. But there are other very
interesting topics that we're going to get to on how these kind of networks can also
make decisions and how they can store continuous memories-- not just discrete
memories, plus or minus, on or off, but can store a value for a long period of time
using this integrator. OK, so we'll stop there.


