
MITOCW | 19: Neural Integrators - Intro to Neural Computation

MICHALE FEE: Today we're going to continue talking about the topic of neural-- recurrent neural
networks. And last time, we talked about recurrent neural networks that give gain
and suppression in different directions of the neural network space. Today we're
going to talk about the topic of neural integrators. And neural integrators are
currently an important topic in neuroscience because they are basically one of the
most important models of short-term memory.

So let me just say a few words about what short-term memory is. So and to do that,
I'll just contrast it with long-term memory. So short-term memory is memory that
just lasts a short period of time on the order of seconds to maybe a few tens of
seconds at most, whereas long-term memories are on the order of hours, or days,
or even up to an entire lifetime of the animal.

A short-term memory has a small capacity, so just a few items at a time you can
keep in short-term memory. The typical number would be something like seven, the
classic number, sort of seven plus or minus two. You might have heard this, so just
about the length of a phone number that you can remember between the time you
look it up in the-- well, you know, we all have phone numbers on speed dial now, so
we don't even remember phone numbers anymore. But in the old days, you would
have to look it up in the phone book and remember it long enough to type it in.

OK, whereas long-term memories have very large capacity, basically everything
that you remember about all the work in your classes that you remember, of
course, for your entire life, not just until the final exam. Short-term memories are
thought to have an underlying biophysical mechanism that is the persistent firing of
neurons in a particular population of neurons that's responsible for holding that
memory, whereas the biophysical mechanism of long-term memories is thought to
be physical changes in the neurons and primarily in the synapses that connect
neurons in a population.

So let me just show you a typical short-term memory task that's been used to study
neural activity in the brain that's involved in short-term memory. So this is a task
that has been studied in nonhuman primates. So the monkey sits in a chair, stares
at the screen. There is a set of spots on the screen and a fixation point in the



middle, so the monkey stares at the fixation point.

One of those cues turns on, so one of those spots will change color. The monkey has
to maintain fixation at that spot. The cue turns off then. So now the animal has to
remember which cue was turned on. And then some delayed period later, which can
be-- it's typically between three to six or maybe 10 seconds, the animal-- the fixation
cue goes away, and that tells the animal that it's time to then look at the cued
location.

And so in this interval between the time when the cue turns off and the animal has
to look at the location of that cue, the animal has to remember the direction in
which that cue was activated, or it has to remember the location of that cue.

Now, if you record from neurons in parts of the prefrontal cortex during this task,
what you find is that the neural activity is fairly quiet during the precue and the cue
period and then ramps up. The firing rate ramps up very quickly and maintains a
persistent activity during this delay period. And then as soon as the animal makes a
saccade to the remembered location, then that neural activity goes away because
the task is over and the animal doesn't have to remember that location anymore.

So that persistent activity right there is thought to be the neural basis of the
maintenance of that short-term memory. And you can see that the activity of this
neuron carries information about which of those cues was actually on. So this
particular neuron is most active when it was the cue in the upper-left corner of the
screen that was active, and that neuron shows no changes in activity when the cued
location shows no change in activity during the memory period, during the delay
period when the cued location was down and to the right.

So this neuron carries information about which cue is actually being remembered.
And of course, there are different neurons in this population of-- in this part of
prefrontal cortex. And each one of those neurons will have a different preferred
direction. And so by looking at a population of neurons then during the delay
period, you could figure out and the monkey's brain can remember which of those
cues was illuminated.

OK, so the idea of short-term memory is that you can have a stimulus that is active
briefly. And then for some period of time after that stimulus turns on, there is neural



activity that turns on during the presentation of that stimulus and then stays on. It
persists for tens of seconds after the stimulus actually turns off. So that's one notion
of short-term memory and how neural activity is involved in producing that memory.
And the basic idea here is that that stimulus is in some way integrated by the circuit,
and that produces a step in the response. And once that stimulus goes away, then
that-- the integral of that stimulus persists for a long time.

All right, now, short-term memory and neural integrators are also thought to be
involved in a different kind of behavior. And that is the kind of behavior where you
actually need to accumulate information over time. OK, so sometimes when you
look at a stimulus, the stimulus can be very noisy. And if you just look at it for a very
brief period of time, it can be hard to figure out what's going on in that stimulus.

But if you stare at it for a while, you gradually get a better and better sense of
what's going on in that stimulus. And so during that period of time when you're
looking at the stimulus, you're accumulating information about what's going on in
that stimulus. And so there's a whole field of neuroscience that relates to this issue
of accumulating evidence during decision-making. OK, so let me show you an
example of what that looks like.

So here's a different kind of task. Here's what it looks like for a monkey doing this
task. The monkey fixates at a point. Two targets come up on the screen. The
monkey at the end of the task will have to saccade to one or the other of those
targets depending on a particular stimulus. And a kind of stimulus that's often used
in tasks like this is what's called a "random dot motion stimulus."

So you have dots that appear on the screen. Most of them are just moving
randomly, but a small number of them move consistently in one direction. So for
example, a small number of these dots move coherently to the right. And if the
motion stimulus is more to the right, then the monkey has to then-- once that
motion stimulus goes away, the monkey has to make a saccade to the right-hand
target.

Now, this task can be very difficult if a small fraction of the dots are moving
coherently one way or the other. And so what you can see is that the percentage
correct is near chance when the motion strength or the percent coherence, the



fraction of the dots that are moving coherently, is very small. There's almost a--
there's a 50% chance of getting the right answer. But as the motion strength
increases, you can see that the monkey's performance gets better and better. And
not only does the performance get better, but the reaction time actually gets
smaller.

So I'll show-- I found a movie of what this looks like. So this is from another lab that
set this up in rats. So here's what this looks like. So the rat is poking its nose in a
center port. There's the rat. There's a screen. There's a center port right in front of
it that the rat pokes its nose in to initiate a trial. And depending on whether the
coherent motion is moving to the right or left, the rat has to get food reward from
one or the other port to the left or right. So here's what that looks like.

[VIDEO PLAYBACK]

[BEEP]

[CLINK]

[BEEP]

[CLINK]

[BEEP]

[CLINK]

[CLINK]

[BEEP]

[CLINK]

So this is a fairly high-motion coherent stimulus, so it's pretty easy to see. But and
you can see the animal is performing nearly perfectly. It's getting the right-- it's
making the right choice nearly every time. But for lower-coherence stimuli, it



becomes much harder, and the animal gets a significant fraction of them wrong.

[END PLAYBACK]

OK, all right, I thought that was kind of amusing. Now, if you record in the brain in--
also in parts of frontal cortex, what you find is that there are neurons. And this is
data from the monkey again, and this is from Michael Shadlen's lab, who's now at
Columbia. And what you find is that during the presentation of the stimulus here,
you can see that there are neurons whose activity ramps up over time as the animal
is watching the stimulus.

And so what you can see here is that these different traces, so for example, the
green trace and the blue trace here, show what the neurons are doing when the
stimulus is very weak. And the yellow trace shows what the neurons do when-- or
this particular neuron does when the stimulus is very strong. And so there's this
notion that these neurons are integrating the evidence about which way this-- these
random dots are going until that activity reaches some sort of threshold.

And so this is what those neurons look like when you line their firing rate up to the
time of the saccade. And you can see that all of those different trajectories of
neural activity ramp up until they reach a threshold at which point the animal
makes it's choice about looking left or right. And so the idea is that these neurons
are integrating the evidence until they reach a bound, and then the animal makes a
decision.

The weaker the evidence is, the weaker that evidence accumulates. The more
weaker the coherence, the more slowly the evidence accumulates and the longer it
takes for that neural activity to reach the threshold. And so, therefore, the reaction
time is longer. So it's a very powerful model of accumulat-- evidence accumulation
during a decision-making task.

Here's another interesting behavior that potentially involves neural integration. So
this is navigation by path integration in a species of desert ant. So these animals do
something really cool. So they leave their nest, and they forage for food. But they're
foraging for food. It's very hot. So they run around. They look for food.

And as soon as they find food, they head straight home. And if you look at their



trajectory from the time they leave food, they immediately head along a vector that
points them straight back to their nest. And so it suggests that these animals are
actually integrat-- look. The animal's doing all sorts of loop-dee-doos, and it's going
all sorts of different directions. You'd think it would get lost. How does it maintain?
How does it represent in its brain the knowledge of which direction is actually back
to the nest?

One possibility is that it uses external cues to figure this out, like it looks at the-- it
sees little sand dunes on the horizon or something. You can actually rule out that it's
using sensor information by after the point where it finds food, you pick it up, and
you transport it here to a different spot. And the animal heads off in a direction
that's exactly the direction that would have taken it back to the nest had it been in
the ori-- in the location before you moved it.

So the idea is that somehow it's integrating its distance, and it's doing vector
integration of its distance and direction over time. OK, so lots of interesting bits of
evidence that the brain does integration for different kinds of interesting behaviors.

So today I'm going to show you some-- another behavior that is thought to involve
integration. And it's a simple sensory motor behavior where it's been possible to
study the circuitry in detail that's involved in the neural control of that motor
behavior. And the behavior is basically the control of eye position. And this group,
this was largely work done that was done in David Tank's lab in collaboration with
his theoretical collaborators, Mark Goldman and Sebastian's Seung. OK, so let me
just show you this little movie.

[VIDEO PLAYBACK]

OK, so these are goldfish. Goldfish have an ocular motor control system that's very
similar to that in mammals and in us. You can see that they move their eyes around.
They actually make saccades. And if you zoom in on their eye and watch what their
eyes do, you can see that they make discrete jumps in the position of the eye. And
between those discrete jumps, the eyes are held in a fixed position.

OK, now if you were to anesthetize the eye muscles, the eye would always just sort
of spring back to some neutral location. The eye muscles are sort of like springs.



And in the absence of any motor control of any activation of those muscles, the
eyes just relax to a neutral position. So when the eye moves and it's maintained at a
particular position, that has-- something has to hold that muscle at a particular
tension in order to hold the eye at that position.

[END PLAYBACK]

So there are a set of muscles that control eye position. There's a whole set of
neural circuits that control the tension in those muscles. And in these experiments,
the researchers just focused on the control system for horizontal eye movements,
so motion, movement of the eye from a more lateral position to a more medial
position or rotation, OK, so eye posi-- horizontal eye position.

And so if you record the position of the eye, and look at-- this is sort of a cartoon
representation of what you would see-- you see that the eye stays stable at a
particular angle for a while and then makes a jump, stays stable, makes a jump, and
stays stable. These are called "fixations," and these are called "saccades."

And if you record from motor neurons that innervate these muscles, so these are
motor neurons in the nucleus abducens, you can see that the neural activity is low,
the firing rate is low when the eyes are more medial, when the eyes are more
forward. And that firing rate is high when the eye is in a more lateral position
because these are motor neurons that activate the muscle that pulls the eye more
lateral.

Notice that there is a brief burst of activity here at the time when the eye makes a
saccade to the-- into the more lateral direction. And there's a brief suppression of
activity here when the eye makes a saccade to a more medial position. Those
saccades are driven by a set of neurons, by a brain area called "saccade burst
generator neurons." And you can see that those neurons generate a burst of
activity prior to each one of these saccades.

There are a set of neurons that activate bursts-- activate saccades in the lateral
direction, and there are other neurons that activate saccades in the medial
direction. And what you see is if you-- is that these saccade burst neurons are
actually-- generate activity that's very highly correlated with eye velocity.



So here you can see recording from one of these burst generator neurons
generates a burst of spikes that goes up to about 400 hertz and lasts about 100
milliseconds during the saccade. And if you plot eye velocity along with the firing
rate of these burst generator neurons, you can see that those are very similar to
each other. So these neurons are generating a burst, drives change in the velocity
of the neurons of the eye.

OK, so if we go from neurons that have activity that's proportional to position, and
we have neurons that have activity that's proportional to velocity, how do we get
from velocity? So the idea is that you have burst saccade generator neurons that
project to these neurons that project to the muscles. You have to have something in
between.

If you have neurons that encode velocity and you have neurons that encode
position, you need something to connect those to go from velocity to position. How
do you get from velocity to position? If I have a trace of velocity, can you calculate
the position by doing what?

AUDIENCE: Integrating.

MICHALE FEE: By integrating. So the idea is that you have a set of neurons here. In fact, there's a
part of the brain, and in the goldfish it's called "area one," that take that burst
saccade generator neuron burst, integrate it to produce a position signal that then
controls eye position. All right, so if you record from one of these integrator neurons
while you're watching eye position, here's what that looks like.

[VIDEO PLAYBACK]

And so here's the animal's looking more lateral to the nose. The goldfish's mouth is
up here. So that's more lateral. That's moving more medial there, more lateral,
more--

[END PLAYBACK]

OK, so this neuron that we were just watching was recorded in this area, area one.
Those neurons project to the motor neurons that actually innervate the muscles to
control eye position. And they receive inputs from these burst generator neuron.



OK, so if you look at the activity of one of these integrator neurons, that's a spike
train during a series of saccades, and fixations is a function of time. This trace
shows the average firing rate of that neuron.

This is just smoothed over time, so you're just averaging the firing rate in some
window. You can see that the firing rate steps up, that the firing rate jumps up during
these saccades and then maintains a stable, persistent firing rate. So the way-- think
about this is that this persistent firing right here is maintaining a memory, a short-
term memory of where the eye is, and that sends an output that puts the eye at
that position.

OK, and so just like we described, we can think of these saccade burst generator
neurons as sending an input to an integrator that then produces a step in the
position, and then the burst generator input is zero during the [INAUDIBLE]. So the
integrator doesn't change when the input is zero. And then there's effectively a
negative input that produces decrement in the eye position.

OK, we started talking last time about a neural model that could produce this kind
of integration. And I'll just walk through the logic of that again. So our basic model
of a neuron is a neuron that has a synaptic input. If we put a brief synaptic input,
remember we described how our firing rate model of a neuron will take that input,
integrate it briefly, and then the activity, the firing rate of that neuron will decay
away.

So we can write down an equation for this single neuron, tau dv/dt is equal to minus
v. That's due to this intrinsic decay plus an input. And that input is synaptic input.
But what we want, a system where when we put in a brief input, we get a persistent
activity instead of a decaying activity. And I should just remind you that we think of
this intrinsic decay and this intrinsic leak as having a time constant of order 100
milliseconds.

And I should have pointed out actually that in this system here, these neurons have
a persistence of order of tens of seconds. So even in the dark, the goldfish is
making saccades to different directions. And when it makes a saccade, that eye
position stays stable for-- it can stay stable for many seconds. And if you can do this
in humans, you can ask a person to saccade in the dark and try to hold their eyes



steady at a given position, and a person will be able to saccade to a position.

Just you can imagine closing your eyes and saccading to a position. Humans can
hold that eye position for about 10 or 20 seconds. So that's sort of the time constant
of this integrator in the primate, so that's also consistent with nonhuman primate
experiments.

OK, so this has a very long time constant. But we want a neural model that can
model that very long time constant of this persistent activity that maintains eye
position. All right, but the intrinsic time constant of neurons is about 100
milliseconds. So how do we get from a single neuron that has a time constant of
100 milliseconds to a neural integrator that can have a time constant of tens of
seconds?

All right, one way to do that is by making a network that has recurrent connections.
And you remember that the simplest kind of recurrent network is a neuron that has
an autapse. But more generally, we'll have neurons that connect to other neurons.
Those other neurons connect to other neurons.

And there are feedback loops. This neuron connects to that neuron. That neuron
connects back, and so on. And so the activity of this neuron can go to other neurons,
and then come back, and excite that neuron again, and maintain the activity of that
neuron. So we developed a method for analyzing that kind of network by
[INAUDIBLE] a recurrent weight matrix, recurrent connection matrix that describes
the connections to a neuron A in this network from all the other neurons in the
network, A prime, input to neuron A from neuron A prime.

And now we can write down a differential equation for the activity of one of these
neurons. dv/dt is minus v that produces this intrinsic decay, plus synaptic input from
all the other neurons in the network summed up over all the other neurons plus this
external burst input. So how do we make a neural network that looks like an
integrator? But how do we do that?

If we want our neuron, the firing rate of our neuron to behave like an integrator of
its input, what do we have to do to this equation to make this neuron look like an
integrator? So what do we have to do? To make this neuron look like an integrator, it
would just be tau dv/dt equals burst input. Right? So in order to make this network



into an integrator, we have to make sure that these two terms sum to zero.

So in other words, the feedback from other neurons in the network back to our
neuron has to exactly balance the intrinsic leak of that neuron. Does that makes
sense? OK, so let's do that. And when you do that, this is zero.

The sum of those two terms is zero. And now the derivative of the activity of our
neuron is just equal to the input. So our neuron now integrates the input. So now the
firing rate of our neuron, so there should be a v is equal to 1 over tau, the integral of
burst input.

So we talked last time about how you analyze recurrent neural networks. We start
with a recurrent weight matrix. So again, these Ms describe the recurrent weights
within that network.

We talked about how if M is a symmetric matrix, connection matrix, then we can
rewrite the connection matrix as a rotation matrix times a diagonal matrix times a
rotation, the inverse rotation matrix, so phi transpose lambda phi where, again,
lambda is a diagonal matrix, and phi is a rotation matrix that's [INAUDIBLE] two, in
this case, in the case of two-- a two-neuron network, then this rotation matrix has as
its columns the two basis vectors that we can now use to rewrite the firing rates of
this work in terms of modes of the network.

So we can multiply the firing rate vector of this network times phi transpose to get
the firing rates of different modes of that network. And what we're doing is
essentially rewriting this recurrent network as set of independent modes,
independent neurons, if you will, that described the modes with recurrent
connectivity only within that mode. So we're rewriting that network as a set of only
autapses. And the diagonal elements of this matrix are just the strength of the
recurrent connections within that mode.

All right, so for a network to behave as integrator, most of the eigenvalues should
be less than 1, but one eigenvalue should be 1. And in that case, one mode of the
network becomes an integrating mode, and all of the other modes of the network
have the property that their activity decays away very, very rapidly. So I'm going to
go through this in more detail and show you examples.



But for a network to behave as an integrator, you want one integrating mode, one
eigenvalue close to 1 and most of the-- all of the other eigenvalues much less than
1. So if you do that, then you have one mode that has the following equation that
describes its activity, tau, and let's say that's lambda 1 that has eigenvalue of 1.

So tau dc1/dt, dc/dt equals minus c, that's the intrinsic decay of that mode, plus
lambda 1 c1 plus burst input. And if lambda 1 is equal to 1, then those two terms
cancel. Then the feedback balances the leak, and that mode becomes an
integrating mode.

So when you have a burst input, the activity in that mode increases. It steps up to
some new value. And then between the burst inputs, that mode obeys-- the activity
of that mode obeys the following differential equation. There's no more burst input
between the bursts.

dc/dt is just equal to lambda minus 1 over tau times c1. And if lambda is equal to 1,
then this, then dc/dt equals zero, and the activity is constant. Does that makes
sense? Any questions about that? Yes, Rebecca.

AUDIENCE: OK, so why does it [INAUDIBLE] need to balance [INAUDIBLE]

MICHALE FEE: Yes, that's exactly right. If this is not true, if, let's say that-- what happens if lambda
is less than 1? If lambda is less than 1, then this quantity is negative. So if lambda is
0.5, let's say, then this is 0.5 over tau, minus 0.5 over tau. So dc/dt is some negative
constant times c. Which means if c is positive, then dc/dt is negative, and c is
decaying.

Does that makes sense? If lambda is bigger than 1, then this constant is positive. So
if c is positive, then dc/dt is positive, and c continues to grow. So it's only when
lambda equals 1 that dc/dt is zero between the burst inputs.

OK, so let's look at a really simple model where we have two neurons. There's
autapse recurrence here, but it's easy to add that. And let's say that the weights
between these two neurons are 1. So we can write down the weight matrix. It's just
0, 1; 1, 0 because the diagonals, the diagonals are 0, OK, 0, 1; 1, 0.

The eigenvalue equation looks like this. You know that because the diagonal
elements are equal to each other and the off-diagonal elements are equal to each



other because it's a symmetric matrix, then the eigenvalue, the eigenvectors are
always what?

AUDIENCE: [INAUDIBLE]

MICHALE FEE: 45 degrees, OK, so 1, 1 and minus 1, 1. So our modes of the network, if we look in
this state space of v1 versus v2, the two modes of the network are in the 1, 1
direction and the 1, minus 1 direction. What are the eigenvalues of this network?

OK, so for a matrix like this with equal diagonals and equal off-diagonals, the
eigenvalues are just the diagonal elements plus or minus the off-diagonal element.
I'll just give you a hint. This is going to be very similar to a problem that you'll have
on the final. So if you have any questions, feel free to ask me. OK?

OK, so the eigenvalues are plus or minus 1. They're 1 and minus 1. And it turns out
for this case, it's easy to show that the value for this mode is 1, and the eigenvalue
for this mode is minus 1. And you can see it. It's pretty intuitive.

This network likes to be active such that both of these neurons are both on. When
that neuron's on, it activates that neuron. When that neuron's on, it activates that
neuron. And so this network really likes it when both of those neurons are active.
And that's the amplifying direction of this network.

And the eigenvalue value is such that the amplification in that direction is large
enough that it turns that into an integrating mode. All right, so I'll show you what
that looks like. So the eigenvalues again are 1 and minus 1. If you just do that
matrix multiplication, you'll see that that's true. lambda is 1, and lambda is minus 1.

You can just read this off. This first eigenvalue here is the eigenvector for the first
mode. This eigenvalue is the eigenvalue for that vector for that mode. So here's
what this looks like. So this mode is the integrating mode. This mode is a decaying
mode because the eigenvalue is much less than 1. And what that means is that no
matter where we start on this network, the activity will decay rapidly toward this line.
Does that makes sense?

No matter where you start the network, activity in this direction will decay. Any state
of this network that's away from this line corresponds to activity of this mode, and



activity of that mode decays away very rapidly. So no matter where you start, the
activity will decay to this diagonal line.

So let me just ask one more question. So if we put an input in this direction, what
will the network do? So let's turn on an input in this direction and leave it on. What
does the network do? Rebecca?

AUDIENCE: [INAUDIBLE]

MICHALE FEE: Good. So we're going to turn it on and leave it on first. The answer you gave is the
answer to my next question. The answer is when you put that input on and you turn
it off, then the activity goes back to zero. That's exactly right.

But when you put the input-- when you turn the input in this direction on, the
network will-- the state will move in this direction and reach a steady state. When
you turn the input off, it will decay away back to zero. If we put an input in this
direction, what happens?

AUDIENCE: It just keeps going on.

MICHALE FEE: It just keeps integrating. And then we turn the input off. What happens?

AUDIENCE: It [INAUDIBLE]

MICHALE FEE: It stops, and it stays. Because the network activity in this direction is integrating any
input that has a projection in this direction. Yes.

AUDIENCE: So [INAUDIBLE] steady state [INAUDIBLE] to F1, so if anything that has any
component in the F1 direction will either grow or [INAUDIBLE] over 90 degrees
[INAUDIBLE] F1?

MICHALE FEE: Yep.

AUDIENCE: Would it [INAUDIBLE]

MICHALE FEE: Like here? So if you put an input in this direction, what is the component of that
input in the integrating direction? If we put an input like this, what-- it has zero
component in the integrating direction, and so nothing gets integrated. So you put
that input. The network responds. You take the input away, and it goes right back to



zero. If you put an input in this direction, all of that input is in this direction, and so
that input just gets integrated by the network. OK?

What happens if you put an input in this direction? Then it has a little bit of-- it has
some projection in this direction and some projection in this direction. The network
will respond to the input in this direction. But as soon as that input goes away, that
will decay away. This, the projection in this direction, will continue to be integrated
as long as the input is there.

So let me show you what that looks like. So I'm going to show you what happens
when you put an input vertically. What that means, input in this direction means
that we have an input to H1. Input to this neuron is 0, but the input to that neuron is
1. That corresponds to H0 being-- H1 direction being 0, and the H2 direction being 1
that has a projection in this direction and this direction.

And here's what the network does. OK, sorry. I forgot which way it was going. So you
can see that the network is responding to the input in the H1 direction. But as soon
as that input goes away, the activity of the network in this direction goes away as
soon as the input goes away. But it's integrating the projection in this direction.

So you can see it continues to integrate. And than you put an input in the opposite
direction, it integrates until the input goes away, and it stops there. OK, let me play
that again. Does everyone get a sense for what's going on?

So now we have a input that has a projection in the minus F1 direction. And so it's
the network is just integrating that negative number. OK, is that clear? OK, all right,
so that's a neural integrator. It's that simple. It has one mode that has an eigenvalue
of 1. And all of its other modes have small eigenvalues or a negative.

OK, so notice that no matter where you start, this network evolves. As long as
there's no input, that network just relaxes to this line, to a state along that line. So
that line is what we call an "attractor" of the network. The state of the network is
attracted to that line.

Once the state is sitting on that line, it will stay there. So that kind of attractor is
called a "line attractor." That distinguishes it from other kinds of attractors that we'll
talk in the next lecture. We'll talk about when there are particular points in the state



space that are attractors. OK, no matter where you start the network around that
point, the state evolves toward that one point.

OK, so the line of the line attractor corresponds to the direction of the integrator
mode, of the [INAUDIBLE] mode. So we can kind of see this attractor in action. If we
record from two neurons in this integrator network of the goldfish during this task, if
you will, where the [INAUDIBLE] saccades to different directions, so here's what that
looks like.

So again, we've got two neurons recorded simultaneously, and we're following the
[INAUDIBLE] rate [INAUDIBLE] versus [INAUDIBLE]. And Marvin the Martian here is
indicating which way the goldfish is looking [INAUDIBLE]. OK, any questions about
that?

So the hypothesis is that-- so I should mention that there-- I didn't say this before.
There are about a couple hundred neurons in that nucleus in area one that connect
to each other, that contact each other. What's not really known yet-- it's a little hard
to prove, but people are working on it.

What's not known yet is whether the connections between those neurons have the
right synaptic strength to actually give you lambda, give you an eigenvalue of 1 in
that network. So it's still kind of an open question whether this model is exactly
correct in describing how that network works. But Tank and others in the field are
working on proving that hypothesis.

You can see that one of the challenges of this model for this persistent activity is
that in order for this network to maintain persistent activity, that feedback from
these other neurons back to this neuron have to be-- have to exactly match the
intrinsic decay of that neuron. And if that feedback is too weak, you can see that
lambda is slightly less than 1. What happens is that neural activity will decay away
rather than being persistent. And if the feedback is too strong, that neural activity
will run away, and it will grow exponentially.

So you can actually see evidence of these two pathological cases in neural
integrators. So let's see what that kind of mismatch of the feedback would look like
in the behavior. So if you have a perfect integrator, you can see that the-- you'll get



saccades. And then the eye position between saccades will be exactly flat.

The eye position will be constant, which means the derivative of eye position will be
zero between the saccades. And it will be zero no matter what eye position the
animal is holding its eyes. So we can plot the derivative of eye position as a function
of eye position, and that should be zero everywhere if the integrator is perfect.

Now, what happens if the integrator is leaky. Now you can see that, in this case, the
eye is constantly rolling going back toward zero. So but if the eye is already at zero,
then the derivative should be close to zero. If the eye is far away from zero, then the
derivative should be-- if the eye position is very positive, you can see that this leak,
this leaky integrator corresponds to the derivative being negative.

So if e is positive, then the derivative is negative. If e is negative, then the derivative
is positive. And that corresponds to a situation like this. Positive eye position
corresponds to negative derivative. And you can see that the equation for the
activity of this mode which then translates into eye position is just e to the minus a
constant times t.

If you have an unstable integrator, if this lambda is greater than 1, then positive eye
positions will produce a positive derivative, and you get x runaway growth of the
eye position, and that corresponds to a situation like this-- positive eye position,
positive derivative, negative eye position, negative derivative. And then that
equation for that situation is either the plus constant times t.

All right, so you can actually produce a leaky integrator in the circuit by injecting a
little bit of local anesthetic into part of that nucleus. And so what would that do? You
can see that if you inject lidocaine or some other inactivator of neurons into part of
that network, it would reduce the feedback connections onto the remaining
neurons. And so lambda becomes less than 1, and that produces a leaky integrator
when you do that manipulation. So this experiment is consistent with the idea that
feedback within that network is required to produce that stable, persistent activity.

Now, you can actually find cases where there are deficits in the ocular motor system
that are associated with unstable integration. And this is called congenital
nystagmus. So this is a human patient with this condition. And the person is being
told to try to fixate at a particular position.



But you can see that what happens is their eyes sort of run away to the edges, to
the extremes of eye position. So they can fixate briefly. The integrator kind of runs
away, and their eyes run to the edges, to the extremes of the range of eye position.
And it's thought that that one hypothesis for what's going on there is that the ocular
motor integrator is actually in an unstable configuration, that feedback is too
strong.

So exactly how precisely do you need to set that feedback in order to produce a
perfect integrator? So you can see that the getting a perfect integrator requires
that lambda minus 1 is equal to 0. So lambda is equal to 1. But if lambda is slightly
different from 1, we can actually estimate what the time constant of the integrator
would be.

So you can see that the time constant is really tau over lambda minus 1, tau over
lambda minus 1. So given the intrinsic time constant tau n, you can actually
estimate how close lambda has to be to 1 to get a 30-second time constant, OK?
And that turns out to be extremely close to 1. In order to go from a 100-millisecond
time constant to a 30-second time constant, you need a factor of 300 or, if the
neural time constant is even shorter, maybe even 3,000 precision in setting lambda
equal to 1.

So this is actually one of the major criticisms of this model, that it can be hard to
imagine how you would actually set the feedback in a recurrent network so
precisely to get a lambda equal to give you time constants on the order of 30
seconds. Does anybody have any ideas how you might actually do that? What would
happen?

Let's imagine what would happen if we were-- we make saccades constantly. We
make several saccades per second, not including the little microsaccades that we
make all the time. But when we make a saccade, what happens to the image on the
retina?

AUDIENCE: [INAUDIBLE]

MICHALE FEE: Yeah, so and if we make a saccade this way, the image on the retina looks like the
world is going whoosh, like this. And as soon as it stops and our eyes-- if our



integrator is perfect when the saccade ends, our eyes are at a certain position.
What happens to the image on the retina? If our eyes make a saccade, and stop,
and stay at a certain position and the velocity is zero, then what happens to the
image on the retina? It becomes stationary.

So but if we had a problem with our integrator-- let's say that our integrator was
unstable. So we make a saccade in this direction, but our integrator's unstable, so
the eyes keep going. Then what would the image on the retina look like if we would
have a motion of the image across the retina during the saccade? And then if our
eyes kept drifting, the image would keep going. If we had a leaky integrator and we
make a saccade, the image of the world could go whoosh, and then it would start
relaxing back as the eyes drift back to zero.

So the idea is that when we're walking around making saccades, we have
immediately feedback about whether our integrator is working or not. And so, OK,
I'm going to skip this. So the idea is that we can use that sensory feedback that's
called "retinal slip," image slip, to give feedback about whether the integrator is
leaky or unstable and use that feedback to change lambda.

So if we make a saccade this way, the image is going to go like this. And now if that
image starts slipping back, what does that mean we want to do? What do we need
to do to our integrator, our synapses in our recurrent network if after we make a
saccade, the image starts slipping back in the direction that it came from?

We need to strengthen it. That means we have a leaky integrator. We would need to
strengthen or make those connections within the integrator network more
excitatory. And if we make a saccade this way, the world goes like this and then the
image continues to move, it would mean our integrator is unstable. The excitatory
connections are too strong. And so we would have a measurement of image slip
that would tell us to weaken those connections.

A lot of evidence that this kind of circuitry exists in the brain and that it involves the
cerebellum. David Tank and his colleagues set out to test whether this kind of
image slip actually controls the recurrent connections or controls the state of the
integrator, whether you can use image slip to control whether the integrator
network is unstable or leaky, whether that feedback actually controls it. Rebecca.



AUDIENCE: [INAUDIBLE] is the [INAUDIBLE] between slip and overcompensation with
[INAUDIBLE] versus unstable integrator, the direction of [INAUDIBLE]

MICHALE FEE: Yes, exactly. So if we make a saccade this way, the world on-- the image on the
retina is going to, whoosh, suddenly go this way. But then if the image goes-- OK, in
the unstable case, the eyes will keep going, which means the image will keep going
this way. So you'll have-- I don't know what sign you want to call that, but here, it's
they did a sign flip.

Here the case of decay. So dE/dt is less than zero. That means that the eyes are
going back, which means that after you make a saccade, the image goes this way,
and then it starts sliding back.

AUDIENCE: So it'll return to--

MICHALE FEE: Return, yeah. So if dE/dt is negative, that means it's leaky. The image slip will be
positive. And then you use that positive image slip to increase the weight of the
synapses. So you change the synaptic weights in your network by an amount that's
proportional to the negative of the derivative of eye position, which is read out as
image slip. OK, is that clear?

OK, so they actually did this experiment. So they took a goldfish, head fixed it, put it
in this arena. They made a little-- you put a little coil on the fish's eye. So this is a
standard procedure for measuring eye position in primates, for example. So you
can put a little coil on the eye that measures-- you measure-- OK, so you put a little
coil on the eye, and you surround the fish with oscillating magnetic fields.

So you have a big coil outside the fish on this side, another coil on this side, a coil on
the top and bottom, and a coil on front and back. And now you run AC current
through those coils. And now by measuring how much voltage fluctuation you get in
this coil, you can tell what the orientation of that coil is. Does that makes sense?

So now you can read that out here and get a very accurate measurement of eye
position. And so now when the fish makes a saccade, you can read out which
direction the saccade was. And immediately after the saccade, you can make this
spot, so there's a like a disco ball up there that's on a motor that produces spots on
the inside of the planetarium.



Notice the fish makes a saccade in this direction. What you do is you make the spots
drift back, drift in the direction as though the eyes were sliding back, as though the
integrator were leaky. Does that make sense? So you can fool the fish's ocular
motor system into thinking that its integrator is leaky.

And what do you think happens? After about 10 minutes of that, you then turn all
the lights off. And now the fish's integrator is unstable. So here's what that looks
like. There's the spots on the inside. There's the disco ball. That's a overview picture
showing the search coils for the eye position measurement system.

And here's the control. That's what the fish-- the eye position looks like as a function
of time. So you have saccade, fixation, saccade, fixation. That right there, anybody
know what that is? That's the fish blinking. So it blinks.

Give feedback-- OK, here they did it the other way. So they give their feedback as if
the network is unstable, and you can make the network leaky. If you give feedback
as if the network is leaky, so it makes a saccade, and now you drift the spots in the
direction as if the eye were sliding back to neutral position, and now you can make
the network unstable. So it makes a saccade, and the eyes continue to move in the
direction of the saccade. Saccade, and it runs away. Any questions about that?

So that learning circuit, that circuit that implements that change in the synaptic
weights of the integrator circuit, actually involves the cerebellum. There's a whole
cerebellar circuit that's involved in learning various parameters of the ocular motor
control system that produces these plastic changes. OK, so that's-- are there any
questions? Because that's it.

So I'll give you a little summary. So the goldfishes do integrals. There's an integrator
network in the brain that takes burst inputs that drive saccades. And the integrator
integrates those bursts and produces persistent changes in the activity of these
integrator neurons that then drive the eyes to different positions and maintain that
eye position. So we've described a neural mechanism, which is this recurrent
network, a recurrent network has one eigenvalue that's 1 that produces an
integrating mode, and all the other eigenvalues are close to-- are less than 1 or
negative.



The model is not very robust if you have to somehow hand-tune all of those
[INAUDIBLE] to get a lambda of 1. But there is a mechanism that uses retinal slip to
tell whether that eigenvalue is set correctly in the brain and feeds back to adjust
that eigenvalue to produce the upper lambda, the proper eigenvalue in that circuit
so that it functions as an integrator and using visual feedback.

And I just want to mention again, so I actually got most of these slides from Mark
Goldman when he and I actually used to teach an early version of this course. We
used to give lectures in each other's courses, and this was his lecture. He later
moved to-- he was at Wellesley. So we would go back and forth and give these
lectures.

But he moved to Davis. So now I'm giving his lecture myself. And the theoretical
work was done by Sebastian Seung and Mark Goldman. The experimental work was
done in David Tank's lab in collaboration with Bob Baker at NYU.

OK, and so next time, we're going to-- so today we talked about short-term memory
using neural networks as integrators to accumulate information and to perform-- to
generate line attractors that can produce a short-term memory of continuously
graded variables like eye position. Next time, we're going to talk about using
recurrent networks that have eigenvalues greater than 1 as a way of storing short-
term discrete memories. And those kinds of networks are called Hopfield networks,
and that's what we're going to talk about next time. OK, thank you.


