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Signal propagation in dendrites and axons

» So far we have considered a very
simple model of neurons — a model
representing the soma of the neuron.

«  We did this because in most
vertebrate neurons, the region that
initiates action potentials is at the
soma.

« This is usually where the ‘decision’ is A :
made in a neuron whether to spike or .Y a £
not. T

Ramon y Cajal
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Signal propagation in dendrites and axons

* Relatively few inputs to a neuron are
made onto the soma.

* Inputs arrive onto the dendrites —
which are thin branching processes
that radiate from the soma.

* Many synapses form onto the
dendrite at some distance from the
soma (as much as 1-2 mm away)

Ramon y Cajal
Used with Permission. Courtesy of the Cajal Institute (CSIC).
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How does a pulse of synaptic current affect the membrane potential
at the soma (and elsewhere in the dendrite)?



A dendrite 1s like a leaky garden hose

f f f * Current is like water flow
I () < < / | * Voltage is like pressure
0 - \ ====

Voo




Learning objectives for Lecture 6

To be able to draw the ‘circuit diagram’ of a dendrite

Be able to plot the voltage in a dendrite as a function of
distance for leaky and non-leaky dendrite, and understand the
concept of a length constant

Know how length constant depends on dendritic radius
Understand the concept of electrotonic length

Be able to draw the circuit diagram a two-compartment model



Finite element analysis

] (x t)Ax Injected current per unit length
times segment length

inside I(x— Ax,t) I(x,1)
V(x—Ax,t) ' V(x,t) " V(x+Ax,t
A=A AN AN —
4 r y y
— S — [ (x,)Ax -

Tz, T T

outside i (x,t)=membrane current per unit length

Extracellular resistance is small compared to intracellular.



The cable equation

Let's write down the relation between
V(x,t) and I(x,t)

Ohm'sLlaw AV =R

I(x,t)
Vi(x,t) '

V Ax,
AN AA——
r

r r r
outside
¥ =R I(x,t)
dx ¢
V(x,t)-V(x+Ax,t)=r1(x,t) ,
R = — = axial resistance
per unit length

1 r
—| V(x,t)=V(x+Ax,t) |=—1(x,1)
AX[ ] Ax Note that current flow to the right

This is just the definition of a derivative! produces a negative gradient



The cable equation

Consider the special case of a length L
And no membrane currents ...

and steady state

¥ R I(x,t)
I0x.0) o
insid — —_—
inside If(x,t) WV(X +.Ax,t) A A A
I R Ax
1 !
If there are no membrane conductances then:
I(x,t)=1(x—Ax,t) =1 Membrane potential changes linearly!
i e AV =R IO
0x a0 R=RL
>




Boundary conditions

IO
i e
‘nsiae AA A ACR) WV(x + Ax, 1)
v, R Ax lVL
e !
14 In order to solve this equation, we need to specify two
- =R 1, i«

ox ¢ unknowns (boundary conditions):

Integrate over x: Vix)=V,-R I x V,=V,-R I L

If you know any two of these

quantities (¥ 7, , I ), you can
calculate the third.




Boundary conditions

IO
—— I,
— AN ——— MW
V,=0
‘open end’

Input impedance
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Boundary conditions

I,=0
— W ——AW———AW—
V
:

‘closed end’

" : V= V=R AL =,

%
0 > R =—2 = ®©
mn 10
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Cable with membrane conductance

Leaky garden-hose analogy

f f f « Current is like water flow
7 _J  J * Voltage is like pressure
Io_'() N N TN
VoV
/, R Ax R Ax R Ax

A leaky dendrite acts like a series of voltage dividers.
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Der1ving the cable equation

i (x,0) Injected current per unit length

inside I(X_Axat) I(X,f)
V(x,f) V(x+Ax,t)
AMN—— AN AN A —
[ (x,1)

Kirchoft’s law: sum of all currents out of each node must equal zero.

[ (x, ) Ax — i(x,0)Ax + I(x,t) — I(x—Ax,t) =0

‘ T‘ Length of element But remember that:
Membrane current per unit length Y

—=-R [(x,t
0x A0

Assuming R, is constant

i (x,0)—i (x,0)= —é[[(x,t)— I(x—Ax,1) |

o] Substitute 92V
i —i =——(x,t) £ |
m e ax

ax2 = _Ra z_i(xﬂt)



Der1ving the cable equation

1 (9 v / This we know!!
R ox” g

Each element in our cable is just like our
model neuron!

So, the total membrane current in our
element of length Ax is:

[ (x,t) Ax=C_ Axcil—V(xt)+G Ax(V—-FE))

t T

Capacitance per unit length Membrane ionic conductance per unit length

Plug this expression for ;j (x,t) into the equation at top...



Deriving the cable equation

E, is just a constant
offset, so we ignore it
19 dV 2

(V=-FE])-i(x,t)

R ox*

Divide both sides by G,, to get the cable equation!

'V 4 I
A x,t) = 1T —(x,t) + V(x,t) — —i(x,t
7 00 = TG0 ¢ V) = i
where
1/2
1 C
)L= E — ’L’m=_m
G R G
Steady state space Membrane time

constant (length, mm) constant (sec)



An example

Let’s solve the cable equation for a simple case. What is the steady
state response to a constant current at a point in the middle of an

infinitely long cable?

‘0 | )_. d(x) - Dirac delta function

’“ i(x,t)=10(x)
- X
0

y =0(x)
) F 1
limit . man fé(x)dx = 8(—) =1
E—0 o £
% —> €« &£
< 4 > X
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An example

Let's solve the cable equation for a simple case. What is the steady
state response to a constant current at a point in the middle of an

infinitely long cable?

e

/ Il

|

4

)_> 0(x) - Dirac delta function

> X

)\.2

I
’“ i (x,t)=1,0(x)
0

0

3’V 514 1
X, )= —4x,t) + V{x,t)——1(x,t
) /% (1) i

(;;Z (x) = V(x) - GL2106(x)

m

)\’2
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)\’2

4
X) =
ze( )

An example

V(x) - GL 210(x)

\‘l .

m

I )

V(x)

X

> X

m i(x,t)=2106(x)
0

Y (xy=-R I(x)
0x

1 oV
I(x)=—— 2
() R 0dx
1 V —{x‘/)»
I =—__|__0
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A closer look at the space constant

1/2

G is membrane conductance per unit length A=
m

* Total membrane conductance G :

G  =2malg,
—
w1 L - f
total area conductance per unit

area (S/mm?)

* Membrane conductance per unit lengthG
G .
G =—=2rag, Units are S/mm
<

m
circumference _T



A closer look at the space constant

Axial resistance: the resistance along the inside of the dendrite

Total axial resistance along a dendrite of length |

R ='O—il where
tot A

p. = resistivity of the intracellular space
(property of the medium ~2000 Q mm )

. 2
A = cross sectional area =a

Axial resistance per unit length

R=Rtot=pi=pi
. / A ma’

(€2/ mm)

Steady-state space constant

1/2
A = LI ! =(mm2)1/2 = mm
GmRa S/mm Q/mm

1/2

1/2




Typical A for a dendrite of a cortical
pyramidal cell

First calculate membrane conductance

g, =5x107'S/mm’ /

G =2mag, =6X 10~ S/mm
a=2um=2x10"mm

=6 nS/mm

1/2

Now we calculate axial resistance 1

Gm Ra

A=

1 1/2
=(6nS/mm -160M£2/mm)

R =1 2160 MQ/mm

2 1/2
a = (1 mmz)

p,=2000 € mm
A = 1 mm

Resistivity intracellular medium



Scaling with radius

1/2 5 12 1/2 Gm=2nagL
1 _ 1 ma _ a
G R 2mwag, p. 2p.g, p =P
a 2
Ta

A scales as \radius

Neurons need to send signals over a distance of a ~100 mm in
the human brain.

What would a (radius) would have to be to get A= 100 mm?
a =20 mm!

This would never work! This is why signals that must be
sent over long distances in the brain are sent by
propagating axon potentials.



Electrotonic length

Electrotonic length is the physical length divided by

the space constant.

| = — unitless

A

The amount of current
into the soma will scale

as N
e

» X
L=2
eo ) x
L=4
€_1 — » X
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Multi-compartment mode

Used with Permission. Courtesy of the Cajal Institute (CSIC). Legado Cajal. Madrid.

Annotated figure © Bower, J.M. and D. Beeman. The Book of GENESIS: Exploring Realistic Neural
Models with the GEneral NEural Simulation System 2nd ed. 1998, Springer-Verlag.
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Two-compartment model

I \l
dendrite

soma VD (7) VS (2)
\/ ]e G, G,
cl| cl
(1 D s
—vvv@ jT jT
7 dendritic somatic
e(-\E Rc Q compartment compartment
dendritic somatic

compartment  compartment



Learning objectives for Lecture 6

To be able to draw the ‘circuit diagram’ of a dendrite

Be able to plot the voltage in a dendrite as a function of
distance for leaky and non-leaky dendrite, and understand the
concept of a length constant

Know how length constant depends on dendritic radius
Understand the concept of electrotonic length

Be able to draw the circuit diagram a two-compartment model



Extra Slides on Input impedance

How much voltage does it take to produce a given current into our
dendrite? (How much pressure does it take to get a certain water

flow?)

Obviously, a big hose has less resistance to
flow. le. it takes less pressure

Ry 49

A small hose has more resistance and takes
more pressure

This is called the ‘input impedance’ of the
cable
v

R _0
o0 ]0



Input impedance

We can calculate the input impedance

We calculated earlier that the current along the
cable is

v
I[(x)=—2L ™'*
() R A
If we evaluate the current at x=0, we get:
Vo
1(0) = R 1, Thus the ‘input impedance’ of a cable is
a just the axial resistance of a length A of
Thus, the cable!
4 What can we say about the input
_ 0 _
R, = Ji ot conductance?
0

since  pl=_—— R'=G =G A4



Extra Slides on Time Dependence

We can exactly solve the case of a brief pulse of current in an
infinite cable

|
m ff ie(xat ) dx dt = 0, = total charge
0

e

/ Il

0

i (x,t)=0,0(x)o(t)

> X

O BV

0=CV
C,=2rac A



Pulse of charge

i (x,t)=0,6(x)o(t)

O Figure removed due to copyright restrictions. See p. 39, Fig. 2.7A in
Koch, Christof. Biophysics of Computation: Information Processing in
Single Neurons. 1999, Oxford University Press.

Looking at just the spatial
dependence

1 X
V(X.T)oc e ¢ 4T

N4rT

This is just a Gaussian profile.

Width increases as ¢ =/2T



Propagation

K //EF

I 4 )
< m > X
0
1 X
V(X,T)= Q e ‘e’
C,I 4T




Propagation

I //EF

Find the peaks by calculating B_V(X T)
or =’

and setting it to zero.

o g For any given X, you can solve for T ..
1 = 1 1
V(X,T)= < e e’ Tmax=—(\/1+4X2—1)z—X I 1%
C& 4T 4 2 T 2 A

Y=1357 9 From this, we can calculate the velocity!

o It o, O

s

2

= 0.8 \ S b X 24

£ 0.6) 4 b T

04 53

=0 =" e

§02 \ | /o’/

o ///

Z 0 o \ — , 0 pod

0123456728910 0123456782910

t/ T X/ A



Dendritic filtering

As the voltage response propagates down a dendrite, it not only
falls in amplitude, but it broadens in time.

f%

)

response

> X

Xme =
1 3579
o ]
-
2
.;QO.S
< 0.6
3 \
R04
=
£ 0.2
01 345678910
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