
      

	  

   
 

             
       

           
              

        
              

          
   

 
              

 
             
           

               
 

     
      
          
        
          

    

 

 

           
            

             
            

	

	
             
           

            
          

9.40 Introduction to Neural Computation Problem Set #7 

Learning objectives and goals: 

In this problem set, we will study simplified linear recurrent neural networks with a 
symmetric connectivity matrix. This exercise is not only and opportunity to understand 
their properties as dynamical systems but more importantly to illustrate general principles 
that go beyond this specific case. The PSET will take you to explore these properties by 
doing analytical work and performing numerical simulations in MATLAB. By the end of 
the problem set we will study the conditions under which these networks can act as 
neuronal integrators, and thus represent simplified models of how short-term memory 
arises in neuronal circuits. 

The topics of this PSET were covered in lecture 18 and will be covered in recitation 12. 

This problem provides a great way to put all the linear algebra we have learned so far to 
work and relate those concepts back to ordinary linear differential equations that we studied 
during the first third of this course. By the end of this PSET, you should be able to: 

• Decompose the network into eigen modes. 
• Compute gain factors and effective time constants 
• Predict the response of the network to different input vectors. 
• Plot state-space trajectories for different input vectors. 
• Implement these networks in MATLAB and compute solutions numerically, by 

using the Euler integration scheme. 

Introduction: 

Many neural networks consist of 2 populations of neurons whose effective 
connectivity is such that they provide self-excitation to neurons in their own 
population and inhibit neurons in the other population. A simple case of these 
circuits occurs when the connections are symmetric as in the following diagram: 

For simplicity, we will treat each of these populations as a single neuron. Here, mself gives 
the connection between each neuron and itself and mother gives the connection between the 
different neurons. In this problem, we will find the eigenvalues and eigenvectors of this 
circuit in terms of mself and mother, and then apply our findings to understand specific cases. 
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9.40 Introduction to Neural Computation Problem Set #7 

Part 1: Decomposing the network into eigen modes 

The recurrent connectivity matrix M of the above network, is a special case of symmetric 
!matrices. The eigenvectors ( fi ) of this matrix are the columns of a rotation matrix ( Φ ) at 

45 degrees counter clockwise: 
1 1 −1 ⎤⎡ 

Φ(45° ) = ⎢
⎣ 

⎥
⎦2 1 1 

Note again the symmetry of the network and recall that the eigenvectors of M are patterns 
of inputs, with the remarkable property that the steady state outputs of the network will 
be a scaled version of these same patterns. With this information: 

1. Write down the equations describing this network. Assume that each of the neurons has 
an intrinsic time constant τn. this means that with no recurrent connections, the activity 
of these neurons decays to zero with time constant τn. First, write separate equations 
for dv1/dt and dv2/dt. Then, using matrix notation, write a single equation that describes

the entire network in terms of the firing rate vector v = (v1, v2 ) , an input vector 
 
h = (h1, h2 ) , and a recurrent connectivity matrix M. 

2. Write expressions for eigenvalues λ1 and λ2 of the connectivity matrix, as a function of 
mself and mother. Also, show that the eigenvalue-eigenvector ( M!fi = λi 

!fi ) equation is 
satisfied for each eigenvector.! 

3. Rewrite the input vector ( h ) as a linear combination of the eigenvectors (i.e. 
! 
h = b1 f̂1 + b2 f̂2 ). Show that the coefficient b1= h , where h = 

2 (h1 + h2 ) . common common 2 
2Also, show that b2= , where = (h2 − h1) .hdiff hdiff 2 

Part 2: Simple model of selective amplification of differences between inputs. 

Suppose that each neuron excites itself by setting mself to 0.2 and inhibits the other neuron 
(mother = -0.7). Furthermore, assume that this network receives the following input vector, ! 
h(t ≥ 0) = (117,123)Hz . With this information: 

1. Calculate the eigenvalues of the network. 
2. What will happen to inputs that are common to the two cells? (Will they be amplified 

or attenuated?) Determine this by looking at the eigenvalue for the appropriate 
eigenvector. 

3. What will happen to inputs that are opposite for the two cells (amplified or attenuated)? 
4. Calculate the gain factors 1/(1−λ) for each mode (eigenvector) of the network, using 

the values in part (c) above. 
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9.40 Introduction to Neural Computation Problem Set #7 

5. If each cell in the network has an intrinsic time constant τ = 18 ms, what will be the 
corresponding time constants τeff for each mode? Does the amplified mode change 
more, or less rapidly, than the attenuated mode? 

6. For each mode write down a differential equation describing the response of mode ! 
activity (c1 and c2) to an input vector h .  

7. Write the input vector in the form h = b1 f̂1 + b2 f̂2 . What are the coefficients b1 and b2? 
8. Find the steady state activity of the 2 neurons ) .v∞ 

= (v∞,1 ,v∞,2 
9. Sketch the state-space trajectory of the firing rates v = (v1, v2 ) as they approach this 

steady state value. Assume the network starts at zero firing rate, and that the input is 
turned on at t=0. On the same set of axes plot the eigenvectors f̂1, f̂2 . 

10. Simulate the network by numerically solving the equations with the Euler method1, 
which is simple to implement in vector notation. Do not use exponential Euler, as this 

  
is more difficult to implement. Set the initial condition to v(t = 0) = 0 , and the input 

! 
vector to h(t ≥ 0) = (117,123)Hz . Integrate for 1 second using an integration time-step 
of 10-4 seconds. 

11. Plot v1 and v2 as a function of time to confirm that your simulation works properly by 
checking that you get the same steady state solution you found analytically. 

Part 3: Simple model of neuronal integration. 

1. Modify the value of mother so that that one of the modes of the network integrates a 
quantity proportional to the input difference (i.e. h2 - h1). 

2. What is the condition on mself and mother for this to occur? 
3. Demonstrate by numerical integration that you observe persistent activity even after 

h1 and h2 are turned off. Do this by considering the following input vector: 

! 
h(t) = 

⎧ 
⎪
⎨ 
⎪
⎩ 

! 
0 Hz if t < 0 
(117,123) Hz if 0 ≤ t < 0.8s 
! 
0 Hz if t ≥ 0.8s 

Continue to use the Euler method with the previously specified initial condition, 
simulation length and integration time-step. 

To demonstrate persistent activity, make a figure with 2 panels. On the upper panel plot 
v1 and v2 as a function of time. On the lower panel plot the modes activity (c1 and c2)

!as a function of time. Remember that c = ΦT v ! . 
4. Use numerical simulations and relevant plots to show that this behavior is different 

from the network you simulated in part 2 questions 3 and 4. 

1 Have a look at EulerMethod.pdf for a refresher on numerical integration. 
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