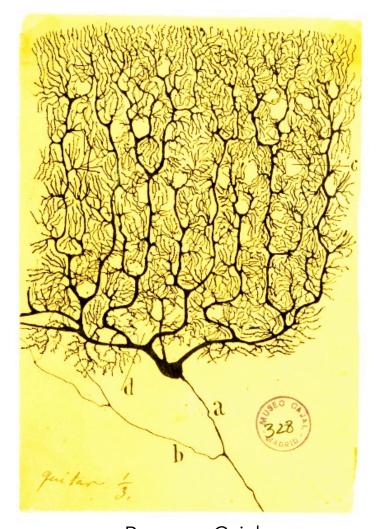
Introduction to Neural Computation

Prof. Michale Fee MIT BCS 9.40 — 2018 Lecture 6

Signal propagation in dendrites and axons

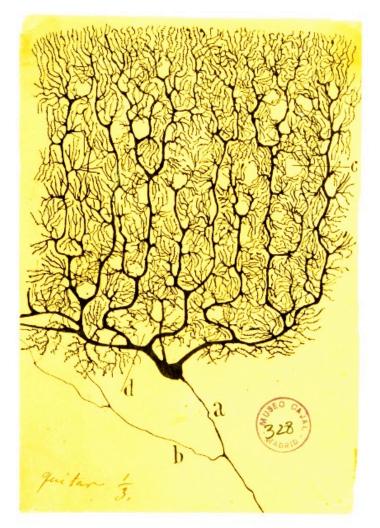
- So far we have considered a very simple model of neurons a model representing the soma of the neuron.
- We did this because in most vertebrate neurons, the region that initiates action potentials is at the soma.
- This is usually where the 'decision' is made in a neuron whether to spike or not.



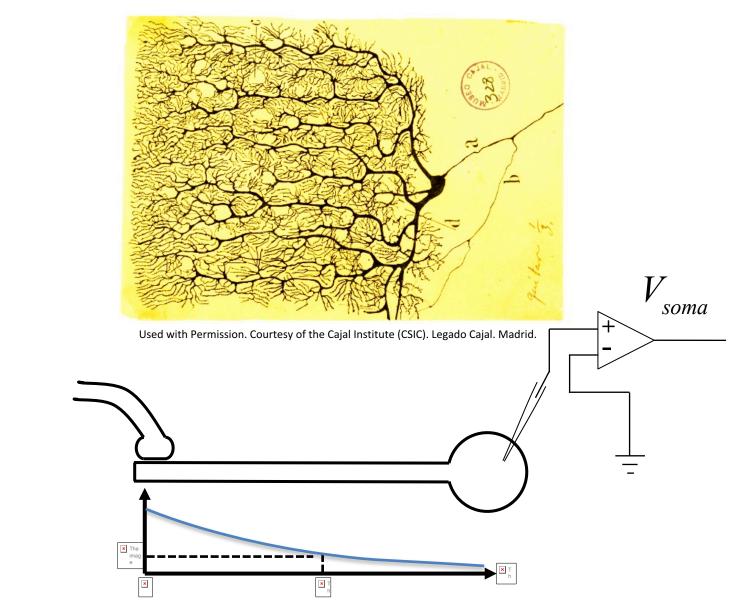
Ramon y Cajal Used with Permission. Courtesy of the Cajal Institute (CSIC). Legado Cajal. Madrid.

Signal propagation in dendrites and axons

- Relatively few inputs to a neuron are made onto the soma.
- Inputs arrive onto the dendrites which are thin branching processes that radiate from the soma.
- Many synapses form onto the dendrite at some distance from the soma (as much as 1-2 mm away)

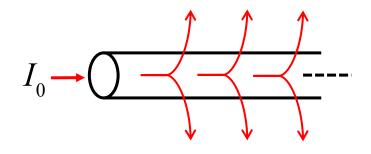


Ramon y Cajal Used with Permission. Courtesy of the Cajal Institute (CSIC). Legado Cajal. Madrid.

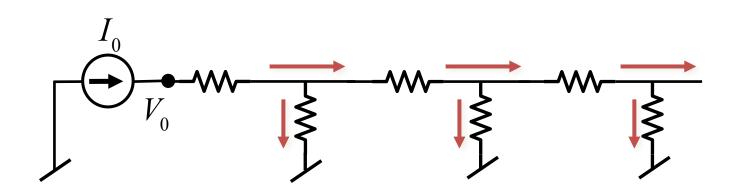


How does a pulse of synaptic current affect the membrane potential at the soma (and elsewhere in the dendrite)?

A dendrite is like a leaky garden hose



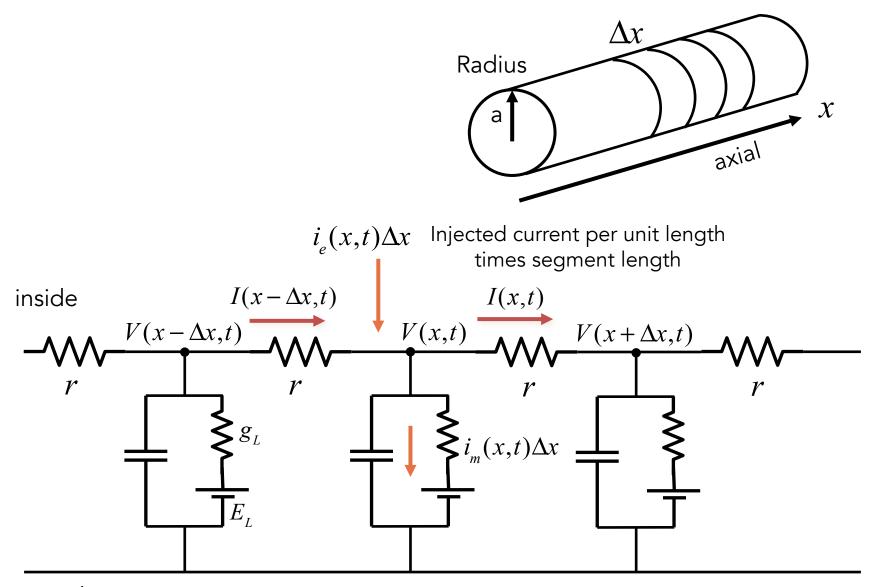
- Current is like water flow
- Voltage is like pressure



Learning objectives for Lecture 6

- To be able to draw the 'circuit diagram' of a dendrite
- Be able to plot the voltage in a dendrite as a function of distance for leaky and non-leaky dendrite, and understand the concept of a length constant
- Know how length constant depends on dendritic radius
- Understand the concept of electrotonic length
- Be able to draw the circuit diagram a two-compartment model

Finite element analysis



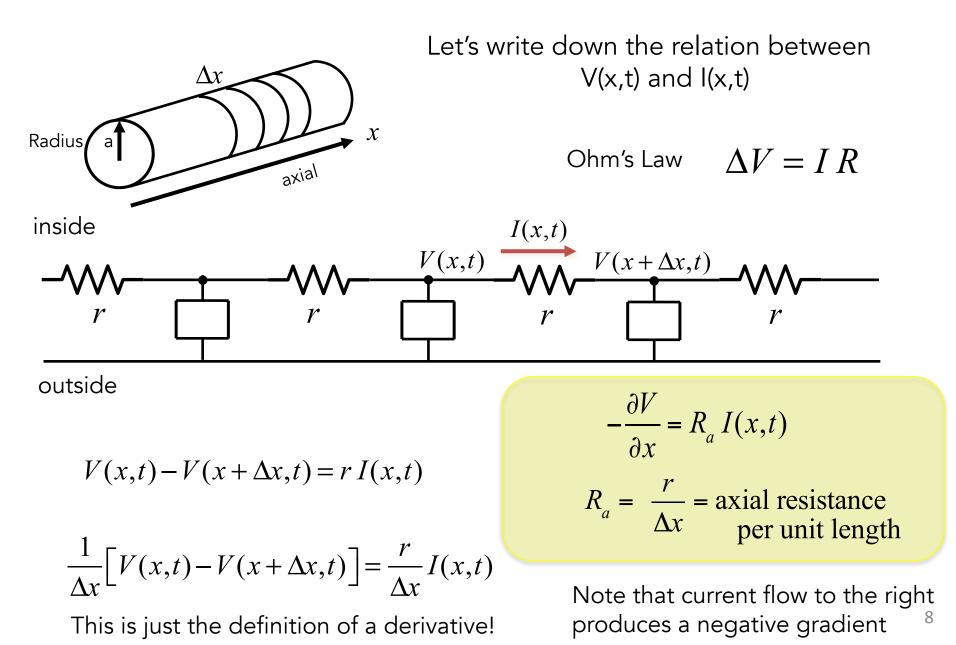
outside

 $i_m(x,t)$ = membrane current per unit length

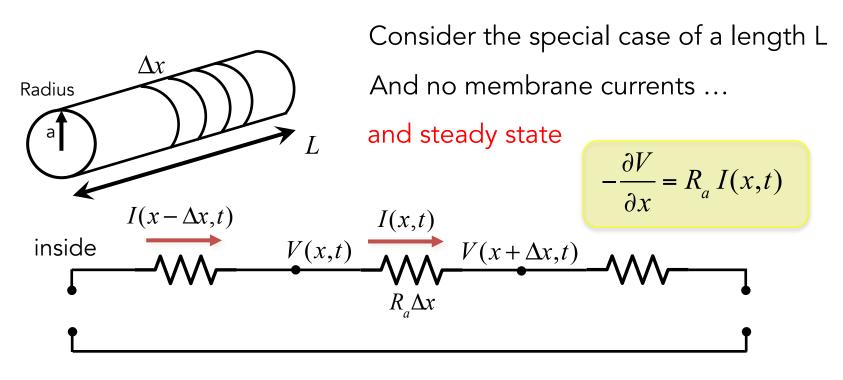
Extracellular resistance is small compared to intracellular.

7

The cable equation



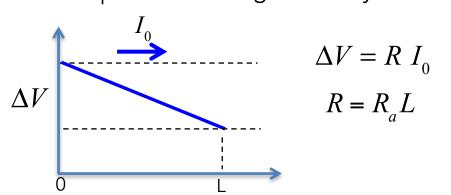
The cable equation



$$I(x,t) = I(x - \Delta x, t) = I_0$$

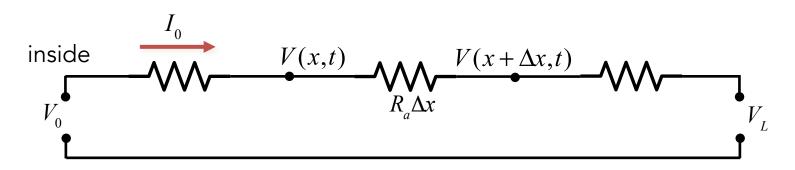
 $\frac{\partial V}{\partial x} = -R_a I_0$

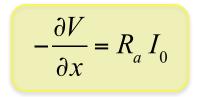
If there are no membrane conductances then: Membrane potential changes linearly!



9

Boundary conditions



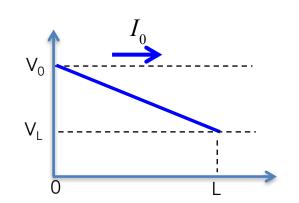


In order to solve this equation, we need to specify two unknowns (boundary conditions):

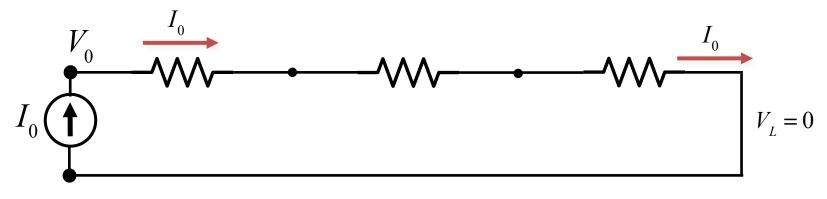
Integrate over x:

$$V(x) = V_0 - R_a I_0 x$$
 $V_L = V_0 - R_a I_0 L$

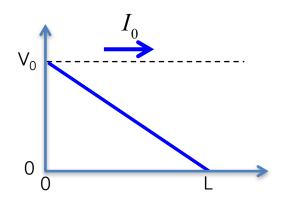
If you know any two of these quantities (V_0 , V_L , I_0), you can calculate the third.



Boundary conditions

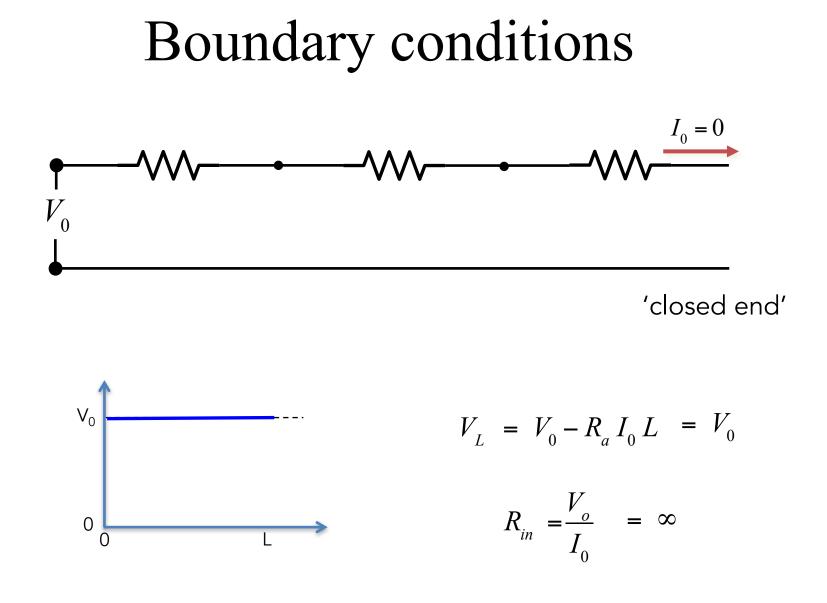


'open end'



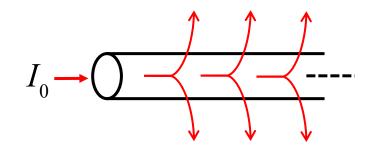
 $V_{L} = V_{0} - R_{a} I_{0} L = 0$ $V_{o} = R_{in} I_{0} \qquad R_{in} = R_{a} L$

Input impedance

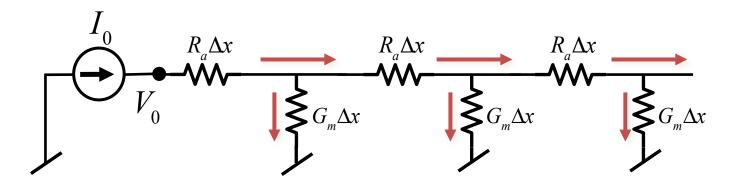


Cable with membrane conductance

Leaky garden-hose analogy

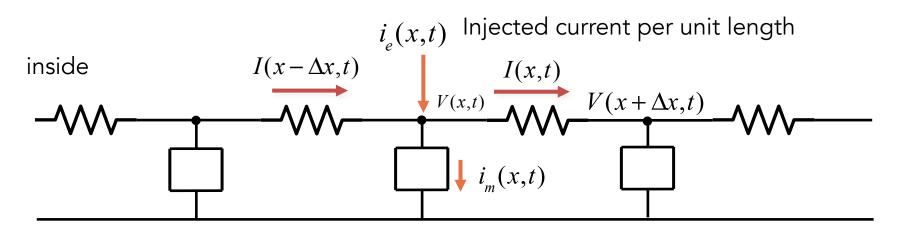


- Current is like water flow
- Voltage is like pressure



A leaky dendrite acts like a series of voltage dividers.

Deriving the cable equation



Kirchoff's law: sum of all currents out of each node must equal zero.

$$i_{m}(x,t) \Delta x - i_{e}(x,t) \Delta x + I(x,t) - I(x - \Delta x,t) = 0$$

$$i_{m}(x,t) - i_{e}(x,t) = -\frac{1}{\Delta x} \Big[I(x,t) - I(x - \Delta x,t) \Big]$$
But remember that:

$$\frac{\partial V}{\partial x} = -R_{a} I(x,t)$$
Assuming R_{a} is constant

$$i_{m} - i_{e} = -\frac{\partial I}{\partial x}(x,t)$$
Substitute

$$\frac{\partial^{2} V}{\partial x^{2}} = -R_{a} \frac{\partial I}{\partial x}(x,t)$$

 ∂x

14

Deriving the cable equation

$$\frac{1}{R_a} \frac{\partial^2 V}{\partial x^2}(x,t) = \underbrace{i_m - i_e}_{m}$$
 This we know!!

Each element in our cable is just like our model neuron!

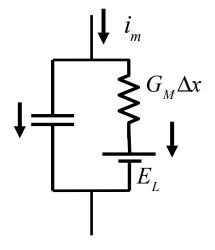
So, the total membrane current in our element of length Δx is:

$$i_m(x,t) \Delta x = C_m \Delta x \frac{dV}{dt}(x,t) + G_m \Delta x \left(V - E_L\right)$$

Capacitance per unit length

Membrane ionic conductance per unit length

Plug this expression for $i_m(x,t)$ into the equation at top...



Deriving the cable equation

 E_L is just a constant offset, so we ignore it

$$\frac{1}{R_a}\frac{\partial^2 V}{\partial x^2}(x,t) = C_m \frac{dV}{dt}(x,t) + G_m(V - E_L) - i_e(x,t)$$

Divide both sides by G_m to get the cable equation!

$$\lambda^{2} \frac{\partial^{2} V}{\partial x^{2}}(x,t) = \tau_{m} \frac{\partial V}{\partial t}(x,t) + V(x,t) - \frac{1}{G_{m}} i_{e}(x,t)$$

where

$$\lambda = \left(\frac{1}{G_m R_a}\right)^{1/2}$$

$$\tau_m = \frac{C_m}{G_m}$$

Steady state space constant (length, mm)

Membrane time constant (sec)

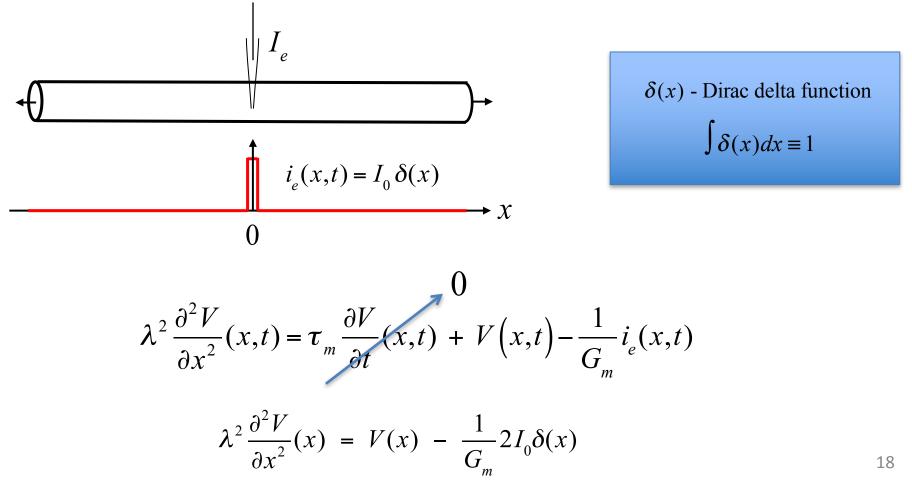
An example

Let's solve the cable equation for a simple case. What is the steady state response to a constant current at a point in the middle of an infinitely long cable?

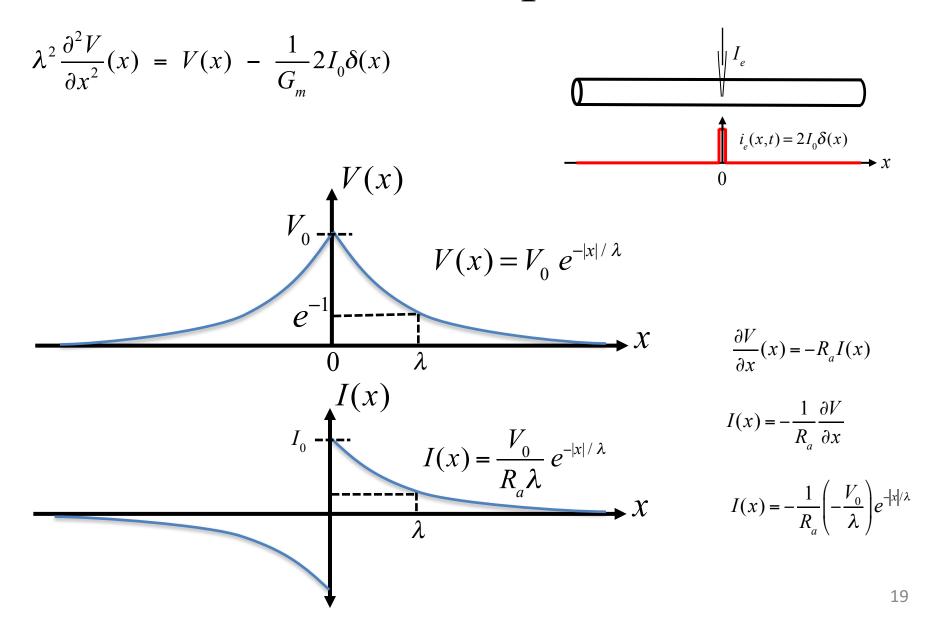


An example

Let's solve the cable equation for a simple case. What is the steady state response to a constant current at a point in the middle of an infinitely long cable?



An example



20

A closer look at the space constant

conductance per unit

area (S/mm²)

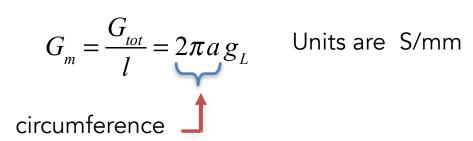
 $G_{_{m}}$ is membrane conductance per unit length

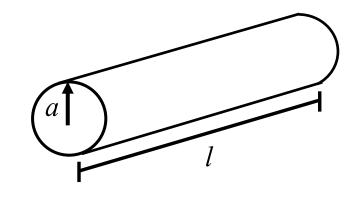
• Total membrane conductance G :

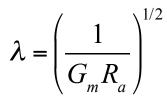
 $G_{tot} = 2\pi a l g_L$

total area

• Membrane conductance per unit length G_m :







A closer look at the space constant

Axial resistance: the resistance along the inside of the dendrite

Total axial resistance along a dendrite of length *l*

$$R_{tot} = \frac{\rho_i l}{A} \quad \text{where}$$

$$\rho_i = \text{resistivity of the intracellular space} \quad \text{(property of the medium } \sim 2000 \ \Omega \text{ mm})}$$

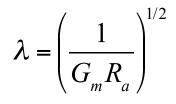
$$A = \text{cross sectional area} = \pi a^2$$

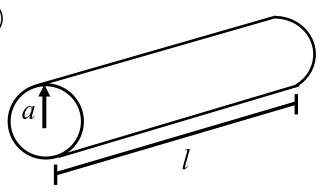
Axial resistance per unit length

$$R_a = \frac{R_{tot}}{l} = \frac{\rho_i}{A} = \frac{\rho_i}{\pi a^2} \quad (\Omega / \text{mm})$$

Steady-state space constant

$$\lambda = \left(\frac{1}{G_m R_a}\right)^{1/2} = \left(\frac{1}{S / \operatorname{mm} \Omega / \operatorname{mm}}\right)^{1/2} = \left(\operatorname{mm}^2\right)^{1/2} = \operatorname{mm}$$



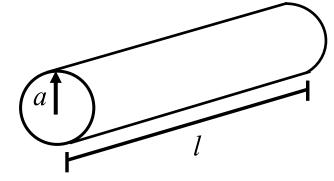


Typical λ for a dendrite of a cortical pyramidal cell

First calculate membrane conductance

 $g_L = 5 \times 10^{-7} \text{ S/mm}^2$ $G_m = 2\pi a g_L = 6 \times 10^{-9} \text{ S/mm}$

= 6 nS/mm



 $a = 2\mu m = 2 \times 10^{-3} mm$

$$\lambda = \left(\frac{1}{G_m R_a}\right)^{1/2} = \left(\frac{1}{6 \text{ nS/mm} \cdot 160 \text{ M}\Omega/\text{mm}}\right)^{1/2}$$

$$= \left(1 \text{ mm}^2\right)^{1/2}$$

 $\lambda \approx 1 \,\mathrm{mm}$

$R_a = \frac{\rho_i}{\pi a^2} = 160 \ M\Omega \ / \ \mathrm{mm}$

Now we calculate axial resistance

 $\rho_i = 2000 \ \Omega \ \mathrm{mm}$

Resistivity intracellular medium

Scaling with radius

$$\lambda = \left(\frac{1}{G_m R_a}\right)^{1/2} = \left[\frac{1}{2\pi a g_L} \frac{\pi a^2}{\rho_i}\right]^{1/2} = \left(\frac{a}{2\rho_i g_L}\right)^{1/2} \qquad \qquad G_m = 2\pi a g_L$$
$$R_a = \frac{\rho_i}{\pi a^2}$$

 λ scales as \sqrt{radius}

Neurons need to send signals over a distance of a ~100 mm in the human brain.

What would *a* (radius) would have to be to get λ = 100 mm?

a = 20 mm!

This would never work! This is why signals that must be sent over long distances in the brain are sent by propagating axon potentials.

Electrotonic length

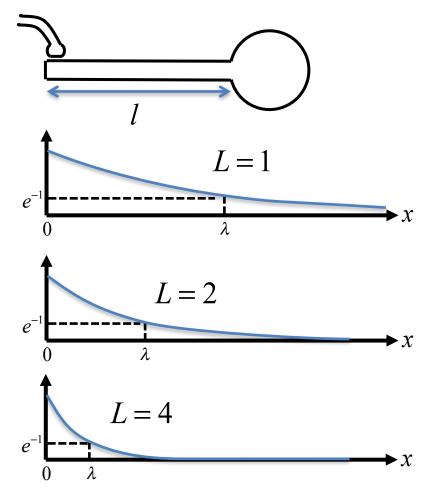
Electrotonic length is the physical length divided by the space constant.

$$L = \frac{l}{\lambda}$$
 unitless

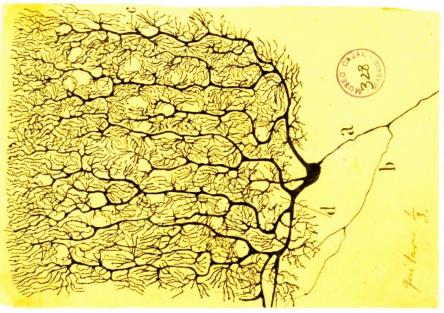
The amount of current into the soma will scale

as

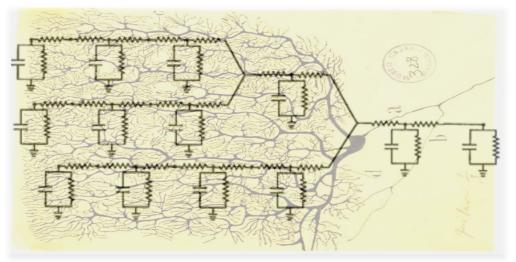
 e^{-1}



Multi-compartment model

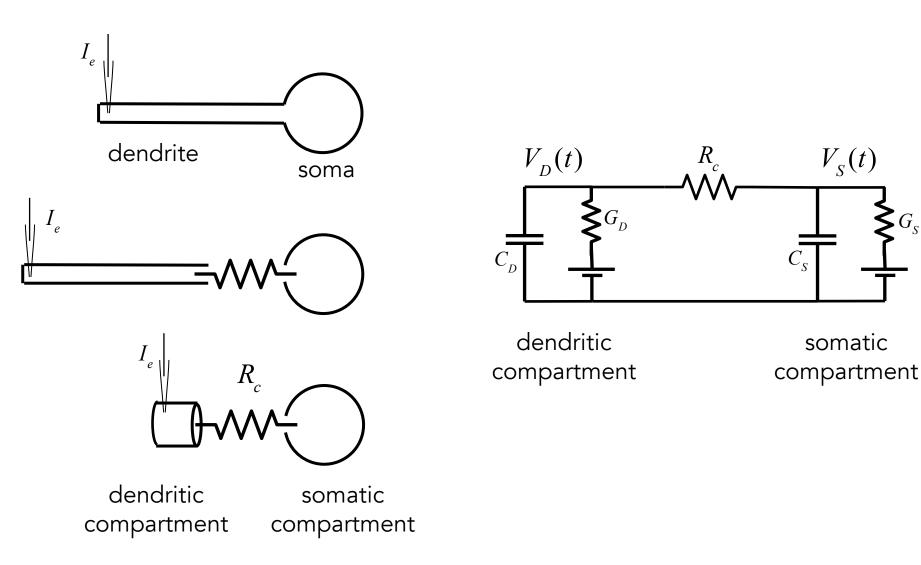


Used with Permission. Courtesy of the Cajal Institute (CSIC). Legado Cajal. Madrid.



Annotated figure © Bower, J.M. and D. Beeman. *The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System* 2nd ed. 1998, Springer-Verlag.

Two-compartment model



Learning objectives for Lecture 6

- To be able to draw the 'circuit diagram' of a dendrite
- Be able to plot the voltage in a dendrite as a function of distance for leaky and non-leaky dendrite, and understand the concept of a length constant
- Know how length constant depends on dendritic radius
- Understand the concept of electrotonic length
- Be able to draw the circuit diagram a two-compartment model

28

Extra Slides on Input impedance

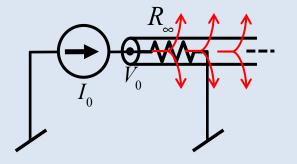
How much voltage does it take to produce a given current into our dendrite? (How much pressure does it take to get a certain water flow?)

Obviously, a big hose has less resistance to flow. Ie. it takes less pressure

A small hose has more resistance and takes more pressure

This is called the 'input impedance' of the cable

$$R_{\infty} \equiv \frac{V_0}{I_0}$$



Input impedance

We can calculate the input impedance

We calculated earlier that the current along the cable is

$$I(x) = \frac{V_0}{R_a \lambda} e^{-|x|/\lambda}$$

If we evaluate the current at x=0, we get:

$$I(0) = \frac{V_0}{R_a \lambda} = I_0$$

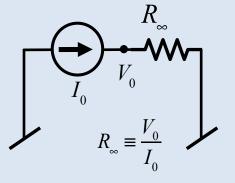
Thus,

$$R_{\infty} = \frac{V_0}{I_0} = R_a \lambda$$

Thus the 'input impedance' of a cable is just the axial resistance of a length $\lambda\,$ of the cable!

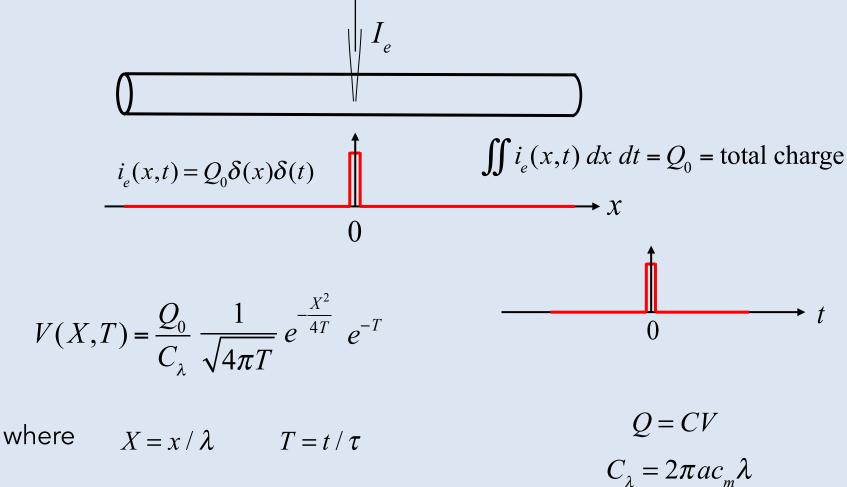
What can we say about the input conductance?

since
$$\lambda^2 = \frac{1}{G_m R_a}$$
 $R_{\infty}^{-1} = G_{\infty} = G_m \lambda$

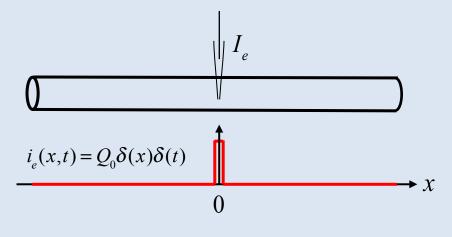


Extra Slides on Time Dependence

We can exactly solve the case of a brief pulse of current in an infinite cable



Pulse of charge



Looking at just the spatial dependence

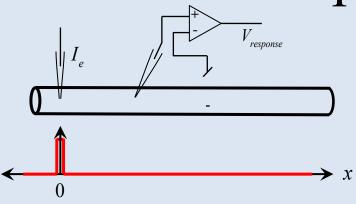
$$V(X,T) \propto \frac{1}{\sqrt{4\pi T}} e^{-\frac{X^2}{4T}}$$

This is just a Gaussian profile.

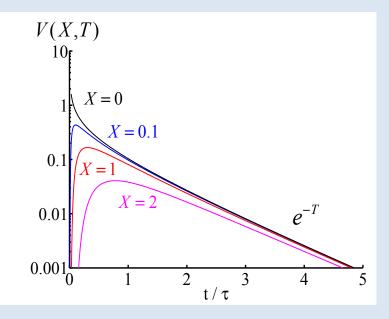
Width increases as $\sigma = \sqrt{2T}$

Figure removed due to copyright restrictions. See p. 39, Fig. 2.7A in Koch, Christof. *Biophysics of Computation: Information Processing in Single Neurons*. 1999, Oxford University Press.

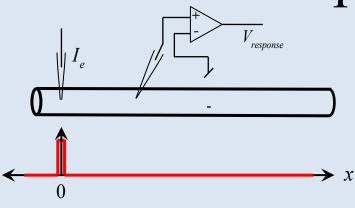
Propagation



$$V(X,T) = \frac{Q}{C_{\lambda}} \frac{1}{\sqrt{4\pi T}} e^{-\frac{X^2}{4T}} e^{-T}$$



Propagation

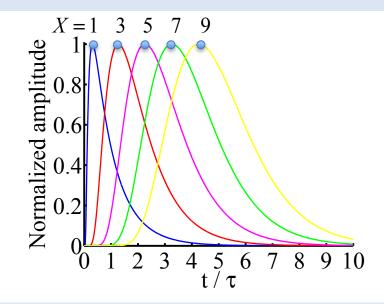


$$V(X,T) = \frac{Q}{C_{\lambda}} \frac{1}{\sqrt{4\pi T}} e^{-\frac{X^2}{4T}} e^{-T}$$

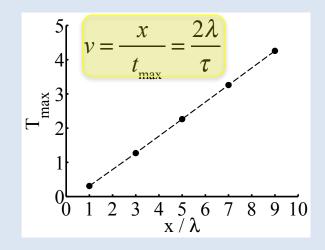
Find the peaks by calculating $\frac{\partial V}{\partial T}(X,T)$ and setting it to zero.

For any given X, you can solve for $\rm T_{max}$

$$T_{\max} = \frac{1}{4} \left(\sqrt{1 + 4X^2} - 1 \right) \approx \frac{1}{2}X \qquad \frac{t_{\max}}{\tau} \approx \frac{1}{2}\frac{x}{\lambda}$$

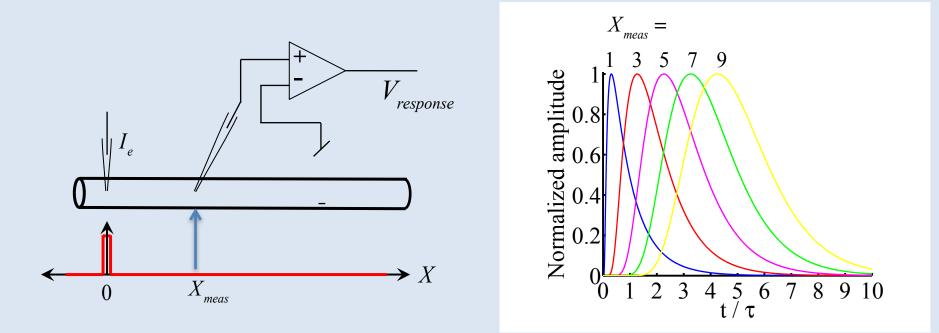


From this, we can calculate the velocity!



Dendritic filtering

As the voltage response propagates down a dendrite, it not only falls in amplitude, but it broadens in time.



MIT OpenCourseWare https://ocw.mit.edu/

9.40 Introduction to Neural Computation Spring 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.