
MITOCW | 14: Rate Models and Perceptrons - Intro to Neural Computation

MICHALE FEE: So for the next few lectures, we're going to be looking at developing methods of
studying the computational properties of networks of neurons. This is the outline for
the next few lectures.

Today we are going to introduce a method of studying networks called a rate model
where we basically replace spike trains with firing rates in order to develop simple
mathematical descriptions of neural networks. And we're going to start by
introducing that technique to the problem of studying feed-forward neural
networks. And we'll introduce the idea of perceptrons trance as a method of
developing networks that can classify their inputs.

Then in the next lecture, we're going to turn to largely describing mathematical
tools based on matrix operations and the idea of basis sets. Matrix operations are
very important for studying neural networks. But they're also a fundamental tool for
analyzing data and doing things like reducing the dimensionality of high
dimensional data sets, including methods such as principal components analysis. So
it's a very powerful set of methods that apply both to studying the brain and to
analyzing the data that we get when we study the brain.

And then finally we'll turn to a few lectures that focus on recurrent neural networks.
These are networks where the neurons connect to each other densely in a recurrent
way, meaning a neuron will connect to another neuron. And that neuron will
connect back to the first neuron.

And networks that have that property have very interesting computational abilities.
And we're going to study that in the context of line attractors and short-term
memory and hopfield networks.

So for today, the plan is to develop the rate model. We're going to show how we can
build receptive fields with feed forward networks that we've described with the rate
model. We're going to take a little detour and describe vector notation and vector
algebra, which is very important for these models, and also for building up to the
matrix methods that we'll talk about in the next lecture. Again, we'll talk about
neural networks for classification and introduce the idea of a perceptron. So that's



for today.

So I've already talked about most of this. Why is it that we want to develop a
simplified mathematical model of neurons that we can study analytically? Well, the
reason is that we can really develop our intuition about how networks work.

And that intuition applies not just to the very simplified mathematical model that
we're developing, but also applies more broadly to real networks with real neurons
that actually generate spikes and interact with each other by the more complex
biophysical mechanisms that are going on in the brain.

So a good example of this is how we simplified the detailed spiking neurons of the
Hodgkin-Huxley model and approximate that as an integrate and fire model, which
captures a lot of the properties of real neurons. Simplifies it enough to develop an
intuition, but captures a lot of the important properties of real neural circuits.

All right, so let's start by developing the basic idea of a rate model. Let's start with
two neurons. We have an input neuron and an output neuron. The input neuron has
some firing rate given by u. And the output neuron has some firing rate given by v.
So we're going to essentially ignore the times of the spikes and describe the inputs
and outputs of this network just with firing rates. You can think of the rate as just
having units have spikes per second, for example.

Those neurons, the input neuron and the output neuron, are connected to each
other by a synapse. And we're going to replace all of the complex structure of
synapses, vesicle release, neurotransmitter receptors, long-term depression and
paired spike facilitation and depression, all that stuff we're just going to ignore. And
we're going to replace that synapse with a synaptic weight w.

Just to give you the simplest intuition of how a rate model works, there are models
where we can just treat the firing rate of the output neuron, for example, as linear
in its input. And we can simplify this even to the point where we can describe the
firing rate of the output neuron as the synaptic weight w times the firing rate of the
input neuron. So that's just to give you a flavor of where we're heading.

And I'm going to justify how we can do this and/or why we can do this. And then
we're going to build this up from the case of one input neuron and one output



neuron to the case where we can have many input neurons and many output
neurons.

So how do we justify going from spikes to firing rates? So remember that the
response of a real output neuron, a real neuron, to a single spike at its input, is
some change in the postsynaptic conductance that follows an input spike. And in
our model of a synapse, we described that the input spike produces a transient
increase in the synaptic conductance. And that synaptic conductance we modeled
as a simple step increase in the conductance followed by an exponential decay as
the neurotransmitter gradually unbinds from the neurotransmitter receptors.

So we have a transient change in the synaptic conductance. That's just a maximum
conductance times an exponential decay. Now remember that we wrote down the
postsynaptic-- we can write down the postsynaptic current that results from this
synaptic input as the synaptic conductance times v minus e synapse, the synaptic
reversal potential.

In moving forward in this model, we're not going to worry about synaptic saturation.
So we're just going to imagine that the synaptic current is just proportional to the
synaptic conductance.

So now we can write the conductance as just some weight times a kernel that is just
some kernel of unit area. So what we've done here is we've just taken the synaptic
current and we've written it as a constant, a synaptic weight, times an exponentially
decaying kernel of area, area 1.

So now if we have a train of spikes at the input instead of a single spike, we can
write down that train of spikes, the spike train, as a sum of delta functions where the
spike times are t sub i. And if you want to plot the synaptic current as a function of
time, you would just take that spike train input and do what with that linear kernel?
We would convolve it, right?

So we would take that spike train, convolve it with that little exponential kernel. And
that would give us the synaptic current that results from that spike train.

So let's think for a moment about what this quantity is right here. What is k, this k
which is a little kernel that has an exponential step, and then an exponential decay?



What do you get when you convolve that kind of smooth kernel with this spike train
here? What does that look like?

We did that at one point when we were in class when we were talking about how
you would estimate something from a spike train. What is that? What is that quantity
right there? It's sort of a smoothed version of a spike train, which is how you would
calculate what, Habiba?

AUDIENCE: Is it a window for the spike train?

MICHALE FEE: Yeah. It's windowed, but what is it that you are calculating when you take a spike
train and you convolve it with some smooth window?

AUDIENCE: Low-pass window?

MICHALE FEE: It's like a low-pass version of the spike train. And remember in the lecture on firing
rates, we talked about how that's a good way to get a time-dependent estimate of
the firing rate of a neuron. We take the spike train and just convolve it with a
smooth window.

And if the area of that smooth window is 1, then what we're doing is we're
estimating the firing rate of the neuron as a function of time. Does that make
sense? Yes?

AUDIENCE: So k is just a kernel?

MICHALE FEE: k is just is smooth kernel that happens to have this exponential shape.

AUDIENCE: Is it like [INAUDIBLE]

MICHALE FEE: Well, that's our model for how a synapse-- basically, what I'm saying is that when
you take a spike train and put it through a synapse, what comes out the other end is
a smoothed version of the spike train.

AUDIENCE: OK.

MICHALE FEE: That's all this is saying.

AUDIENCE: OK. [INAUDIBLE] they have this area or quantity?



MICHALE FEE: Yep. If k has-- you remember that if k has an area 1, then when you convolve evolve
that kernel with the spike train, you get a number that has units of spikes per
second. And that quantity is an estimate of the local firing rate of the neuron. Does
that make sense?

So basically, we can take this spike train, and by convolve it with a smooth window,
we can estimate the number of spikes per second in that window. So what do we
have here? We have that the current is just a constant times an estimate of the
firing rate at that time. If k is a kernel, a smooth kernel with an area normalized to
1, then this quantity is just an estimate of the firing rate.

So let's take a look at that. So here I have just made a sample spike train with a
bunch of spikes that look like they're increasing in firing rate and decreasing in
firing rate. If we take that spike train and convolve it with this kernel, you can see
that you get this sort of broad bump that looks like it gets higher in the middle
where the firing rate is higher. And it's lower at the edges where the firing rate is
lower.

So the point is that you can take a spike train and put it into a neuron. The response
of the neuron is a smooth low-pass version of the rate of this input spike train. And
so you can think about writing down the input to this neuron as a weight times the
firing rate of the input.

So that was a way of writing down the input to this output neuron from the input
neuron, the current input. Now what is the firing rate of the output neuron in
response to that current injection? So that's what we're going to ask next.

And you can remember that when we talked about the integrate and fire model, we
saw that neurons in the approximation of large inputs have firing rate as a function
of current that looks like this. It's zero for inputs below the threshold current. For
input currents that aren't large enough to drive the neuron to threshold, the neuron
doesn't spike at all.

And then above some threshold, the neuron fires approximately linearly at higher
input currents. So the way that we think about this is that the input on is spiking at
some rate. It goes through a synapse. That synapse smooths the input and
produces some current in the postsynaptic neuron that's proportional



approximately to the firing rate of the input neuron. And the output neuron has
some output firing rate that's some function of the input current.

So we can write down the firing rate of our output neuron, v. It's just equal to some
function of the input current, which is just some function of w times the firing rate of
the input neuron. And that right there is the basic equation of the rate model. The
output firing rate is some function of a weight times the firing rate of the input
neuron.

And everything else about the rate model is just different rate models have
different numbers of input neurons where we have more than one contribution to
the input current. They can have many output neurons. They can have different FI
curves for the output neurons.

Some of them are non-linear like this. Some of them are linear. And we're going to
come back and talk about the function of different FI curves and why different FYI
curves are useful. Any questions about this? That's the basic idea. All right, good.

So let's take one particularly simple version of the rate model called a linear rate
model. And the linear rate model has a particular FI curve. That FI curve says that
the firing rate of the neuron is linear in the input current.

Now why is this a really weird model of a neuron? What's fundamentally non-
biological about this?

AUDIENCE: Negative firing rate.

MICHALE FEE: I'm hearing a bunch of right answers at the same time.

AUDIENCE: Negative firing rate.

MICHALE FEE: This neuron is allowed to fire at a negative firing rate if the input current is
negative. That's a pretty crazy thing to do. Why do you think we would want to do
that?

AUDIENCE: [INAUDIBLE]?

MICHALE FEE: Well, no actually we do. So you can have inhibitory inputs that produce outward
currents that hyperpolarize the neuron. Any thoughts about that?



It turns out that as soon as you have your output neurons have this kind of FI curve,
a linear FI curve, then the math becomes super simple. You can write down very
complex networks of neurons with a bunch of linear differential equations. And it
becomes very easy to write down what the solution is to how a network behaves as
a function of its inputs.

And we're going to spend a lot of time working with network models that have
linear FI curves because you can develop a lot of intuition about how networks
behave by using models like this. As soon as you have models like this, you can't
solve the behavior of the network analytically. You have to do everything on the
computer. And it becomes very hard to derive general solutions for how things
behave. So we're going to use this model a lot.

And in this case again, for the case of this two-neuron network where we have one
output neuron that receives a synaptic input from an input neuron, the firing rate of
the output neuron is just w, the synaptic weight times the firing rate of the input
neuron. And we're going to come back to non-linear neurons because that non-
linearity actually does really important things. And we're going to talk about what
that does.

So now let's look at the case where our output neuron has not just one input but
actually many inputs from a bunch of input neurons. So here we have what we call
an input layer, a layer of neurons in the input layer. Each one of those neurons has
a firing rate-- u1, u2, u3, u4, u5.

Each of those neurons sends a synapse onto our output neuron. Each one of those
synapses has a synaptic weight. This weight is w1. And that's w2, w3, w4, and w5.

Now you can see that the total input, the total current, to this output neuron is just
going to be a sum of the inputs from each of the input neurons. The total input is
just a sum of the inputs from each of the input neuron. So the synaptic current--
total synaptic current into this neuron is w1 times u1, plus w2 times u2, plus w3
times u3, plus all the rest.

So the response of our linear neuron, the firing rate of our linear neuron, is just a
sum over all of those inputs. So again, in this case, we're going to say that the total



input current to this neuron is the sum over this. But then because this is a linear
neuron, the firing rate is just equal to that current input. Does that make sense?

So you can see that this description of the firing rate of the output neuron is a sum
over all of those contributions. It turns out that this actually can be written in a
much more compact way in vector notation. What does that look like? Does anyone
know in vector notation what that looks like?

AUDIENCE: Dot product.

MICHALE FEE: That's a dot product. That's right. So in general, it's much easier to write these
responses in vector notation. And so I'm just going to walk you through some basics
of vector notation for those of you who might need a few minutes of reminder.

Actually before we get to the vector notation, I just want to describe how we can use
a simple network like this to build a receptive field. So you remember that when we
were talking about receptive fields of neurons, we described how a neuron can
have a maximal response to a particular pattern of input. So let's say we have a
neuron that's sensitive to visual inputs. And as a function of one dimension, let's say
along the retina, this neuron has a big response if light comes in central field, some
inhibitory responsive light comes in outside of that central lobe.

Well, it turns out that a very simple way to build neurons that have receptive fields
like this, for example, is to have an input layer that projects to this neuron that has
this receptive field and has a pattern of synaptic inputs that corresponds to that
pattern in the field. So you can see that if this neuron-- so let's say these are
neurons in the retina, let's say retinal ganglion cells, and this neuron is in the
thalamus, we can build a thalamic neuron that has a center-surround receptive field
like this by having let's say this neuron has a strong positive excitatory synaptic
weight onto our output neuron.

So you can see that if you have light here that corresponds to this neuron having a
high firing rate, that neuron is very effective at driving the output neuron. And so
the output neuron has a positive component of its receptor field right there in the
middle.

Now if this neuron here, which is in this part of the retina, if that neuron has a



negative weight onto the output neuron, then light coming in here driving this
neuron will inhibit the output neuron. So if you have a pattern of weights that looks
like this, 0 minus 1, 2 minus 1, 0, that this neuron will have a receptive field that
looks like that as a function of its inputs.

So that's a on-dimensional example. And you can see that you write down the
output here as a weighted sum of each one of those inputs.

This also works for two dimensional receptive fields. For example, if we have input
from the retina that looks like this where we have-- I guess this was excitatory here
in the center, inhibitory around, you can make a neuron that has a two-dimensional
receptor field like this by having inputs to this neuron from all of those different
regions of the visual field that have different weights corresponding to positive in
the center. So neurons in the positive synaptic weights under the output neuron.
And neurons around the edges have negative synaptic weights.

So we can build any receptive field we want into a neuron by just plugging in-- by
putting in the right set of synaptic weights. Yes?

AUDIENCE: So would you rule out [INAUDIBLE]

MICHALE FEE: So in real life, I assume you mean in the brain?

AUDIENCE: Yeah.

MICHALE FEE: So in the brain, we don't really know how these weights are built. So one idea is that
there are rules that control the development of these circuits, let's say, connections
of bipolar cells in the retina to retinal ganglion cells that control how these weights
are determined to be positive or negative.

Negative weights are implemented by bipolar cells connected to amacrine cells,
which are inhibitory, and then connect to the retinal ganglion. So there's a whole
circuit that gets built in the retina that controls whether these weights are positive
or negative. And those can be programmed by genetic developmental programs.
They can also be controlled by experience with visual stimuli.

So there's a lot we don't understand about how these weights are controlled or set
up or programmed. But the way we think about how receptive fields of these



neurons emerge is by controlling the weight of those synaptic input. That's the
message here-- that receptive fields emerge from the pattern of weights from an
input layer onto an output layer.

AUDIENCE: [INAUDIBLE] how many [INAUDIBLE]

MICHALE FEE: If you're going to build a model, let's say, of the retina. So it just depends on how
realistic you want it to be. If you wanted to make a model of a retinal ganglion cell,
you could try to build a model that has as many bipolar neurons as are actually in
the receptive field of that retinal ganglion cell.

Or you could make a simplified model that only has 10 or 100 neurons. Depends on
what you want to study. All right any other questions?

And again, even for these more complex models, you can still write down a simple
rate model formulation of the firing rate of the output neuron. It's just a weighted
sum of the input firing rate.

So each neuron in the input layer fires at some rate. It has a weight w. To get the
contribution of this neuron to the firing rate of the output neuron, you just take that
input firing rate times the synaptic weight, and add that up then for all the input
layer neurons.

So as I said, we've been describing the response of our linear neuron as this
weighted sum. And that's a little bit cumbersome to carry around. So we're going to
start using vector notation and matrix notation to describe networks. It's just much
more compact.

So we're going to take a little detour, talk about vectors. So a vector is just a
collection of numbers. The number of numbers is called the dimensionality of the
vector. If a vector has only two numbers, then we can just plot that vector in a
plane.

So for a 2D vector, if that vector has two components, x1 and x2, then we can plot
that vector in that space of x1 and x2, put the origin at zero. In this case, the vector
has two vector components or elements, x1 and x2.

And in two dimensions we describe that as spaces, as R2, the space of two real



numbers. We can write down that vector as a row in row vector notation. So x is x1,
x2. We can write it as a column vector, x1, x2, organized on top of each other, like
this.

Vector sums are very simple. So if you have two vectors, x and y, you can write
down the sum of x and y is x plus y. That's called the resultant. X plus y it can be
written like this in column vector notation.

You can see that the sum of x and y is just an element by element sum of the vector
elements. It's called element by element addition. Let's look at vector product.

So there are multiple ways of taking the product of two vectors. There's an element
by element product, an inner product, an outer product that we'll cover in later
lectures. And also, something called the cross product that's very common in
physics.

But I have not yet seen the application of a cross product to neuroscience. If
anybody can find one of those, I'll give extra credit.

Element by element product is called a Hadamard product. So x times y is just the
element-by-element product of the elements in the two vectors. In Matlab, that
element-by-element product you compute by x dot star y.

Inner product or dot product looks like this. So if we have two column vectors, the
dot product of x and y is the sum of the element-by-element products. So x dot y is
just x1 times y1 plus x2 times y2, and so on, plus xn times yn. And that's that sum
that we saw earlier in our feed forward network.

OK. So notice that the dot product is a scalar. It's a single number. It's no longer a
vector. Products have some nice properties. They're commutative.

So x.y is equal to y.x. They're distributive so that vector w dotted into the sum of two
vectors is just the sum of the two separate dot products. So w dot x plus y is just w.x,
w.y. And it's also linear.

So if you have a x dot y that is equal to a times the quantity x.y. So if you have
vector x and y dotted into each other, if you make one of those vectors twice as
long, then the dot product is just twice as big.



A little bit more about inner products. So we can also write down the inner product
in matrix notation. So x.y is a matrix product of a row vector.

Column vector, you remember how to multiply two matrices. You multiply the
elements of each row times the elements of each column. So you can see that this
in matrix notation is just the dot product of those two vectors.

In matrix notation, this is a 1 by n matrix. This is an n by 1. So 1 row by n columns,
times n rows by 1 column. And that is equal to a 1 by 1 matrix, which is just a scalar.

All right, in Matlab, let me just show you how to write down these components. So in
this case, x is a column vector, a 1 by 3 column vector. y is a 1 by 3 column vector.
You can calculate those vectors like this. And z is x transpose times y. And so that's
how you can write down the dot product of two vectors.

What is the dot product of a vector with itself? It's the square magnitude of the
vector. So x is just the norm or magnitude of the vector. And you can see that the
norm of the vector is just-- you can think about this as being analogous to the
Pythagorean theorem. The length of one side of a triangle is just the sum of the
squares of all the sides, the square root of that.

So a unit vector is a vector that has length 1. So a unit vector by definition has a
magnitude of 1, which means its dot product with itself is 1.

We can turn any vector into a unit vector by just taking that vector, dividing by its
norm. I'm going to always use this notation with this little caret symbol to represent
a unit vector. So if you see a vector with that little hat on it, that means it's a unit
vector.

You can express any vector as a product of a scalar, a length, times a unit vector in
that direction. We can find the projection or component of any vector in the
direction of this unit vector as follows. So if we have a unit vector x, we can find the
projection of a vector y onto that unit vector x.

How do we do that? We just find the normal projection of that vector. That distance
right there is called the scalar projection of y onto x. If you write down the length of
the vector y, the norm of the vector y in the angle between y and x, then the dot



product y.x is just equal to the magnitude of y times the cosine of the angle
between the two vectors. Just simple trigonometry.

We can also define what's called the vector projection of y onto x as follows. So we
just draw that same picture. So we can find the projection of y onto x and add that
as a vector.

And that's just this scalar projection of y onto x times a unit vector in the x direction.
So x actually is a unit vector in this example. So this vector projection of y to x is just
defined as y dot x times x. Any questions about that?

I'm guessing most of you have seen all of this stuff already. But we're going to be
using these things a lot. So I just want to make sure that we're all on the same page.
And that's just a scalar times a unit vector.

Let me just give you a little bit of intuition about dot products here. So a dot
product is related to the cosine of the angle between two vectors, as we talked
about before. The dot product is just magnitude of x times the magnitude of y times
the cosine of the angle between them.

So the cosine of the angle between two vectors is just the dot product divided by
the product of the magnitude of each of the two vectors. So if x and y are unit
vectors, the cosine of the angle between them is just the dot product of the unit
vectors. So again, if x and y are unit vectors, then that dot product is just the cosine
of the angle.

Orthogonality. So two vectors are orthogonal, are perpendicular, if and only if their
dot product is 0. So if we have two vectors x and y, they are orthogonal if the angle
between them is 90 degrees. x.y is just proportional to the cosine of the angle.
Cosine of 90 degrees is zero.

So if two vectors are orthogonal, then their dot product will be zero. If their dot
product is zero, then they're orthogonal with each other. And using the notation we
just developed, the vector projection of y along x is the zero vector, if those two
vectors are orthogonal.

There is an intuition that one can think about in terms of the relation between dot
product and correlation. So the dot product is related to the statistical correlation



between the elements of those two vectors. So if you have a vector x and y, you can
write down the cosine of the angle between those two vectors, again, as x.y over the
product of the norms.

And if you write that out as sums, you can see that this is just the sum of the
element-by-element products-- that's the dot product-- divided by the norm of x and
the norm of y. And if you have taken a statistics class, you will recognize that as just
the Pearson correlation of a set of numbers x and a set of numbers y. The dot
product is closely related to the correlation between two sets of numbers.

One other thing that I want to point out coming back to the idea of using this feed
forward network as a way of receptive field, you can see that the response of a
neuron in this model is just the dot product of the stimulus vector u. The vector of
input firing rates represents the stimulus, the dot product of the stimulus vector u
with the weight vector w.

So the firing rate of the output neuron is just w.u. So you can see that what this
means is that the firing rate of the output neuron will be high if there is a high
degree of overlap between the input, the pattern of the input, and the pattern of
synaptic weights from the input layer to the output neuron.

We can see that w.u is big when w and u are parallel, are highly correlated, which
means a neuron fires a lot when the stimulus matches the pattern of those synaptic
weights.

Now, so you can see that for a given amount of power in the stimulus-- so the power
is just the square magnitude of u-- the stimulus that has the best overlap with the
receptive field, where cosine of that angle is 1, produces the largest response.

And so we now have actually a definition of the optimal stimulus of a neuron in
terms of the pattern of synaptic weights. In other words, the optimal stimulus is one
that's essentially proportional to the weight matrix. Any questions so far?

All right, so now let's turn to the question of how we use neural networks to do some
interesting computation. So classification is a very important computation that
neural networks do in the brain and actually in the application of neural networks
for technology.



So what does classification mean? So how does the brain-- how does a neural circuit
decide how a particular input-- let's say that it looks like you might eat it. How do we
decide-- how do the neural circuits in our brain decide whether that thing that we're
seeing is something edible or something that will make us sick based on past
experience?

If we see something that looks like an animal or a dog, how do we know whether
that's a friendly puppy or a or a wolf? So these are classification problems.

And feed forward circuits actually can be very good at classification. In fact, recent
advances in training neural networks have actually resulted in feed forward neural
networks that actually approach human performance in terms of their ability to
make decisions like this.

All right. So basically, a feed forward circuit that does classification like this typically
has an input layer. It has a bunch of inputs that represent sensory stimulus. And a
bunch of output neurons that represent different categorizations of that input
stimulus.

So you can have a retinal input here. Going to other layers of a network. And then
at the end of that, you can have a network that starts firing when that input was a
dog, or starts firing another neuron that starts firing when that input was a cat, or
something else.

Now in general, classification networks that have one input layer and one output
layer can't do this problem. You can't take a visual input and have connections to
another layer of neurons that just light up when the picture that the network is
seeing is a dog. Another neuron lights up when it's a cat.

Generally, there are many layers of neurons in between. But today, we're going to
talk about a very simplified version of the classification problem and build up to the
sorts of networks that can actually do those more complex problems.

So I just want to point out that the obviously our brains are very good at recognizing
things. We do this all the time. There are hundreds of objects in every visual scene.
And we're able to recognize every one of those objects.



But it turns out that there are individual neurons-- so in this case, I alluded to the
idea that there are individual nones in this network that light up when the sensory
input is a dog or light up when the input is an elephant. And it turns out that that's
actually true in the brain.

So there have recently been studies where it's been possible to record in parts of
the human brain in patients that are undergoing brain surgery for the treatment of
epilepsy or tumors or things like that where you have to go in and find parts of the
brain that are defective, find parts of the brain that are healthy. So when you do a
surgery, you can be very careful to just do surgery on the damaged parts of the
brain and not impact parts of the brain that are healthy.

So there are cases now, more and more commonly, where neuroscientists can work
with neurosurgeons to actually record from neurons in the brain in these patients
who are in preparation for surgery. And so it's been possible to record from neurons
in the brain.

This was a study from Itzhak Frieds lab at UCLA. And this shows recording in the
right anterior hippocampus. And what this lab did was to find neurons. So these
were electrodes implanted in the brain. And then they basically take these patients
and they show them thousands of pictures and look at how their brains respond to
different visual inputs.

So let me just show you what you're looking at. These are just different pictures of
celebrities. There's Luke Skywalker, Mother Teresa, and some others. This paper is
getting old enough that you may not recognize most of these people.

But if you record from neurons in the brain, you can see that-- so what do you see
here? I think that's Oprah. The image is flashed up on the screen for about a
second.

You record this neuron spiking. Here you see a couple spikes. Here's when the
image was actually presented. And here's where the image was turned off. You can
see different trials.

So this neuron actually had a little bit of a response right there shortly after the
stimulus was turned on. But you can see there's not that much response in these



neurons.

But when they flashed a different stimulus-- anybody know who that is? That's Halle
Berry. Look at this neuron. Every time you show this picture, that neuron fires off a
couple spikes very precisely.

If you look at the histogram, these are histograms underneath showing as a
function of time relative to the onset of the stimulus, you could see that this neuron
very reliably spikes. There's a different picture of Halle Berry. Neuron spikes.
Different picture, neuron spikes. Another picture, neuron spikes.

A line drawing of Halle Berry, the neuron spikes. Catwoman, the neuron spikes. The
text, Halle Berry, the neuron spikes. It's amazing.

So this group got a lot of press for this because they also found Jennifer Aniston
neurons. They found other celebrities. This is like some celebrity part of the brain.

No, it's actually a part of the brain where you have neurons that have very sparse
responses to a wide range of things. But they're extremely specific to particular
people or categories or objects.

And it actually is consistent with this old notion of what's called the grandmother
cell. So back before people were able to record in the human brain like this, there
was speculation that there might be neurons in the brain that are so specific for
particular things, that there might be one neuron in your brain that responds when
you see your grandmother.

And so it turns out it's actually true. There are neurons in your brain that respond
very specifically to particular concepts or people or things. So the question of how
these kinds of neurons acquire their responses is really cool and interesting.

So that leads us to the idea of perceptrons. Perceptron is the simplest notion of how
you can have a neuron that responds to a particular thing that detects a particular
thing and responds when it sees it and doesn't respond when it doesn't.

So let's start with the simplest notion of a perceptron. So how do we make a neuron
that fires when it sees something-- let's say a dog-- and doesn't fire when there is no
dog?



So in order to think about this a little bit more, so we can begin thinking about this
in the case where we have a single neuron input and a single output neuron. So if
we have a single input neuron, then what comes in has to be-- it can't be an image
right? An image is a high dimensional thing that has many thousands of pixels. So
you can't write that down as a simple model with a single input neuron and a single
output neuron.

So you need to do this classification problem in one-dimension. So we can imagine
that we have an input neuron that comes from, let's say, some set of numbers-- I'll
make up a story here-- some set of neurons that measure the dogginess of an
input.

So let's say that we have a single input that fires like crazy when it sees this cute
little guy here. And fires at a negative rate when it sees that thing, which doesn't
look much like a dog. So we have a single input that's a measure of dogginess.

And now let's say that we take this dogginess detector and we point it around the
world. And we walk around outside with our dogginess detector and we make a
bunch of measurements. So we're going to see something that looks like this.

We're going to see a lot of measurements, a lot of observations down here that are
close to zero dogginess. And we're going to see a bump of things up here that
correspond to dogs. Whenever we point our dogginess detector at a dog, it's going
to give us a measurement up here. And we're going to get a bunch of those.

And those things correspond to dogs. So we need to build a network that fires when
the input is up here and doesn't fire when the input is down there. So how do we do
that?

So the central feature of classification is this notion of binariness, of decision-
making. That it fires when you see a dog and doesn't fire when you don't see a dog.

So there exists a classification boundary in this stimulus space. You can imagine that
there's some points along this dimension above which you'll say that that input is a
dog, below which you say that it isn't.

And we can imagine that that classification boundary is right here. It's a particular



number. It's a particular value of our dogginess detector, above which we're going
to call it a dog, and below which we're going to call it something else.

How do we make this neuron respond by firing when there's a dog and not firing
when there's no dog? Can we use a linear neuron? Can we use one of our linear
neurons that we just talked about before?

We can't do that because a linear neuron will always fire more the bigger the input
is. And it will fire less if the dogginess is 0. And it will even fire more negatively if the
dogginess input is negative.

So a linear neuron is terrible for actually making any decisions. Linear neurons
always go, ah, well, maybe that's a dog. Not really. There's no decisions.

So in order to have a decision, we need to have a particular kind of neuron. And
that kind of neuron uses something very natural. In biophysics, it's the spike
threshold of neurons. Neurons only fire when the input is above some threshold,
generally. There are neurons that are tonically active. But let's not worry about
those.

So many neurons only fire when the input is above some threshold. So for decision-
making and classification, a commonly used kind of neuron takes this idea to an
extreme. So for perceptrons, we're going to use a simplified model of a neuron
that's particularly good at making decisions. There's no if, ands, or buts about it. It's
either off or on. It's called a binary unit.

And a binary unit uses what's called a step function for its FI curve. That step
function is 0-- the output is 0 if the input is zero or below. And the output is 1 if the
input is above 0.

We can use that step function to create a neuron that responds when the input is
above any threshold we want. So we can write down the output firing rate is this
function, a step function-- that function of a quantity that's given by w times u, the
synaptic weight times the input firing rate, minus that threshold.

So you can see if w times u, which is the input synaptic current, if that synaptic
current is above theta, then this argument to this function is greater than 0, then the
neuron spikes. If this argument is negative, then the neuron doesn't spike.



So by changing theta, we can put that decision boundary anywhere we want. Does
that make sense?

Usually the way we do this is we pick a theta. We say our neuron has a theta of 1.
And then we do everything else-- we do everything else we're going to do with this
network with a theta.

So what I'm going to talk about today are just two cases. Where theta is a fixed
number that's non-zero, or theta that's a fixed number that is equal to 0. So we're
going to talk about those two cases.

So the neuron fires when the input w u is greater than theta. And it doesn't fire
when it's less. So now the output neuron fires whenever the input neuron has a
firing rate greater than this decision boundary.

So the decision boundary, the u threshold, is equal to theta divided by w. Does that
make sense? U threshold is the neuron fires when u is greater than theta divided by
w.

So the way we learn, the way this network learns to fire when that u is above this
classification boundary is simply by changing the weight. Does that make sense?

So we're going to learn the weight such that this network fires whenever the input
says there's a dog. And it doesn't fire whenever the input says there's no dog.

So let's see what happens when w is really small. If w is really small, then what
happens is all of these-- remember, this is the input. That's that the dogginess
detector.

If w is really small, then all these inputs get collapsed to a small input current into
our output neuron. Does that make sense? So all those different inputs, dogs and
non-dogs, gets multiplied by a small number. And all those inputs are close to 0.

And if all those inputs are close to 0, they're all below the threshold for making this
neuron spike. So this network is not good for detecting dogs because it says it never
fires, whether the input is a dog or a non-dog.

Now what happens if w is too big? If w is really big, then this range of dogginess



values gets multiplied by a big number. And you can see that a bunch of non-dogs
make the neuron fire. Does that make sense?

So now this one fires for dogs plus doggie-ish looking things, which, I don't know,
maybe it'll fire when it sees a cat. That's terrible.

So you have to choose w to make this classification network function properly. Does
that make sense? And if you choose w just right, then that classification boundary
lands right on the threshold of the neuron. And now the neuron spikes whenever
there is a dog. And it doesn't spike whenever there's not a dog.

So what's the message here? The message is we can have a neuron that has this
binary threshold. And what we can do is simply by changing the weight, we can
make that threshold land anywhere on this space of inputs.

And we can actually use the error to set the weight. So let's say that we made errors
here. We classify dogs as non-dogs because the neuron didn't fire. You can see that
this was the case when w was too small.

So if you classify dogs as non-dogs, then you need to make w bigger. And if you
classify non-dogs as dogs, you need to make w smaller. And by measuring what kind
of errors you make, you can actually fix the weights to get to the right answer.

So this is a method called supervised learning where you set w randomly. You take a
guess. And then you look at the mistakes you make. And you use those mistakes to
fix the w.

In other words, you just look at the world and you say, oh, that's a dog. And then
your mom says, no, that's not a dog, that's something else. And you adjust your
weights.

I think that was the example I just gave. You're going to make that w smaller. In
another case, you'll make the other kind of mistake and you'll fix the weights.

So this is called a perceptron. And the way you learn the weights in a perceptron is
you just classify things and you figure out what kind of mistake you made and you
use that to adjust the weights. So that's the basic idea of a perceptron and
perceptron learning. And there's a lot of mathematical formalism that goes into



how that learning happens. And we're going to get to that in more detail in the next
lecture.

But before we do that, I want to go from having a one-dimensional case. So here we
had a one-dimensional network that was just operating on dogginess. And then we
have a single neuron that says, was that a dog or not.

But in general, you're not classifying things based on one input. Like for example
when you have to identify a dog, you have a whole image of something. And you
have to classify that based on an image.

So let's go from the one-dimensional case to a two-dimensional case. So the
classification isn't done on one-dimension, but it's based on many different
features.

So let's say that we have two features, furriness and bad breath. That dog doesn't
really look like it has bad breath. but mine does. So you can have two different
features, furriness and bad breath. And dogs are generally, let's say, up here.

Now you can have other animals. This guy is definitely not furry. So he's down here
somewhere. And you can have this guy up here. He's definitely furry.

So you have these two dimensions and a bunch of observations in those two
dimensions, in those higher dimensions. And you can see that, in this case, you can't
actually apply that one-dimensional decision-making circuit to discriminate dogs
from these other animals.

Why is that? Because if I apply my one-dimensional perceptron to this problem, you
can see that I could put a boundary here and it will misclassify some of these non-
furry animals as dogs. Or I could put my classifier here and it will misclassify some
of these cats as dogs.

So how would I separate dogs from these other animals if I had this two-dimensional
space? What would I do? How would I put a classification bound? If this doesn't work
and this doesn't work, what would I do?

You could put a boundary right there. So in this little toy problem, that would
perfectly separate dogs from all these non-dogs. So how do we do that?



Well, what we want is some way of projecting these inputs onto some other
direction so that we can put a classification boundary right there. And it turns out
there's a very simple network that does that. It looks like this.

We take each one of those detectors, a furriness detector and a bad breath
detector, and we have those two inputs. We have those inputs synapse onto our
output neuron with some weight w1 and some weight w2, and we calculate the
firing rate of this neuron.

Now we have this problem of how do we place this decision boundary correctly.
What's the answer? Well, in the one-dimensional example, what is it that we
learned? What was it that we were actually changing?

We were taking guesses. And if we were right or wrong, we did what? We changed
the weight. And that's exactly what we do here.

We're going to learn to change these weights to put that boundary in the right
place. If we just take a random guess for these weights, that line is just going to be
some random position. But we can learn to place that line exactly in the right place
to separate dogs from non-dogs.

So let's just think a little bit more about how that decision boundary looks as a
function of the weight. So let's look at this case where we have two inputs. So now
you can see that the input to this neuron is w.u.

So now if we use our binary neuron with a threshold, we can see that the firing rate
of this output neuron is this step function operating on or acting on this input, w.u
minus theta. So now what does that look like? The decision boundary happens when
this quantity is pulled to 0. When this input is greater than 0, the neuron fires. When
this input is less than 0, it doesn't fire.

So what does that look like? So you can see the decision boundary is when w.u
minus theta equals 0. Does anyone know what that is?

Remember, u is our input space. That's what we're asking, where is this decision
boundary in the input space. w is some weights that are fixed right now, but we're
gradually going to change them later.



So what is that an equation for? It's a line. That's an equation for a line.

If u is our input, you can see w.u equals theta. That's an equation for a line, base of
u. The slope and position of that line are controlled by the weights w and the
threshold theta.

So you can see this is w1, u1, plus w2, u2 equals theta. In the space of u1 and u2,
that's just a line.

So let's look at the case where theta equals 0. You can see that if you have this
input space, u1 and u2, if you take a particular input u and dot it into w-- so let's just
pick a w in some random direction-- the neuron fires when the projection of u along
w is positive. So you can see here, the projection of u along w is positive.

So in this case for this u the neuron will fire. So any u that has a positive projection
along w will make the neuron spike. So you can see that all of these inputs will make
the neuron spike.

All of these inputs will make the neuron not spike. Does that make sense? So you
can see that the decision boundary, this boundary between the inputs that make the
neuron spike and the inputs that don't make the neuron spike, is a line that's
orthogonal to w. Does that make sense?

Because you can see that any u, any input, along this line will have zero projection,
will be orthogonal to w. Will have zero projection. And that's going to correspond to
that decision boundary.

So let's just look at a couple of cases. So here a set of points that correspond to our
non-dogs. Here are a set of points that correspond to our dog. You can see that if
you have a w in this direction, that produces a decision boundary that nicely
separates the dogs from the non-dogs.

So what is that w? that w is 1, comma, 0. And we're going to consider the case
where theta is 0.

Let's look at this case here. So you can see that here are all the dogs. Here are all
the non-dogs. You can see that if you drew a line in this direction, that would be a



good decision boundary for that classification problem. You can see that a w
corresponding to solving that problem is 1, comma, minus 1, and theta equals 0.

Let's look at the case where theta is not 0. So here we have w.u minus theta. When
theta is not 0, then the decision boundary is w.u equals some non-zero theta.

That's also a line. It's a equation for a line. When theta is 0, that decision boundary
goes through the origin. When theta is not 0, the decision boundary is offset from
the origin.

So we could see that when we had theta is 0, the decision boundary-- that network
only works if the decision boundary is going through the origin. In general, though,
we can put the decision boundary anywhere we want by having this non-zero theta.

So here's an example. Here are a set of points that are the dogs. Here are a set of
points that are the non-dogs. If we wanted to design a network that separates the
dogs from the non-dogs, we could just draw a line that cleanly separates the green
from the red dots.

And now we can calculate w that gives us that decision boundary. How do we do
that? So the decision boundary is w minus u.theta.

Let's say that we want to calculate this weight vector w1 and w2. And let's just say
that our neuron has a threshold of 1. So we can see that we have two points on the
decision boundary.

We have one point here, a, comma, 0, right there. We have another point here, 0,
comma, b. And we can calculate the decision boundary using ua.w equals theta,
ub.w equals theta. That's two equations and two unknowns, w1 and w2.

So if I gave you a set of points and I said calculate a weight for this perceptron that
will separate one set of points from another set of points, and I give you a theta for
the output neuron, all you have to do is draw a line that separates them, and then
solve those two equations to get w1 and w2 for that network.

It's very easy to do this in two dimensions. You can just draw a line and calculate the
w that corresponds to that decision boundary. Any questions about that? Just that, if
you have questions, you should ask because that's going to be a question you ought



to solve.

So you can see in two dimensions you can just look at the data, decide where's the
decision boundary, draw a line, and calculate the weights w.

But in higher dimensions, it's a really hard problem. In high dimensions, first of all,
remember in high dimensions you've got images. Each pixel in that image is a
different dimension in the classification problem.

So how do you write down a set of weights? So imagine that's an image, that's an
image. And you want to find a set of weights so that this neuron fires when you have
the dog, but doesn't fire when you have the cat.

That's a really hard problem. You can't look at those things and decide what that w
should be. So there's a way of taking inputs and taking the answer, like a 1 for a dog
and a 0 for non-dogs, and actually finding a set of weights that will properly classify
those inputs.

And that's called the perceptron learning rule. And we're going to talk about that in
the next lecture.

So that's what we did today. And we're going to continue working on developing
methods for understanding neural networks next time.


