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Signal propagation in dendrites and axons

• So far we have considered a very
simple model of neurons – a model
representing the soma of the neuron.

• We did this because in most
vertebrate neurons, the region that
initiates action potentials is at the
soma.

• This is usually where the ‘decision’ is
made in a neuron whether to spike or
not.

Ramon y Cajal
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Signal propagation in dendrites and axons

Ramon y Cajal
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• Relatively few inputs to a neuron are
made onto the soma.

• Inputs arrive onto the dendrites –
which are thin branching processes
that radiate from the soma.

• Many synapses form onto the
dendrite at some distance from the
soma (as much as 1-2 mm away)

Used with Permission. Courtesy of the Cajal Institute (CSIC). 
Legado Cajal. Madrid.



How does a pulse of synaptic current affect the membrane potential 
at the soma (and elsewhere in the dendrite)?
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A dendrite is like a leaky garden hose

  I0

  I0

  V0

• Current is like water flow
• Voltage is like pressure
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Learning objectives for Lecture 6

• To be able to draw the ‘circuit diagram’ of a dendrite

• Be able to plot the voltage in a dendrite as a function of
distance for leaky and non-leaky dendrite, and understand the
concept of a length constant

• Know how length constant depends on dendritic radius

• Understand the concept of electrotonic length

• Be able to draw the circuit diagram a two-compartment model
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Δx

xa

Radius 

im(x,t)Δx

  V (x,t)  V (x − Δx,t)   V (x + Δx,t)

ie(x,t)Δx Injected current per unit length
times segment length

I(x − Δx,t) I(x,t)

outside

EL

gL

inside

r r r r

im(x,t) = membrane current per unit length

Finite element analysis
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  V (x,t)   V (x + Δx,t)
I(x,t)

outside

inside

r r r r

  V (x,t)−V (x + Δx,t) = r I(x,t)

1
Δx

V (x,t)−V (x + Δx,t)⎡⎣ ⎤⎦ =
r
Δx

I(x,t)

−
∂V
∂x

= Ra I(x,t)

Ra =
r
Δx

= axial resistance 

The cable equation 

 ΔV = I ROhm’s Law

Let’s write down the relation between
V(x,t) and I(x,t)

Note that current flow to the right 
produces a negative gradient

Δx

xRadius    a

This is just the definition of a derivative!

per unit length
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If there are no membrane conductances then:
Membrane potential changes linearly!

  V (x,t)   V (x + Δx,t)
  I(x,t)

inside

 Δx

 L
a

Radius

  I(x − Δx,t)

And no membrane currents …

  I(x,t) = I(x − Δx,t)   = I0

  
∂V
∂x

= −Ra I0

The cable equation 
Consider the special case of a length L

  
−
∂V
∂x

= Ra I(x,t)

0 L

  I0

 RaΔx

  ΔV = R I0

 R = Ra L ΔV
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Boundary conditions

  
−
∂V
∂x

= Ra I0
In order to solve this equation, we need to specify two 
unknowns (boundary conditions): 

  VL =V0 − Ra I0 L  V (x) =V0 − Ra I0xIntegrate over x:

If you know any two of these 
quantities (               ), you can 
calculate the third.  V0 ,VL , I0

VL

V0

0 L

  I0

  V (x,t)   V (x + Δx,t)inside
  I0

 VL  V0  RaΔx
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Boundary conditions

V0

0 L

  I0

0

  I0

  I0

  V0

  VL = 0

  I0

  Vo = Rin I0  Rin = Ra L

Input impedance
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  VL =V0 − Ra I0 L = 0

‘open end’



Boundary conditions

V0

0 L
0

  V0

  
Rin =

Vo

I0
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  VL = V0 − Ra I0 L

  I0 = 0

  = V0

= ∞

‘closed end’



Cable with membrane conductance

Leaky garden-hose analogy

  I0

A leaky dendrite acts like a series of voltage dividers. 

  I0
 RaΔx

  V0  GmΔx

 RaΔx

 GmΔx

 RaΔx

 GmΔx

• Current is like water flow
• Voltage is like pressure
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  V (x,t)   V (x + Δx,t)
I(x,t)inside I(x − Δx,t)

Deriving the cable equation 
ie(x,t) Injected current per unit length

im(x,t)

Kirchoff’s law: sum of all currents out of each node must equal zero.

im(x,t) Δx − ie(x,t) Δx + I(x,t) − I(x − Δx,t) = 0

Membrane current per unit length 

im(x,t)− ie(x,t) = − 1
Δx

I(x,t)− I(x − Δx,t)⎡⎣ ⎤⎦

im − ie = − ∂I
∂x

(x,t)

Length of element 

∂V
∂x

= −Ra I(x,t)

But remember that:

Substitute ∂2V
∂x2 = −Ra

∂I
∂x

(x,t)

Assuming Ra is constant
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1
Ra

∂2V
∂x2 (x,t) = im − ie

Each element in our cable is just like our 
model neuron!

  
im(x,t) Δx = Cm Δx

dV
dt

(x,t)+Gm Δx (V − EL )

So, the total membrane current in our 
element of length Δx is:

 im

 EL

 GMΔx

Capacitance per unit length Membrane ionic conductance per unit length

This we know!!

Deriving the cable equation 

Plug this expression for                into the equation at top…
  im(x,t)
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1
Ra

∂2V
∂x2 (x,t) =Cm

dV
dt

(x,t)+Gm(V − EL )− ie(x,t)

λ 2 ∂
2V
∂x2 (x,t) = τ m

∂V
∂t

(x,t) + V (x,t) −
1

Gm

ie(x,t)

τ m =
Cm

Gm

Membrane time 
constant (sec)

Divide both sides by Gm to get the cable equation!

λ =
1

GmRa

⎛

⎝
⎜

⎞

⎠
⎟

1/2

Steady state space 
constant (length, mm)

where

Deriving the cable equation 
EL is just a constant 

offset, so we ignore it 
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Let’s solve the cable equation for a simple case. What is the steady 
state response to a constant current at a point in the middle of an 
infinitely long cable?

  δ (x) - Dirac delta function
 Ie

 x
 0

  ie(x,t) = I0δ(x)

An example
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δ(x)dx = ε 1
ε

⎛

⎝
⎜
⎞

⎠
⎟ = 1

−∞

∞

∫

0

y =δ(x)

1
ε

limit
ε → 0 ε

x



Let’s solve the cable equation for a simple case. What is the steady 
state response to a constant current at a point in the middle of an 
infinitely long cable?

  
λ 2 ∂

2V
∂x2 (x,t) = τ m

∂V
∂t

(x,t) + V x,t( )− 1
Gm

ie(x,t)

  ∫δ (x)dx ≡ 1

  δ (x) - Dirac delta function
 Ie

 x
 0

  ie(x,t) = I0δ(x)

 0

An example

  
λ 2 ∂

2V
∂x2 (x) = V (x) −

1
Gm

2I0δ(x)
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  V (x) =V0 e−|x| / λ

  
λ 2 ∂

2V
∂x2 (x) = V (x) −

1
Gm

2I0δ(x)

An example
 Ie

 x
 0

  ie(x,t) = 2I0δ (x)

  V0

  e−1

λ 0
 x

  V (x)

  I0

λ  x

  I(x)
  
∂V
∂x

(x) = −Ra I(x)

  
I(x) = − 1

Ra

∂V
∂x

  
I(x) =

V0

Raλ
e−|x| / λ

  
I(x) = − 1

Ra

−
V0

λ

⎛

⎝
⎜

⎞

⎠
⎟e

− x /λ
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l

a

A closer look at the space constant

• Total membrane conductance     :

  Gtot = 2πal gL

 G

total area conductance per unit 
area (S/mm2)

• Membrane conductance per unit length      :

Gm =
Gtot

l
= 2πa gL

 Gm

circumference

Units are  S/mm
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λ =
1

GmRa

⎛

⎝
⎜

⎞

⎠
⎟

1/2

is membrane conductance per unit length Gm



Axial resistance: the resistance along the inside of the dendrite

Steady-state space constant

  
λ =

1
GmRa

⎛

⎝
⎜

⎞

⎠
⎟

1/2

=
1

S / mm Ω / mm
⎛

⎝
⎜

⎞

⎠
⎟

1/2

= mm2( )
1/2
=mm
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A closer look at the space constant

 l
 a

  
λ =

1
GmRa

⎛

⎝
⎜

⎞

⎠
⎟

1/2

Axial resistance per unit length

 (Ω / mm)
  
Ra =

Rtot

l
=
ρi

A
=

ρi

πa2

 
Rtot =

ρi l
A

 ~ 2000 Ω mm
resistivity of the intracellular space 
(property of the medium                      )

where

Total axial resistance along a dendrite of length  l

A = cross sectional area =   πa2

 ρi =



Typical λ for a dendrite of a cortical 
pyramidal cell

a = 2µm=2×10−3mm

gL = 5×10−7S/mm2

  Gm = 2πagL = 6×10−9  S/mm

First calculate membrane conductance

= 6 nS/mm

l

a

ρi = 2000 Ω mm

Resistivity intracellular medium

Ra =
ρi

πa2 =160 MΩ / mm

Now we calculate axial resistance

= 1 mm2( )1/2

 λ ≈ 1 mm

λ =
1

GmRa

⎛

⎝
⎜

⎞

⎠
⎟

1/2

=
1

6nS/mm ⋅160MΩ/mm
⎛

⎝
⎜

⎞

⎠
⎟

1/2
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λ =
1

GmRa

⎛

⎝
⎜

⎞

⎠
⎟

1/2

=
1

2πagL

πa2

ρi

⎡

⎣
⎢

⎤

⎦
⎥

1/2

=
a

2ρigL

⎛

⎝
⎜

⎞

⎠
⎟

1/2

 λ scales as radius
Neurons need to send signals over a distance of a ~100 mm in 
the human brain.
What would a (radius) would have to be to get  λ= 100 mm?

a = 20 mm!

This would never work! This is why signals that must be 
sent over long distances in the brain are sent by 
propagating axon potentials.

Scaling with radius
  Gm = 2πagL

Ra =
ρi

πa2
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Electrotonic length

 l

  e−1

λ 0  x

Electrotonic length is the physical length divided by 
the space constant.

 
L = l

λ
unitless

  e−1

λ 0  x

  e−1

λ 0  x

The amount of current 
into the soma will scale 
as

 e− L

  L = 1

  L = 2

  L = 4
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Multi-compartment model
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Two-compartment model

soma
dendrite

  VS (t)

 GD  GS

 CD  CS

Rc  VD (t)

somatic 
compartment

dendritic 
compartment
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Ie

Ie

somatic 
compartment

dendritic 
compartment

Rc

Ie



Learning objectives for Lecture 6

• To be able to draw the ‘circuit diagram’ of a dendrite

• Be able to plot the voltage in a dendrite as a function of
distance for leaky and non-leaky dendrite, and understand the
concept of a length constant

• Know how length constant depends on dendritic radius

• Understand the concept of electrotonic length

• Be able to draw the circuit diagram a two-compartment model
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Obviously, a big hose has less resistance to 
flow. Ie. it takes less pressure

A small hose has more resistance and takes 
more pressure

Extra Slides on Input impedance
How much voltage does it take to produce a given current into our 
dendrite? (How much pressure does it take to get a certain water 
flow?)

  V0
  I0

 R∞

  
R∞ ≡

V0

I0

This is called the ‘input impedance’ of the 
cable

28



We can calculate the input impedance

R∞
−1 = G∞ = Gm λλ 2 =

1
Gm Ra

since

Input impedance

  V0I0

R∞ ≡
V0

I0

R∞

I(x) =
V0

Raλ
e−|x| / λ

We calculated earlier that the current along the 
cable is

If we evaluate the current at x=0, we get:

I(0) =
V0

Raλ
= I0

R∞ =
V0

I0

= Raλ

Thus,

Thus the ‘input impedance’ of a cable is 
just the axial resistance of a length λ of 
the cable!

What can we say about the input 
conductance? 
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We can exactly solve the case of a brief pulse of current in an 
infinite cable

ie(x,t) dx dt =Q0 = total charge∫∫

V ( X ,T ) =
Q0

Cλ

Ie

x
 0

ie(x,t) = Q0δ (x)δ (t)

 t 0
1

4πT
e
− X 2

4T  e−T

Extra Slides on Time Dependence

 Q = CV

Cλ = 2πacmλ
  X = x / λ T = t / τwhere
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Ie

x
 0

ie(x,t) = Q0δ (x)δ (t)

Pulse of charge

V ( X ,T ) ∝ 1
4πT

e
− X 2

4T

Looking at just the spatial 
dependence

This is just a Gaussian profile.

31
  σ = 2TWidth increases as

Figure removed due to copyright restrictions. See p. 39, Fig. 2.7A in 
Koch, Christof. Biophysics	of	Computation:	Information	Processing	in	
Single	Neurons. 1999, Oxford University Press.



Ie

x
 0

Propagation

V ( X ,T ) = Q
Cλ

1
4πT

e
− X 2

4T e−T
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Vresponse

0 1 2 3 4 50.001

0.01

0.1

1

10

lo
g(

(V
(x

,t)
 ×

  C
λ
) /

 Q
)

t / τ

e−T

X = 0

X = 0.1

X = 1

X = 2

  V ( X ,T )



Ie

x
 0

Propagation

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

T m
ax

x / λ

V ( X ,T ) = Q
Cλ

1
4πT

e
− X 2

4T e−T

∂V
∂T

( X ,T )Find the peaks by calculating

and setting it to zero.

For any given X, you can solve for Tmax.

Tmax =
1
4

1+ 4X 2 −1( ) ≈ 1
2

X tmax

τ
≈ 1

2
x
λ

From this, we can calculate the velocity!

0 1 2 3 4 5 6 7 8 9 100

0.2
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N
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m
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t / τ

X = 1 3 5 7 9
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Vresponse

v = x
tmax

= 2λ
τ



Dendritic filtering

Ie

X
 0 0 1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 a
m

pl
itu

de

t / τ

  

Xmeas =
1 3 5 7 9

As the voltage response propagates down a dendrite, it not only 
falls in amplitude, but it broadens in time.

-
+

 
Vresponse

Xmeas
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