

9.40 Introduction to Neural Computation Methods for numerical integration

Numerical integration of ordinary differential equations

a. Euler Method

So far we have studied the RC differential equation, a first order linear differential
equation which has the form:

dV (t)
τ =V∞(t)−V (t), τ = RC (1)

dt

V (t) =V + R I(t) (2) ∞ rest

We are interested in solving for V(t) . To do this, we will numerically integrate the
equation using the Euler Method. We iterate through time, using our estimated V(t) and
the derivative of V at time t to estimate V(t+dt).

The formal definition of the derivative is:

dV (t) V (t + dt)−V (t)
= lim .

dt dt→0 dt

In reality we cannot numerically evaluate this ratio as dt goes to zero. However, we can
pick a finite but sufficiently small time interval Δt where we can approximate the
derivative as a difference equation:

dV (t) ΔV (t)
≈

dt Δt (3)
ΔV (t) V (t + Δt)−V (t)

= .
Δt Δt

We combine equations 1 and 3 to obtain:

ΔV (t) V (t + Δt)−V (t) 1
= ≈ (V∞

(t)−V (t)).
Δt Δt τ

So far, we have re-written the RC equation as a difference equation. Our objective is to
find an iterative algorithm that can compute V (t + Δt) as a function of V(t) and I(t). If
we rearrange the above equation we obtain:

V (t + Δt) ≈V (t)+
Δt (V∞

(t)−V (t)) .
τ

1

	

⎟⎟⎟

9.40 Introduction to Neural Computation Methods for numerical integration

Before we start numerically integrating, we need to set Δt and the membrane voltage at
time t0=0. This voltage is denoted V0 =V(t0) and called initial conditions. From the initial
conditions, we numerically integrate V(t) in time steps of size Δt starting from t0. This
constitutes the Euler method, which can be implemented using a for-loop in MATLAB.

Note that the Euler approximation for the RC equation can be written in terms of an index
n that counts multiples of the time-stepΔt (i.e. t = nΔt):

Vn+1 =Vn +
Δt (V∞,n −Vn).
τ

This notation makes the implementation of the algorithm in MATLAB simpler.

In essence this method linearly extrapolates the derivative in the time interval t to t + Δt
in each iteration. This scheme works well for first order linear ordinary differential
equations (like the RC system) provided that the time-step Δt is much smaller than the
time constant τ . This will ensure that difference equation approximation is accurate.
Otherwise, the method would fail us miserably.

It is worth noticing that the Euler algorithm is very inefficient if the input current is
fluctuating (changing) at a temporal scale that is much slower than the membrane time
constant τ . In this case, we will be using a very small Δt when the input is almost
constant during that period of time. Therefore, we will be wasting a lot of unnecessary
numerical computations (steps in the for-loop) to find V(t).

The Euler method is important for pedagogical reasons, as it is conceptually easy to
understand. The following section explains the Exponential Euler Method, which is more
efficient for slowly varying inputs.

b. The Exponential Euler Method.

The Exponential Euler algorithm takes advantage of the analytic solution for a constant
input current:

⎛ ⎞tV (t) =V∞
+ (V0 −V∞

)exp⎜⎜⎜− ⎟⎝ τ ⎠

Now, let’s assume that we have a current input that is not constant, but changes slowly.
That is, we can approximate the input current as constant within time windows of some
size Δt . With this approximation, we can derive an iterative method to obtain the
solution:

2

	

	

	

⎟⎟⎟

9.40 Introduction to Neural Computation Methods for numerical integration

⎛ ⎞Δt⎜V =V + (V −V)exp − n+1 ∞,n n ∞,n ⎜⎜ τ ⎟⎝ ⎠

where we use the same notation as before for the index n. This is the Exponential Euler
Method. Notice that this approximation is very different than in the regular Euler
method. Here, we are exploiting the fact that for a constant input we know the exact
solution of the differential equation. And indeed this method would be exact for a
constant applied current. You can check that if you pick too large a Δt , the worst that
would happen is that Vn+1 = V∞,n . What is the worst case with the regular Euler Method?

In practice, we will pick a time-step Δt for the exponential Euler method that is still
smaller than the membrane time constant τ . However, this method will allow us to pick a
larger time-step compared to the Euler method without wasting computational resources
or making inaccurate estimates.

The Exponential Euler Method is easily implemented in MATLAB using a for-loop.

This is the method we will be using in the problem set. It only works for differential
equations of the form:

dy y
= − + a(t)

dt τ y

Which can always be written in the form:
dy

τ y = y∞− y
dt

This is the case for the RC equation, the integrate and fire model, the Hodgkin-Huxley
model, and most conductance based neurophysiological models.

To conclude, is important to know which approximations each method makes, and what
can limit their applicability. In the case of the Euler method, the principal flaw comes
from the fact that the derivative is evaluated at the beginning of the interval and it is
assumed to have the same value across it. In cases where the input fluctuates at very short
time scales or where the differential equation is highly non-linear, Euler based methods
are not the best choice. In those cases, higher order methods such as the Runge-Kutta will
overcome these problems and provide efficient and stable algorithms to find numerical
solutions. References to application of these methods in MATLAB and to neuroscience
problems are given at the end of this document.

References:

1. Press, WH; Teukolsky, SA; Vetterling, WT and Flannery, BP. Numerical recipes:
the art of scientific computing. Cambridge University Press, 2007. 3rd edition.

3

	

9.40 Introduction to Neural Computation Methods for numerical integration

(Great general reference for numerical methods. A bit out-dated in terms of
programming as original routines written in FORTRAN and C)

2. Chapra, SC. Applied Numerical Methods with MATLAB for engineers and
scientists. McGraw-Hill, 2010. 3rd edition. (Numerical methods with applications
in MATLAB. Well-documented and easy to read.)

3. Ermentrout, GB and Terman, DH. Mathematical Foundations of Neuroscience.
Springer, 2010. (Great and rigorous book in computational neuroscience,
explaining some numerical methods with applicability.)

4

MIT OpenCourseWare
https://ocw.mit.edu/

9.40 Introduction to Neural Computation
Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

