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Game plan for Lectures 11, 12, and 13 — 
Develop a powerful set of methods for 

understanding the temporal structure of signals 

• Fourier series, Complex Fourier series, Fourier transform, 
Discrete Fourier transform (DFT), Power Spectrum

• Convolution Theorem
• Noise and Filtering
• Shannon-Nyquist Sampling Theorem

– https://markusmeister.com/2018/03/20/death-of-the-sampling-theorem/

• Spectral Estimation
• Spectrograms
• Windowing, Tapers, and Time-Bandwidth Product
• Advanced Filtering Methods
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Discrete Fourier transform 
• Some code 
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Discrete Fourier transform 
• Some examples – sine and cosine 

y(t) = cos(2π f0t) f0 = 20Hz Continuous_cos.m 

Re Y ( f ) [ ] Im Y ( f ) [ ] 
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Discrete Fourier transform 
• Some examples – sine and cosine 

y(t) = sin(2π f0t) f0 = 20Hz Continuous_sin.m 

Re[Y ( f )] Im[Y ( f )] 
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Discrete Fourier transform 
• Power spectrum of sine and cosine 

Continuous_sin.m 

S( f ) = Y ( f ) 2 
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Discrete Fourier transform 
• Some examples – square waves 

Continuous_square.m 

f0=5.375Hz 
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Discrete Fourier transform 
• Power spectrum– square wave 

Continuous_square.m 

Spectrum plotted 
in units of 
decibels (dB) 

10 log10 S( f ) 

S( f ) = Y ( f )2 
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Discrete Fourier transform 
• Some examples – square waves 

Continuous_square.m 

f0=5.375Hz 
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Discrete Fourier transform 
• Some examples – square waves 

Continuous_square.m 

f0=10.75Hz 
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Learning Objectives for Lecture 12 

• Fourier Transform Pairs 

• Convolution Theorem 

• Gaussian Noise (Fourier Transform and Power Spectrum) 

• Spectral Estimation 
– Filtering in the frequency domain 
– Wiener-Kinchine Theorem 

• Shannon-Nyquist Theorem (and zero padding) 

• Line noise removal 
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Fourier transform pair 

Square pulse 

y(t) = 
⎧⎪
⎨ 
⎪⎩ 

1 if t < ΔT / 2 

0 otherwise 

Sinc function 

Y ( f ) = ΔT 
sin(πΔT f ) 
πΔT f 

ΔT , ΔF ≈ FWHM 

1.2 
ΔF ≈ 

ΔT 

ΔT = 100ms 

ΔF = 12Hz 

ΔT = 500ms 

ΔF = 2.4Hz 

ΔT = 25ms 

ΔF = 48Hz 

13 Square_window.m 



     
 

Fourier transform pair 

Is a Guassian! 

1 ΔF = 
ΔT 

Time-bandwidth product 

ΔT ΔF = 1 

The Fourier transform of a Gaussian 
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Gaussian_window.m 

ΔF = 100Hz 

ΔT = 10ms 

ΔT = 50ms 

ΔF = 20Hz 

ΔT = 500ms 

ΔF = 2Hz 



  

 

      

 
   

 

   

  

Learning Objectives for Lecture 12 

• Fourier Transform Pairs 

• Convolution Theorem 

• Gaussian Noise (Fourier Transform and Power Spectrum) 

• Spectral Estimation 
– Filtering in the frequency domain 
– Wiener-Kinchine Theorem 

• Shannon-Nyquist Theorem (and zero padding) 

• Line noise removal 
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Relation between Fourier transform and convolution 

Fourier Transform Pairs 

y(t) ⇔ Y (ω ) g(τ ) ⇔ G(ω ) x(t) ⇔ X(ω ) 

y(t) = dτ g(τ )x(t − τ ) 
−∞ 

∞ 

∫ 

Convolution in the time domain 

Y (ω ) = G(ω ) X(ω ) 

Multiplication in the frequency domain 

y(t) 

Y (ω) 
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Fourier transform of a convolution 
∞ 

y(t) = ∫ dτ g(τ )x(t −τ ) Y (ω) = G(ω) X(ω) 
−∞ 

Y (ω ) = dt dτ g(τ )x(t − τ ) 
−∞ 

∞ 

∫ e− iωt 
−∞ 

∞ 

∫ 

= dτ dt g(τ )x(t − τ ) 
−∞ 

∞ 

∫ e− iωt 
−∞ 

∞ 

∫ 

= dτ g(τ ) dt x(t − τ ) 
−∞ 

∞ 

∫ e− iωt 
−∞ 

∞ 

∫ 

Y (ω) = dt y(t) e−iωt 
−∞ 

∞ 

∫ = dτ g(τ ) dt x(t − τ ) 
−∞ 

∞ 

∫ e− iω (t−τ ) 

−∞ 

∞ 

∫ e− iωτ 

= dτ g(τ )e− iωτ dt x(t − τ ) 
−∞ 

∞ 

∫ e− iω (t−τ ) 

−∞ 

∞ 

∫ 

= dτ g(τ )e− iωτ X(ω ) 
−∞ 

∞ 

∫ 

= G(ω) X(ω) 
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Relation between Fourier transform and 
convolution

Fourier Transform Pairs

y(t) ⇔ Y (ω ) g(τ ) ⇔ G(ω ) x(t) ⇔ X(ω )

y(t) = dτ g(τ )x(t −τ )
−∞

∞

∫

Convolution in the time domain

Y (ω ) = G(ω )X(ω )

Multiplication in the frequency domain

Convolution in the frequency domain

Y (ω ) = dω 'G(ω ')X(ω −ω ')
−∞

∞

∫ y(t) = g(t) x(t)

Multiplication in the time domain
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Gaussian-windowed cosine

19

width=200 ms

Freq = 20 Hz

y(t) = g(t)x(t)
Product in the time-domain

g(t)

x(t)

y(t)

Cos_Gauss_pulse.m

G( f )

X( f )

Y ( f ) = G( f )∗X( f )
Convolution in the frequency-

domain!

Y ( f )

Using the Convolution Theorem



Square-windowed cosine
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FWHM=200 ms

Freq = 20 Hz

g(t) = square x(t) = cos(2π f0t)

y(t) = g(t)x(t)
Product in the time-domain

g(t)

x(t)

y(t)

Y ( f ) = G( f )∗X( f )
Convolution in the frequency-

domain!

cos_Gauss_pulse.m

G( f )

X( f )

Y ( f )

Using the Convolution Theorem



Learning Objectives for Lecture 12

• Fourier Transform Pairs 

• Convolution Theorem

• Gaussian Noise (Fourier Transform and Power Spectrum)

• Spectral Estimation
– Filtering in the frequency domain
– Wiener-Kinchine Theorem 

• Shannon-Nyquist Theorem (and zero padding)

• Line noise removal
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Gaussian noise
• Each sample drawn independently from a Gaussian distribution

white_noise.m
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y=randn(1,N);	

play_tone_in_noise.m

randn_dist.m

σ 2 = 1

Autocorrelation

σ 2 = 1

K(τ )



Fourier transform of Gaussian noise
• Some examples – Gaussian white noise white_noise.m
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The Fourier transform of Gaussian noise, is just Gaussian noise!



Power spectrum of noise
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y(t)

S( f ) = Y ( f ) 2

• Is very…

white_noise.m



Learning Objectives for Lecture 12

• Fourier Transform Pairs 

• Convolution Theorem

• Gaussian Noise (Fourier Transform and Power Spectrum)

• Spectral Estimation
– Filtering in the frequency domain
– Wiener-Kinchine Theorem 

• Shannon-Nyquist Theorem (and zero padding)

• Line noise removal
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Spectral estimation
• Say we want to find the spectrum           of a signal y(t).S( f )

Trial 1 Trial 2 Trial 3 Trial 4

…

Ŝ1( f ) Ŝ2 ( f ) Ŝ3( f ) Ŝ4 ( f )

Ŝ( f ) = 1
N

Ŝi ( f )
i=1

N

∑

We can just average!

• Often we only have short measurements of y(t) (e.g. trials)
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Spectral estimation
• The same principle applies to longer signals.

– Break the signal into shorter pieces
– Compute the power spectrum in each window

S( f )

• We could just take the FFT of each piece.
– But we know that a ‘square windowing’ means that the spectrum 

becomes convolved with the spectrum of the square window! 

windowing

27



Spectral estimation
• We will multiply each window by a smooth function called a 

‘taper’.

Ŝ1( f ) Ŝ2 ( f ) Ŝ3( f ) Ŝ4 ( f ) Ŝ5 ( f )
Ŝ( f ) = 1

N
Ŝi ( f )

i=1

N

∑
28



Spectral estimation
• A common problem is to find a small signal in noise

– This can be a challenge

y(t) = 0.1*sin(2π f0t)

Powerspec_osc_in_noise.m
29



Power spectrum of noise

30

• But the average spectrum of white noise is flat!

Pow
erspec_noise.m

The power spectrum is a power spectral density. It tells us the amount of 
variance per unit frequency. Variance is power density times bandwidth. 

σ 2 = 0.002 V
2

Hz
x 500Hz = 1



Learning Objectives for Lecture 12

• Fourier Transform Pairs 

• Convolution Theorem

• Gaussian Noise (Fourier Transform and Power Spectrum)

• Spectral Estimation
– Filtering in the frequency domain
– Wiener-Kinchine Theorem 

• Shannon-Nyquist Theorem (and zero padding)

• Line noise removal
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Low-pass filtering
Low-pass filtering can be done by convolving 

the signal with a kernel like this.

32

area = 1



• If the convolution is equivalent to a multiplication in the frequency 
domain…

Convolution as a filter

Y (ω ) = G(ω )X(ω )

what does this do to the power spectrum?

S(ω ) = Y (ω ) 2 = G(ω ) 2 X(ω ) 2

• The power spectrum of the filtered signal is just the power 
spectrum of the original signal times the spectrum of the filter!

33



Power spectrum of filtered noise

34

• Power spectrum of white noise convolved with a 
Gaussian window

y(t) = dτ g(τ )x(t −τ )
−∞

∞

∫
y(t)g(τ )

x(t)

G( f ) 2

Y ( f ) 2

Y ( f ) 2 = G( f ) 2 X( f ) 2

X( f ) 2

X( f ) 2

G( f ) 2

Y ( f ) 2

Powerspec_FilteredNoise.m

play_tone_in_noise.m

Y ( f ) = G( f )X( f )



Autocorrelation of filtered noise

35

y(t)

x(t)

Autocorrelation

Kx (τ )

Ky(τ )

Autocorrelation
y(t)

Kx (τ ) = dt x(t)x(t +τ )
−∞

∞

∫
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Wiener-Kinchine theorem

36

• The power spectrum and autocorrelation functions are related
by Fourier Transform

Y ( f ) 2
X( f ) 2

Autocorrelation

Kx (τ )Sx ( f ) = X( f ) 2 Kx (τ )
FT

Autocorrelation

Ky(τ )

Sy( f ) = Y ( f ) 2 Ky(τ )
FT
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• Remember that frequency is discretized…

Y ( f )

f

0
Δf

y(t)

t
0

• Which means that our function is periodic in time!

T = 1
Δf

Nyquist-shannon theorem
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Nyquist-shannon theorem
• But time is also discretized…

y(t)

t
0

Δt

• Which means that our FFT is periodic in frequency!

Y ( f )

f
1
Δt

Fsamp = 1Δt

… and the separation between the spectra in the frequency-domain is 
given by the sampling rate. 39



Nyquist-shannon theorem

Sampling rate high enough Y ( f ) 2

Fsamp > 2B
f

Fsamp < 2B

B

f

Sampling rate too low

• Sampling rate must be greater than twice the bandwidth of 
the signal                .Fsamp > 2B

40

B



Nyquist-shannon theorem

• If the sampling rate is greater than twice the bandwidth of the 
signal Fsamp > 2B

• Then you can perfectly reconstruct the original signal.

• Not just at the sampled points, but continuously, at every 
point!

y(t)

t
0

41



Nyquist-shannon theorem
• Remember the Convolution Theorem…

• Multiply the periodic Fourier transform by a square window in the 
frequency domain…

Y ( f )

f

• This convolves the time-domain signal with a Kernel that is the 
Fourier transform of the square window… In other words, we can 
smooth it, so that it is no longer sampled. The smoothed signal 
has the same spectrum as the sampled signal! 
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Zero-padding

Y ( f ) B

f

• If                 you can interpolate the values of the function y(t) 
with arbitrarily high temporal resolution by zero padding.

Fsamp > 2B

And then inverse FFT !

FFT

Fsamp = 1Δt

Fsamp = N Δf

43

‘Pad’ with zeros!



Zero-padding
Or Fun with FFT and IFFT

Y=fft(y,	N)/N;											 %	Compute	the	FFT
zero_pad_factor=4.;
Nresamp=N*zero_pad_factor;		 %	new	number	of	frequency	bins
Yresamp=zeros(1,Nresamp);			 %	fill	a	new	array	with	zeros
Yresamp(1:N/2)=Y(1:N/2);														 %	insert	the	positive	frequency	part
yRes=2*real(ifft(Yresamp)*Nresamp); %	compute	the	inverse	FFT

Fsamp = 100Hz
Δt =10ms

Δt =2.5ms
Fsamp = 400Hz

44

20Hz cos wave



Zero-padding
Or Fun with FFT and IFFT

zero_pad_factor=4.;
y=Data; %	Data	is	a	vector	in	time	with	N	samples
Nfft=N*zero_pad_factor; %	number	of	points	you	want	in	the	spectrum
Y=fft(y,	Nfft);											 %	Compute	the	FFT

%	The	array	Y	will	now	have	4	times	the	samples

• Zero padding in the time domain gives finer spacing in the 
frequency domain.

• Just add zeros to the end of a tapered window before you FFT. The 
spectrum that you get is the same, but it has samples that are more 
finely spaced. (No higher frequency resolution though.)

• MATLAB® makes this easy…
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• While the periodogram is a terrible spectral estimator for non-
periodic broadband signals, it is a great estimator for perfectly 
stationary single-frequencies… like contamination from 60Hz. 

S( f ) = Y ( f ) 2
Periodogram

Line noise removal
• Another common problem is to remove a small periodic noise in 

your signal.

• So, if you have a single offending frequency component…

Off with its head!
47



Line noise removal
• Just find those lines in Y(f) and set them to zero! 

• Then inverse FFT Y(f) to get the cleaned up signal…

60 Hz noise gone!

48



Learning Objectives for Lecture 12

• Fourier Transform Pairs 

• Convolution Theorem

• Gaussian Noise (Fourier Transform and Power Spectrum)

• Spectral Estimation
– Filtering in the frequency domain
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• Shannon-Nyquist Theorem (and zero padding)
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