
MITOCW | 6: Dendrites - Intro to Neural Computation

MICHALE FEE: So today, we're going to start a new topic. We're going to be talking about the
propagation of signals in dendrites and axons. So the model that we've considered
so far is just a soma. We basically had a kind of a spherical shell of insulator that
we've been modeling that has different kinds of ion channels in it that allow the cell
to do things like generate an action potential.

So the reason that we've been doing that is because in most vertebrate neurons,
the soma is the sight in the neuron at which the decision to make an action
potential is made. So all kinds of inputs come in, and then the soma integrates those
inputs, accumulates charge, reaches some spiking threshold, and then generates an
action potential. And so that's where the decision is about whether a neuron is going
to spike or not.

Now, in real neurons, relatively few of the inputs actually come onto the soma. Most
of the synaptic inputs, most of the inputs arrive onto the dendrites, which are these
branching cylinders of cell membrane. And most of the synapses actually form onto
the dendrite at some distance from the soma. There are synapses that form onto
the soma.

But the vast majority of synapses form onto these dendrites. And sometimes, those
synapses can be as far away as 1 or 2 millimeters for very large neurons in cortex.
So there's a population of neurons in deep layer V some of you may have heard
about that have dendrites that reach all the way up into layer I. And those cells can
be-- those dendrites can be as long as a couple of millimeters.

So we really have to think about what this means, how signals get from out here in
the dendrite down to the soma. And that's what we're going to talk about today. So
the most important thing that we're going to do is to simplify this-- by the way,
anybody know what kind of cell this is?

AUDIENCE: [INAUDIBLE]

MICHALE FEE: Good. It's a Purkinje cell. And it was one of the-- this is one of the cells that Ramon
Cajal drew back in the late 1800s. So the most important thing we're going to do is
to simplify this very complex dendritic arborization. And we're going to basically



think of it as a single cylinder.

Now mathematically, there are reasons why this is not actually unreasonable. You
can write down-- if you analyze the structure of dendritic trees, there is something
about the way the ratio of the diameters of the different dendrites as they converge
to form thicker branches as you get closer and closer to closer to the soma that
mathematically makes this not a bad approximation for an extended dendritic arbor
like this.

So we're going to think about the problem of having a synapse out here on this
cylindrical approximation to a dendrite. And we're going to imagine that we're
measuring the voltage down here at the soma or at different positions along the
dendrite. And we're going to ask, how does synaptic input out here on this cylinder
affect the membrane potential in the dendrite and down here at the soma?

And the basic conceptual picture that you should have is that those signals
propagate some distance down the soma but gradually leak out. And there's a very
simple kind of intuitive picture, which is that the dendrite you can think of this as a
leaky pipe or a leaky hose. So imagine you took a piece of garden hose and you
poked holes in the side of it or so that they're kind of close together.

And when you hook this up to the water faucet, you turn the water on, that some of
that water flows down the hose. But some of it also leaks out through the holes that
you drilled. And you can see that eventually the water is all going to leak out
through the sides, and it's not going to go all the way down to the other end to get to
your hydrangeas or whatever it is that you're watering. And so you can see that that
signal isn't going to get very far if the holes you drilled are big enough.

And the general kind of analogy here is that current is like the flow of the water.
Electrical current here is like water current flowing down the pipe. And voltage is
like pressure. So the higher the pressure here, the higher the current flow you'll get.

And we're going to develop an electrical circuit model for a dendrite like this that's
going to look like a set of resistors going down the axis of the dendrite and a set of
resistors that go across the membrane. And you can see that each little piece of
membrane here, a little piece of the dendrite is going to look like a resistor divider,



where you have a resistor along the axial direction and a resistance across the
membrane.

And as you make a longer and longer piece of dendrite, you're going to get
additional voltage dividers. Each voltage divider divides the voltage by some
constant factor. And as you stack those things up, the voltage drops by some
constant factor per unit length of the dendrite. And so you can see-- anybody want
to just take a guess of what kind of functional form that would give you if you divide
the voltage by some constant factor each unit length of the dendrite?

AUDIENCE: Exponential.

MICHALE FEE: Exponential. That's right. And that's where this exponential falloff comes from. So
today, we're going to do the following things. And we're going to basically draw a
circuit diagram, an electrical equivalent circuit of a piece of dendrite. And I would
like you to be able to make that drawing if you're asked to. We're going to be able
to plot the voltage in a piece of dendrite as a function of distance for the case of a
dendrite that has leaky walls and for the case of a dendrite that has non-leaky walls.

And we're going to describe the concept of a length constant, which I'll tell you right
now is just the 1 over the distance at which the voltage falls by 1 over e as a
function of length. So it's some length over which the voltage falls by some amount
1 over e. We're going to go over how that length constant depends on the radius of
the dendrite. It's a function of the size. And also, we're going to describe the
concept of an electrotonic length.

And then finally, we're going to go to some sort of extreme simplifications, even
beyond taking that very complex dendrite, simplifying it as a cylinder. We're going
to go to an even simpler case where we can just treat the cell as a soma connected
to a resistor connected by a resistor to a separate compartment. And that's sort of
the most extreme simplification of a dendrite. But, in fact, it's an extremely powerful
one from which you can get a lot of intuition about how signals are integrated in
dendrites.

So we're going to analyze a piece of dendrite using a technique called finite
element analysis. We're going to imagine-- we're going to approximate our piece of
dendrite as a cylinder of constant radius a, an axial dimension that we're going to



label x. We're going to break up this cylinder into little slices. So imagine we just
took a little knife, and we cut little slices of this dendrite. And they're going to be
very small slices.

And we're going to model each one of those slices with a separate little circuit. And
then we're going to connect them together. And we're going to let the length of that
slice be delta x. And then eventually, we're going to let delta x go to 0. We're going
to get some differential equations that describe that relationship between the
voltage and the current in this piece of dendrite.

So let's start with a model for the inside of this cylinder. So remember, in a cell, we
had the inside of the cell modeled by a wire. In a dendrite, we can't just use a wire.
And the reason is that current is going to flow along the inside of the dendrite. It's
going to flow, and it's going to experience voltage drops. So we have to actually
model the resistance of the inside of the dendrite. And we're going to model it like
the resistance between each one of those slices with a resistor value little r.

We're going to model the outside of the axon or the dendrite as a wire. And the
reason we're going to put resistors inside and just a wire outside is because the
resistance-- remember the axon or dendrite is very small. In the brain, dendrites
might be about 2 microns across. So the current is constrained to a very small
space.

When currents then flow outside, they're flowing in a much larger volume, and so
the effective resistance is much smaller. And we're going to essentially ignore that
resistance and treat the outside as just a wire. Now we have to model the
membrane. Anybody want to take a guess how we're going to model the
membrane?

AUDIENCE: [INAUDIBLE]

MICHALE FEE: What's that? I heard two correct answers. What did you say Jasmine?

AUDIENCE: The capacitor.

MICHALE FEE: Capacitor. And?

AUDIENCE: [INAUDIBLE]



MICHALE FEE: Excellent. Whoops. I wasn't quite there. Let's put that up. Good. So we're going to
have a capacitance. We're going to imagine that this membrane might have an ion
selective ion channel with some conductance G sub l and an equilibrium or reversal
potential E sub l.

Now coming back to these terms here, we're going to model. We're going to write
down the voltage in each one of our little slices of the dendrite. So let's do that. Let's
just pick one of them as V, the voltage, at position, x, and time t. The voltage in the
next slides over is going to be V at x plus delta x of t. And the voltage in this slice
over here is V of x minus delta x and t.

So now, we can also write down the current that goes axially through that piece of--
that slice of our dendrite. We're going to call that I of x and t. And we can write
down also the current in every other time-- in every other slice of the dendrite, I of x
minus delta x and t. And we're going to model this piece of membrane in each one
of those slices as well. Any questions about that? That's the basic setup. That's the
basic finite element model of a dendrite. No questions?

Now we also have to model the current through the membrane. That's going to be I
sub m, m for membrane. And it's going to be a current per unit length of the
dendrite. We're going to imagine that there's current flowing from the inside to the
outside through the membrane.

And there's going to be some current per unit length of the dendrite. And we can
also imagine that we have current being injected, let's say, through a synapse or
through an electrode that we can also model as coming in at any position x. And
this is, again, current per unit length times delta x. Does that make sense?

So the first thing we're going to do is we're going to write down the relation between
V in each node and the current going through that node. So let's do that. We're
going to use Ohm's law. So the voltage difference between here and here is just
going to be the current times that resistance. Does that make sense? We're just
going to use Ohm's law-- very simple.

So V of x and t minus V of x plus delta x, t is just equal to little r times that current.
And now we're going to rewrite this. Let's divide both sides of this equation by delta



x. So you see 1 over delta x V of x minus V of x plus delta x is equal to little r over
delta x times the current. And can anyone tell me what that thing is as delta x goes
to 0?

AUDIENCE: [INAUDIBLE]

MICHALE FEE: Good. It's the derivative of-- it's the spatial derivative of the voltage. That's just the
definition of derivative when delta x goes to 0. So let's write that out. Notice that it's
the negative of the derivative because the derivative would have V of x plus delta x
minus V of x. So it's a negative of the derivative. So negative dv/dx is equal to some
resistance times the current. And notice that this capital R sub a is called the axial
resistance per unit length. It's this resistance per unit length of the dendrite.

Now notice that if you pass current down that dendrite, the voltage drop is going to
keep increasing. The resistance is going to keep increasing the longer that piece of
dendrite is. So you can think about resistance in a piece of dendrite more
appropriately as resistance per unit length. So there's Ohm's law-- minus dv/dx
equals axial resistance per unit length times the current. Any questions?

And notice that according to this, current flow to the right, positive I is defined as
current to the right here produces a negative gradient in the voltage. So the voltage
is high on this side and low on that side. So the slope is negative.

So now let's take this, and let's analyze this for some simple cases where we have
no membrane current. So we're going to just ignore those. And we're just going to
include these axial resistances. And we're going to analyze what this equation tells
us about the voltage inside of the dendrite. Does that makes sense? So let's do that.

So if we take that equation, we can write down the current at, let's say, these two
different nodes-- I of x minus delta x and I of x. And because there are no
membrane currents, you can see that those two currents have to be equal to each
other. Kirchoff's Current Law says that the current into this node has to equal the
current out of that node. So if there are no membrane currents, there's nothing
leaking out here, then those two currents have to equal each other. And we can call
that I0.

So now, dv/dx is minus axial resistance times I0. And what does that tell us about



how the voltage changes in a piece of dendrite if there's no membrane current, if
there's no leaky membrane? There's no leakage in the membrane. If dv/dx is a
constant, what does it tell us?

AUDIENCE: [INAUDIBLE].

MICHALE FEE: Yeah. But decreases how? What functional form?

AUDIENCE: [INAUDIBLE]

MICHALE FEE: Good. It changes linearly. So if there are no membrane conductances, then the
membrane potential changes linearly. So you can see that the voltage as a function
of position-- sorry I forgot to label that voltage-- just changes linearly from some
initial voltage to some final voltage over some length l. We're considering a case of
a piece of dendrite of length l. Yes?

AUDIENCE: [INAUDIBLE]

MICHALE FEE: Yep. So I just rewrote this equation. Sorry, I just rewrote this equation moving the
minus sign to that side. Yep. Good. Now you can see that the delta V that the voltage
difference from the left side to the right side is just the total resistance times the
current-- just Ohm's law again.

And the total resistance is the axial resistance per unit length times the length.
Really simple. Voltage changes linearly. If you don't have any membrane
conductances, and you can just write down the relation between the voltage
difference on the two sides and the current.

So, in general, let's think a little bit more about this problem of being able to what
you need to write down the solution to this equation. It's a very simple equation. If
you integrate this over x, you can see that the voltage as a function of position is
some initial voltage minus a resistance times the current times x. And that, again,
just looks like this. That's where that solution came from. It's just integrating this
over x.

And you can see that in order to write down the solution to this equation, we need a
couple of things. We need to either know the voltages at the beginning and end, or
we need to know the current. We need to know some combination of those three



things. So let's write down the voltage here. Let's call it V0. Let's write down the
voltage there, V sub l, and plug those in.

And you can see that-- there's V0. There's V sub l. You can see that if you know any
two of those quantities-- V0, V sub l, or Io-- you can calculate the third. So if you
know V0 and Vl, you can calculate the current. If you know V0 and the current, you
can calculate V sub l. That is the concept of boundary conditions. You can write
down the voltages or the currents at some positions on the dendrite and figure out
the total solution to the voltage [AUDIO OUT] of position.

Does that make sense? If you don't know some of those quantities, you can't write
down the solution to the equation. It's just the simple idea that when you integrate a
differential equation, you need to have an initial condition in order to actually solve
the equation. Any questions about that?

So let's think about a couple of different kinds of boundary conditions that you
might encounter. So this boundary condition right here-- so let's say that we inject a
x amount of current I0 into a piece of dendrite. And we take that piece of dendrite
and we inject current on one end, and we cut the other end so that it's open. What
does that produce at the other end? So we have a wire that describes the inside of
the dendrite. We have a wire that describes the outside of the dendrite.

And if you cut the end of the dendrite off so that they're-- it's leaky-- so it's an open
end-- what does that look like electrically? Like what's the word for-- like those two
wires are touching each other. What's that called? They're shorts. If you cut the end
of a dendrite off, you've created a short circuit. The inside is connected to the
outside. So that's called an open end boundary condition.

And what can you say about the voltage at this end? If the outside is [AUDIO OUT]
what can you say about the voltage inside the dendrite at that end?

AUDIENCE: [INAUDIBLE]

MICHALE FEE: It's 0. Good. So we have injected current. We have V0, the voltage at this end. And
we know, if we have an open end, that the voltage here is 0.

Now we can write down. We know that the initial voltage is V0. The voltage at
position L is 0. And now you can-- you know that the current here is equal to the



current there, and you can write down the equation and solve V0. So V0 is just the
resistance, the total resistance of the dendrite times the injected current. And that
Rin is known as input impedance. It's just the resistance of the dendrite. It tells you
how much voltage change you will get if you inject a given amount of current. All
right. Any questions about that?

Let's consider another case. Rather than having an open end, let's leave [? the end
of ?] the dendrite closed so that it's sealed closed. So we're going to consider a
piece of dendrite that, one end, we're injecting current in, and the other end is
closed. So what do you think that's going to look like? It's called a closed end. What
does that look like here? It's an open circuit. Those two wires are not connected to
each other. There's no resistance between them.

Let's say we define the voltage here as V0. What can you say-- well, what you can
say about the current there is that the current is 0, because it's an open circuit.
There's no current flowing. And so the current flowing through this at this end is 0.
Does that make sense? So what can you say about the current everywhere?

AUDIENCE: 0.

MICHALE FEE: It's 0. And what can you say about the voltage everywhere? It's V0. Exactly. So the
voltage everywhere becomes V0. And the input impedance? Anybody want to guess
what the input impedance is? How much-- what's the ratio of the voltage at this end
and the current at this end?

AUDIENCE: Infinite?

MICHALE FEE: It's infinite. That's right. So we're just trying to build some intuition about how
voltage looks [AUDIO OUT] of distance for one special case, which is a piece of
dendrite of some finite length for which you have no membrane currents. And you
can see that the voltage profile you get is linear, and the slope of it depends on the
boundary conditions, depends on whether the piece of dendrite has a sealed end,
whether it's open.

All right. So now we're going to come back to the case where we have membrane
currents, and we're going to derive the general solution to the voltage in a piece of
dendrite for the case where we have membrane capacitance and membrane



currents. All right. And I don't expect you to be able to reproduce this, but we're
going to derive what's called the cable equation, which is the general mathematical
description, the most general mathematical description for the voltage in a
cylindrical tube, of which-- that's what dendrites look like. So we're going to write
down that differential equation, and I want you to just see what it looks like and
where it comes from, but I don't expect you to be able to derive it.

All right. So let's come back to this simple model that we started. We're going to put
our model for the membrane back in. Remember, that's a capacitor and a
conductance in parallel. We're going to-- we can write down the membrane current,
and we're going to have an injected current per unit length. So Kirchoff's current
law tells us the sum of all of those currents into each node has to be 0. So let's just
write down-- let's just write down an equation that sums together all of those and
sets them to 0.

So the membrane current leaking out minus that injected current coming in. They
have positive signs because one is defined as positive going into the dendrite, and
the other one is defined as positive going out. So those two, the membrane currents,
plus the current going out this way minus the current coming in that way is 0.

So we're going to do the same trick we did last time. We're going to divide by delta
x. So, again, membrane current per unit length times the length of this finite
element. We're going to divide by delta x. So this thing right here, i membrane
minus i electrode, I guess, equals minus 1 over delta x I of x minus I of x minus delta
x.

So what is this? You've seen something like that before. It's just a derivative. First
derivative of I with respect to position. So now what you see is that the membrane
current minus the injected current is just the first derivative of I. So hang in there.
We're going to substitute that with something that depends on voltage. So how do
we do that?

We're going to take Ohm's law. There's Ohm's law. Let's take the derivative of that
with respect to position. So now we get the second derivative of voltage with
respect to position is just equal to minus Ra times the first derivative of current. And
you can see we can just take this and substitute it there. So here's what we get, that



the second derivative of voltage with respect to position is just equal to the
membrane or injected current coming into the dendrite at any position.

So the curvature of the voltage, how curved it is, just depends on what's coming in
through the membrane. Remember, in the case where we had no membrane
current and no injected current, the curvature was 0, d2V dx squared is 0, which, if
the curvature is 0, then what do you have? A straight line.

Now, we're going to plug in the right equation for our membrane current. What is
that? That we know. It's just a sum of two terms. What is it? It's the sum of--
remember, this is going to be the same as our soma model. What was that? We had
two terms. What were they? The current through the membrane in the model, in the
Hodgkin-Huxley model is? What's that?

AUDIENCE: [INAUDIBLE].

MICHALE FEE: Good. It's a capacitive current and a membrane ionic current. So let's just plug that
in. We're just going to substitute into here the current through the capacitor and the
current through this conductance. That's just C dV dt G times V minus EL. It's a
capacitive part and a resistive part.

Now, the capacitance is a little funny. It's capacitance per unit length times the
length of the element plus-- and the [AUDIO OUT] is conductance per unit length
times the length of our finite element. Capacitance per unit length and ionic
conductance per unit length. And we're going to plug that into there. We're first
going to notice that this E leak is just an offset, so we can just ignore it. We can just
set it to 0. We can always add it back later if we want.

We divide both sides by the membrane conductance per unit length to get this
equation. And that's called the cable equation. It's got a term with the second
derivative of voltage with respect to position, and it's got a term that's the first
derivative of voltage with respect to time. That's because of the capacitor. And then
it's got a term that just depends on [AUDIO OUT].

Now, that's the most general equation. It describes how the voltage changes in a
dendrite if you inject a pulse of current, how that current will propagate down the
dendrite or down an axon. We're going to take a simplifying case. Next, we're going



to study the case just of the steady state solution to this. But I want you to see this
and to see how it was derived just using finite element analysis, deriving Ohm's law
in a one-dimensional continuous medium. And by plugging in the equation for the
membrane that includes the capacitive and resistive parts, you can derive this full
equation for how the voltage changes in a piece of dendrite.

Now, there are a couple of interesting constants here that are important-- lambda
and tau. So lambda has units of length. Notice that all of the denominators here
have units of voltage. So this is voltage per distance squared. So in order to have
the right units, you have to multiply by something that's distance squared. This is
voltage per unit time, so you have to multiply by something that has units of time.

So that is the length constant right there, and that is a time constant. And the length
constant is defined as 1 over membrane conductance. That's the conductance of
the membrane, through the membrane, and this is the axial resistance down the
dendrite. So this is conductance per unit length, and this is resistance per unit
length. And when you multiply those things together, you get two per unit length
down in the denominator. So when you put those in the numerator, you get length
squared. And then you take the square root, and that gives you units of length.

The time constant is just the capacitance per unit length divided by the
conductance per unit length. And that is the membrane time constant, and that's
exactly the same as the membrane time constant that we had for our cell. It's a
property of the membrane, not the geometry. So any questions about that? It was--
it's a lot. I just wanted you to see it. Yes, [INAUDIBLE].

AUDIENCE: Like, two slides ago [INAUDIBLE]

MICHALE FEE: This one, or--

AUDIENCE: One more slide [INAUDIBLE].

MICHALE FEE: Yes, here.

AUDIENCE: So when you plug that in for the derivative of V, were we not assuming that there
was no membrane [INAUDIBLE]?

MICHALE FEE: No. That equation is still correct.



AUDIENCE: OK.

MICHALE FEE: It's-- voltage is the derivative with respect to position as a function of the axial
current.

AUDIENCE: OK.

MICHALE FEE: OK? Remember, going back up to here, notice that when we derive this equation
right here, we didn't even have to include these membrane. They don't change
anything. It's just Ohm's law. It's the voltage here minus the voltage there has to
equal the current flowing through that resistor. Doesn't matter what other currents--
whether current is flowing in other directions here.

AUDIENCE: OK.

MICHALE FEE: Does that make sense? The current through that resistor is just given by the voltage
difference on either side of it. That's Ohm's law. So now we're going to take a simple
example. We're going to solve that equation for the case of steady state. How are
we going to take the steady state? How are we going to find the steady state version
of this equation? Any idea?

AUDIENCE: [INAUDIBLE].

MICHALE FEE: Good. We just set dV dt to 0, and we're left with this equals that. So we're going to
take a piece of our cable, and we're going to imagine that we take a piece of
dendrite that's infinitely long in either direction. And somewhere here in the middle
of it, we're going to inject-- we're going to put an electrode, and we're going to
inject current at one position. So it's injecting current at position 0.

How many of you have heard of a delta function, a Dirac delta function? OK. So
we're going to define the current as a function of position as just a current times a
Dirac delta function of x, that just says that all the current is going in at position 0,
and no current is going in anywhere else. So the Dirac delta function is just-- it's a
peaky thing that is very narrow and very tall, such that when you integrate over it,
you get a 1.

So we're going to go to the steady state solution. And now let's write down that. So
there's the steady state cable equation. And we're going to inject current at a single



point. So that's what it looks like. Does anyone know the solution to this? Notice,
what this says is we have a function. It's equal to the second derivative of that
function. Anybody know? There's only one function that does this. It's an
exponential. That's right.

So the solution to this equation is an exponential. V of position is V0, some voltage
in the middle, e to the minus x over lambda. Why do I have an absolute value? What
is the voltage going to look like if I inject current right here? You're going to have
current flowing. Where's the current going to go? If I inject current into the middle
of a piece of dendrite, is it all going to go this way? No. What's it going to do?

It's going to go both ways. And the current-- the voltage is going to be high here, and
it's going to fall as you go in both directions. That's why we have an absolute value
here. So the voltage is going to start at some V0 that depends on how much current
we're injecting, and it's going to drop exponentially on both sides.

And notice what's right here. The lambda tells us the 1 over e point, how far away
the 1 over e point of the voltage is. What that means is that the voltage is going to
fall to 1 over e of V0 at a distance lambda from the side at which the current is
injected. Does that make sense? That is the steady state space constant. It has units
of length. It's how far away do you have to go so that the voltage falls to 1 over--
falls to 1 over 2.7 of the initial voltage. Any questions? It's pretty simple.

We took an unusually complicated route to get there, but that's the-- the nice thing
about that is you've seen the most general solution to how a cable-- a dendrite will
behave when you inject current into it. So now we can calculate the current as a
function of position. Any idea how to do that? What-- if you know voltage, what do
you use to calculate current? Which law?

AUDIENCE: Ohm's.

MICHALE FEE: Ohm's law. Anybody remember what Ohm's law looks like here?

AUDIENCE: [INAUDIBLE].

MICHALE FEE: Yes. And we have to do something else. The-- remember, the current is what? Ohm's
law in a continuous medium, the current is just going to be what of the voltage, the



blank of the voltage?

AUDIENCE: Derivative?

MICHALE FEE: The derivative of the voltage. So we're just going to take this and take the
derivative. That's it. dV dx is just equal to minus R times I. So the current is
proportional to the derivative of this. What's the derivative of an exponential? Just
another exponential. So there we go. The current, and then there's some-- you have
to bring the lambda down when you take the derivative. So the current is now just
minus 1 over the axial resistance per unit length times minus V0 over lambda--
lambda comes down when you take the derivative-- times e to the minus x over
lambda.

Notice, the current is to the right on this side, so the current is positive it's flowing to
the left on that side, so the current is negative. So to do this properly, you'd have--
this is the solution on the right side. You'd have to write another version of this for
the current on the left side, but I haven't put that in there.

And, again, the current starts out at I0, and drops exponentially, and it falls to 1
over e at a distance lambda. Why is that? Because the current is leaking out
through the holes in our garden hose. So as you go further down, less and less of
the current is still going down the dendrite. I don't expect you to be able to derive
this, but, again, just know where it comes from. Comes from Ohm's law.

So I want to show you one really cool thing about the space constant. It has a really
important dependence on the size of the dendrite. And we're going to learn
something really interesting about why the brain has action potentials. So let's take
a closer look at the space constant, and how you calculate it, and how it depends on
the size, this diameter, this radius of the dendrite.

So we're going to take a little cylinder of dendrite of radius a length little l. G sub m
is the membrane conductance per unit length. Let's just derive what that would
look like. The total membrane conductance of this little cylinder of dendrite, little
cylinder of cell membrane, is just the surface area of that cylinder times the
conductance per unit area. Remember, this is the same idea that we've talked
about when we were talking about the area of our soma. We have a conductance
per unit area that just depends on the number of ion channels and how open they



are on that piece of membrane.

So the total conductance is just going to be the conductance per unit area times the
area. And the area of that cylinder is 2 pi a-- that gives us the circumference-- times
the length, 2 pi al. And the conductance per unit length is just that total
conductance divided by the length. So it's 2 pi a times g sub l, the conductance per
unit area. So that's membrane conductance per unit length.

The axial resistance per unit length along this piece, this little cylinder of dendrite,
we can calculate in a similar way. The total axial resistance along that dendrite is--
can be calculated using this equation that we developed on the very first day, the
resistance of a wire in the brain, the resistance of a chunk of extracellular or
intracellular solution. The resistance is just the resistivity times the length divided by
the area. The longer-- for a given medium of some resistivity, the longer you have to
run your current through, the bigger the resistance is going to be. And the bigger
the area, the lower the resistance is going to be.

So that total resistance is-- it has units of ohm-millimeters. So it's the resistivity
times l divided by A. In intracellular space, that's around 2,000 ohm-millimeters. And
the cross-sectional area is just pi times a squared. So now we can calculate the axial
resistance per unit length. That's the total resistance divided by l. So that's just
resistivity divided by A, which is resistivity divided by pi radius squared, just the
cross-sectional area, and that has units of ohms per millimeter.

So now we can calculate the steady state space constant. Conductance per unit
length and axial resistance for unit length-- the space constant is just 1 over the
product of those two, square root. We're just going to notice that that's siemens per
millimeter, ohms per millimeter, inverse ohms. So those cancel, and you're left with
millimeter squared, square root, which is just millimeters. So, again, that has the
right units, units of length.

But now let's plug these two things into this equation for the space constant and
calculate how it depends on a. So let's do that. Actually, the first thing I wanted to do
is just show you what a typical lambda is for a piece of dendrite. So let's do that.
Conductance per area is around 5 times 10 to the minus 7, typically. So the
conductance per unit length of a dendrite, 6 nanosiemens per millimeter. You don't



have to remember that. We're just calculating the length constant.

Axial resistance is-- plugging in the numbers for a piece of dendrite that's about 2
microns in radius, the axial resistance per unit length is about 60 megaohms per
millimeter. And so when you plug those two things to calculate lambda, you find that
lambda for a typical piece of dendrite is about a millimeter.

So that's a number that I would hope that you would remember. That's a typical
space constant. So if you inject a signal into a piece of dendrite, it's gone-- it's
mostly gone or about 2/3 gone in a millimeter.

And that's how you can have dendrites that are up in the range of close to a
millimeter, and they still are able to conduct a signal from synaptic inputs out onto
the dendrite down to the soma. So a millimeter is a typical length scale for how far
signals propagate.

So now let's plug in those-- the expressions that we derived for conductance per
unit length and axial resistance for unit length of a into this equation for the space
constant. And what you find is that the space constant is a divided by 2 times the
resistivity times the membrane conductance per unit area, per area to the 1/2. It
goes as the square root. The space constant, the length, goes as the square root of
the radius.

And notice that the space constant gets bigger as you increase the size of the
dendrite. As you make a dendrite bigger, what happens is the resistance down the
middle gets smaller. And so the current can go further down the dendrite before it
leaks out. Does that make sense?

But the resistance [AUDIO OUT] is dropping as the square of the area, but the
surface area is only increasing linearly. And so the resistance down the middle is
dropping as the square. The conductance out the side is growing more slowly. And
so the signal can propagate further the bigger the dendrite is.

So that's why-- it's very closely related to why the squid giant axon is big. Because
the current has more access to propagate down the axon the bigger the cylinder is.
But there are limits to this. So you know that, in our brains, neurons need to be able
to send signals from one side of our head to the other side of our head, which is



about how big? How far is that? Not in Homer, but in [AUDIO OUT] seen the cartoon
with little-- OK, never mind.

How big across is the brain? How many millimeters, about? Yes. Order of magnitude,
let's call it 100. So a piece of dendrite 2 microns across has a length constant of a
millimeter. How-- what diameter dendrite would we need if we needed to send a
signal across the brain passively through a piece of-- a cylindrical piece of dendrite
like this?

So lambda scales with radius. 2 microns diameter, radius, gives you 1 millimeter.
Now you want to go to-- you want to go 100 times further. How-- by what factor
larger does the radius have to be?

AUDIENCE: [INAUDIBLE].

MICHALE FEE: 10,000. Good. And so how big does our 2-micron radius piece of dendrite have to be
to send a signal 100 millimeters? 10,000 times 2 microns, what is that? Anybody?

AUDIENCE: [INAUDIBLE].

MICHALE FEE: 2 centimeters. So if you want to make a piece of dendrite that sends a signal from
one side of your brain to the other 100 millimeters away, you need 2 centimeters
across. Actually, that's the radius. It needs to be 4 centimeters. across. Doesn't
work, does it?

So you can make things-- you can make signals propagate further by making
dendrites bigger, but it only goes as the square root. It's like diffusion. it's only-- it
increases very slowly. So in order to get a signal from one side of your brain to the
other with the same kind of membrane, your dendrite would have to be 4
centimeters in diameter. So that's why the brain doesn't use passive propagation of
signals to get from one place to the other. It uses action potentials that actively
propagate down axons. Pretty cool, right?

All right. So I want to just introduce you to the concept of electrotonic length. And
the idea is very simple. If we have a piece of dendrite that has some physical length
l, you can see that that length l might be very good at conducting signals to the
soma if what? If-- what aspects of that dendrite would make it very good at
conducting signals to the soma?



AUDIENCE: [INAUDIBLE].

MICHALE FEE: So it's big. Or what else?

AUDIENCE: Short.

MICHALE FEE: It's got a fixed physical length l, so let's think of something else.

AUDIENCE: [INAUDIBLE].

MICHALE FEE: Less leaky. Right. OK. So depending on the properties of that dendrite, that piece of
dendrite of physical length l might be very good at sending signals to the soma, or it
might be very bad if it's really thin, really leaky. So we have to compare the physical
length to the space constant.

So in this case, there's very little decay. The signal is able to propagate from the site
of the synapse to the soma. In this case, a slightly smaller piece of dendrite might
have a shorter lambda, and so there would be more decay by the time you get to
the soma. And in this case, the lambda is really short, and so the signal really
decays away before you get to the soma.

So people often refer to a quantity as the-- referred to as the electrotonic length,
which is simply the ratio of the physical length to the space constant. So you can see
that in this case, the physical length is about the same as lambda, and so the
electrotonic length is 1. In this case, the physical length is twice as long as lambda,
and so the electrotonic length of that piece of dendrite is 2. And in this case, it's 4.

And you can see that the amount of signal it gets from this end to that end will go
like what? Will depend how on the electrotonic length? It will depend something like
e to the minus L. So a piece of dendrite that has a low electrotonic length means
that the synapse out here at the other end of it is effectively very close to the soma.
It's very effective at transmitting that signal.

If the electrotonic length is large, it's telling you that some input out here at the end
of it is very far away. The signal can't propagate to the soma. And the amount of
signal that gets to the soma goes as e to the minus L, e to the minus [AUDIO OUT].
So if I told you that a signal is at the end of a piece of dendrite that has electrotonic



length 2, how much of that signal arrives at the soma. The answer is e to the minus
2, about 10%, whatever that is.

So I want to tell you a little bit more about the way people model complex dendrites
in-- sort of in real life. So most of the time, we're not integrating or solving the cable
equation. The cable equation is really most powerful in terms of giving intuition
about how cables respond. So you can write down exact solutions to things like
pulses of current input at some position, how the voltage propagates down the
dendrite, the functional form of the voltage as a function of distance. But when you
actually want to sort of model a neuron, you're not usually integrating the cable
equation.

And so people do different approximations to a very complex dendritic structure
like this. And one common way that that's done is called multi-compartment model.
So, basically, what you can do is you can model the soma with this capacitor-resistor
combination. And then you can model the connection to another part of the
dendrite through a resistor to another sort of finite element slice, but we're gonna
let the slices go to 0 length. We're just going to model them as, like, chunks of
dendrites, that are going to be modeled by a compartment like this.

And then that can branch to connect to other parts of the dendrite, and that can
branch to connect to other parts of the model that model other pieces [AUDIO OUT]
So you can basically take something like this and make it arbitrarily complicated
and arbitrarily close to a representation of the physical structure of a real dendrite.
And so there are labs that do this, that take a picture of a neuron like this and break
it up into little chunks, and model each one of those little chunks, and model the
branching structure of the real dendrite.

And you can put in real ionic conductances of different types out here in this model.
And you get a gazillion differential equations. And you can [AUDIO OUT] those
differential equations and actually compute, sort of predict the behavior of a
complex piece of dendrite like this.

Now, that's not my favorite way of doing modeling. Any idea why that would be--
why there could be a better way of modeling a complex dendrite? I mean, what's
the-- one of the problems here is that, in a sense, your model gets to be as



complicated as the real thing. So it would be-- it's a great way to simulate some
behavior, but it's not a great way of getting an intuition about how something
works.

So people take simplified versions of this, and they can take this very complex
model and simplify it even more by doing something like this. So you take a soma
and a dendrite. You can basically just break off the dendrite into a separate piece
and connect it to the soma through a resistor.

Now, we can simplify this even more by just turning it into another little module, a
little compartment, that's kind of like the soma. It just has a capacitor, and a
membrane resistance, and whatever ion channels in it you want. And it's a dendritic
compartment that's connected to the somatic compartment through a resistor.

And if you write that down, it just looks like this. So you have a somatic
compartment that has a somatic membrane capacitance, somatic membrane
conductances, a somatic voltage. You have a dendritic compartment that has all the
same things-- dendritic membrane capacitance, conductances, and voltage, and
they're just connected through a coupling resistor.

It turns out that that very simple model can explain a lot of complicated things
about neurons. So there are some really beautiful studies showing that this kind of
model can really explain very diverse kinds of electrophysiological [AUDIO OUT]
neurons. So you can take, for example, a simple model of a layer 2/3 pyramidal cell
that has a simple, compact dendrite. And you can write down a model like this
where you have different conduct [AUDIO OUT] dendrite. You have Hodgkin-Huxley
conductances in the soma. You connect them through this resistor.

And now, basically, what you can do is you can model that spiking behavior. And
what you find is that if you have the same conductances in the dendrite and in the
soma but you simply increase the area, the total area of this compartment, just
increase the total capacitance and conductances, that you can see that-- and that
would model a layer 5 neuron that has one of these very large dendrites-- you can
see that the spiking behavior of that neuron just totally changes. And that's exactly
what the spiking behavior of layer 5 neurons looks like.

And so you could imagine building a very complicated thousand-compartment



model to simulate this, but you wouldn't really understand much more about why it
behaves that way. Whereas [AUDIO OUT] a simple two-compartment model and
analyze it, and really understand what are the properties of a neuron that give this
kind of behavior as opposed to some other kind of behavior.

It's very similar to the approach that David Corey took in modeling the effect of the
T tubules on muscle fiber spiking in the case of sodium-- failures of the sodium
channel to inactivate. That was also a two-compartment model. So you can get a lot
of intuition about the properties of neurons [AUDIO OUT] simple extensions of an
additional compartment onto the soma. And, next time, on Thursday, we're going to
extend a model like this to include a model of a [AUDIO OUT]

So let me just remind you of what we learned about today. So you should be able to
draw a circuit diagram of a dendrite, just that kind of finite element picture, with
maybe three or four elements on it. Be able to plot the voltage in a dendrite as a
function of distance in steady state for leaky and non-leaky dendrites, and
understand the concept of a length constant.

Know how the length constant depends on dendritic radius. You should understand
the idea of an electrotonic length and be able to say how much a signal will decay
for a dendrite of a given electrotonic length. And be able to draw the circuit
diagram of a two-compartment model. And we're going to spend more time on that
on Thursday.


