Introduction to Neural Computation

Prof. Michale Fee MIT BCS 9.40 — 2018

Lecture 19 Neural Integrators

Short-term vs long-term memory

Long-term memory

Can last a lifetime

Large capacity—can hold many memories

Mechanism: physical changes in neurons and synapses

Short-term memory

Lasts tens of seconds

Small capacity—only can hold a small number at any time

Mechanism: persistent firing in a population of neurons

Short-term memory

Persistent firing is the neural correlate of short-term memory

Delayed Saccade Task:

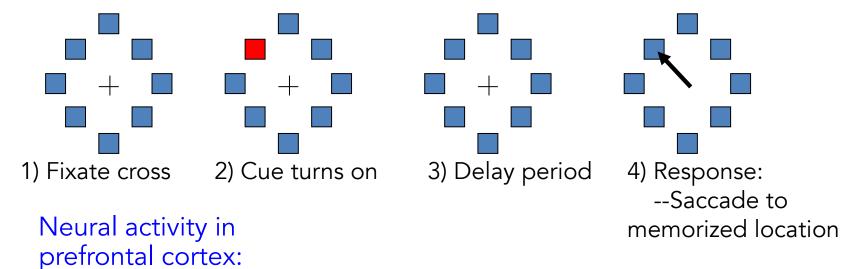


Figure removed due to copyright restrictions. Source unknown. See Lecture 19 video for visual.

Funahashi, Goldman-Rakic (1991)

Short-term memory

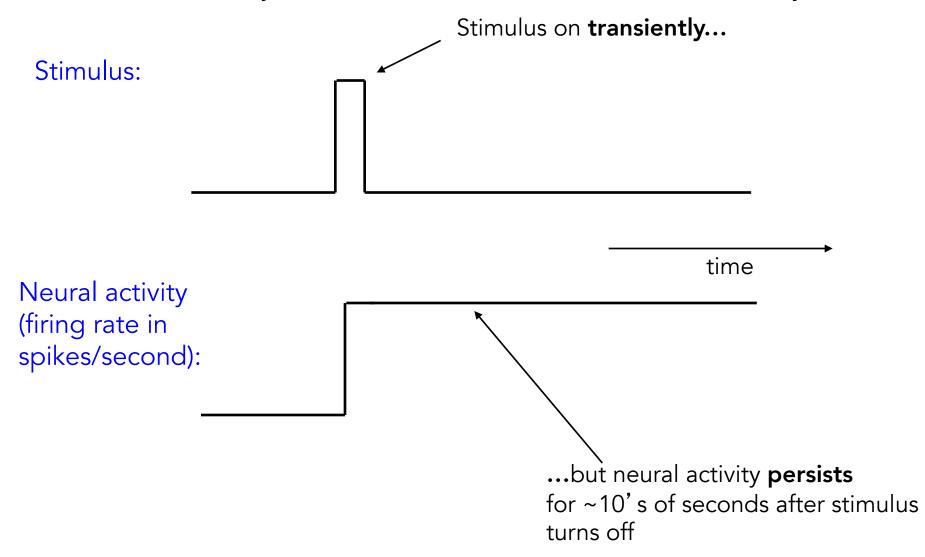
Delay activity is selective for remembered cue location

Single neuron response to different memorized target locations:

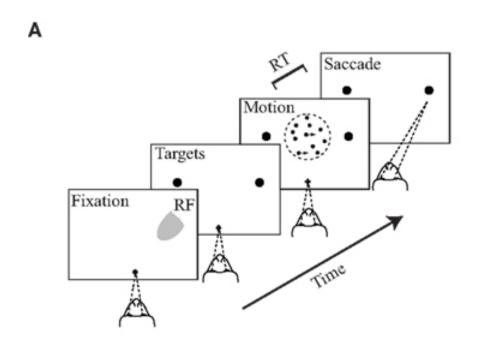
Figure removed due to copyright restrictions. See Lecture 19 video or Figure 4 in Funahashi, S., C.J. Bruce and P.S. Goldman-Rakic. "Mnemonic Coding o Visual Space in the Monkey's Dorsolateral Prefrontal Cortex." J. Neurophysiology 61 no. 2 (1989): 331-349.

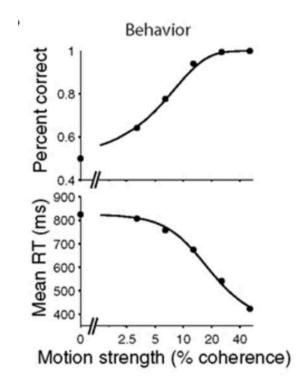
Short-term memory

Persistent activity is the neural correlate of short-term memory



Evidence accumulation for decision-making

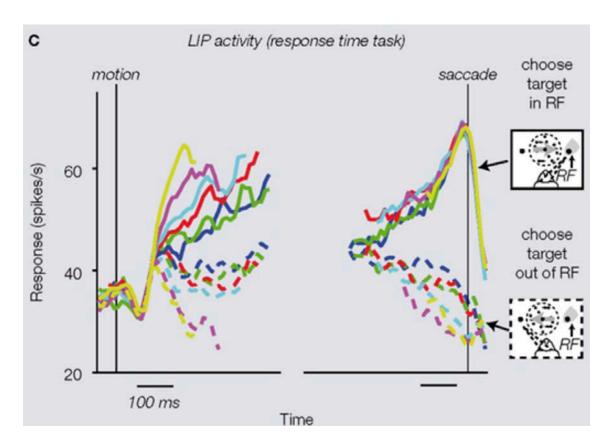




Left side, Figure 2. Right side Figure 1. From Shadlen, M.N. and A.L. Roskies. "The Neurobiology of Decision-making and Responsibility." Front. Neurosci. 6 (2012):56. License: CC BY-NC.

Video: Pamela Reinagel at UCSD. "Rat Performing Random Dot Motion Task." Nov. 2, 2015. YouTube.

Evidence accumulation for decision-making



From Shadlen, M.N. and A.L. Roskies. "The Neurobiology of Decision-making and Responsibility." Front. Neurosci. 6 (2012):56. License: CC BY-NC.

Other Integrators

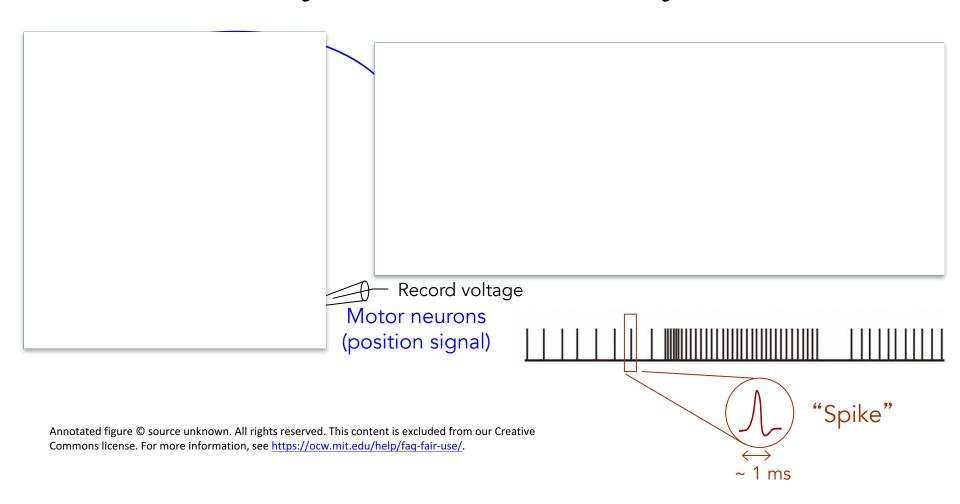
-Navigation by path integration:

Figures removed due to copyright restrictions. See Lecture 19 video or Figure 1 (left side) and Figure 4 (right side) in Müller, M. and R. Wehner. "Path Integration in Desert Ants, Cataglyphis fortis." Neurobiology 85 (1988): 5287-5290.

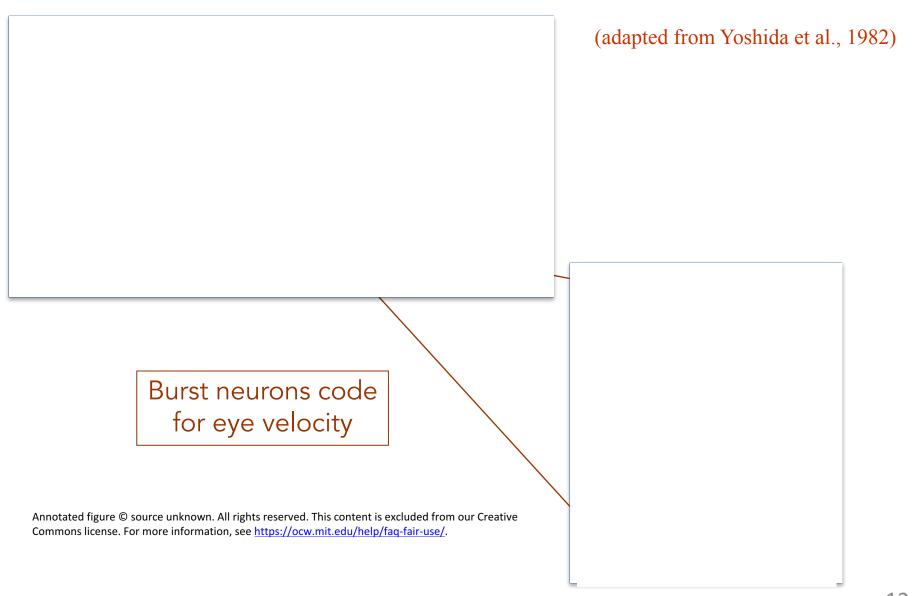
Short-term memory in the eyemovement system

See Lecture 19 video to view goldfish video clip.

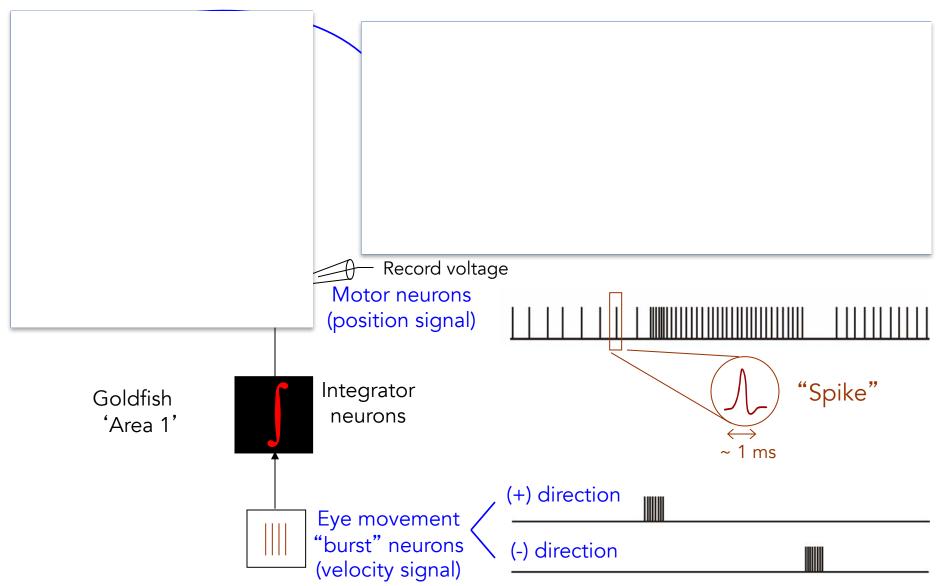
The eye-movement system



Saccade burst generator neurons



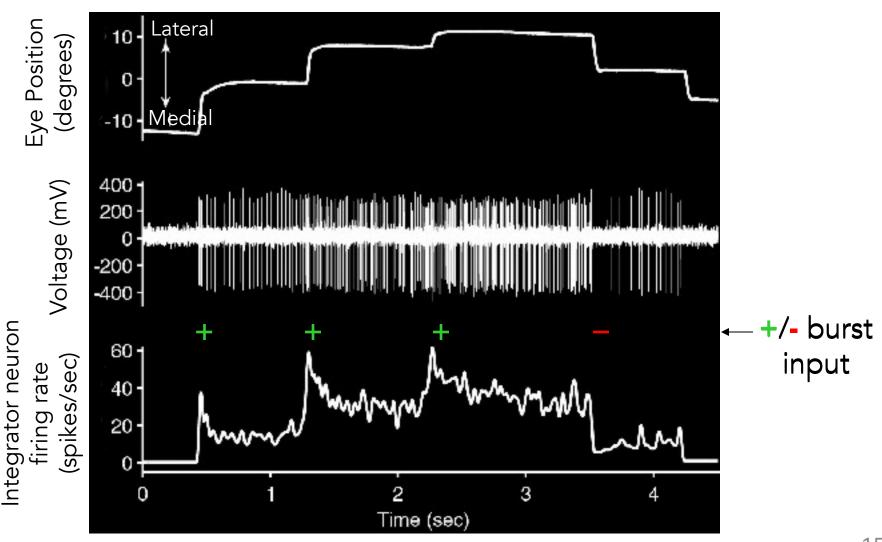
The eye-movement system



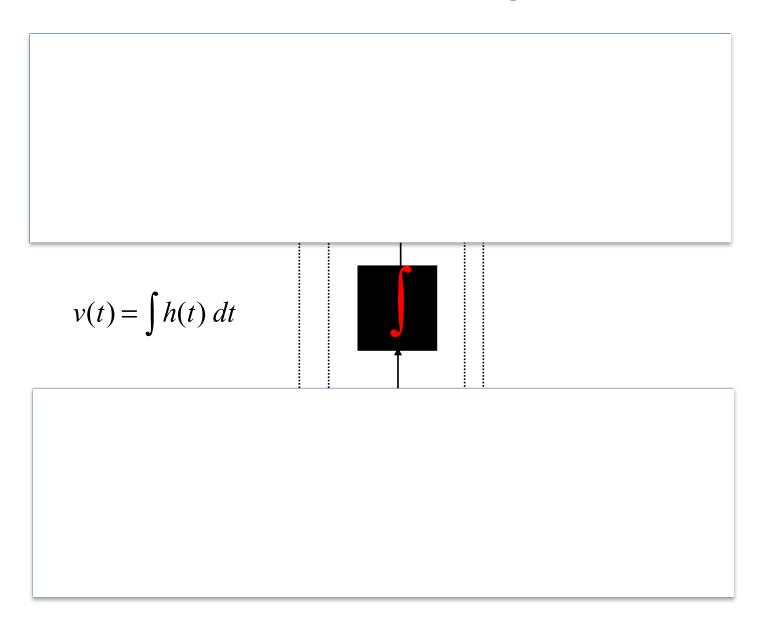
Integrator neurons

See Lecture 19 video to view integrator neuron video clip.

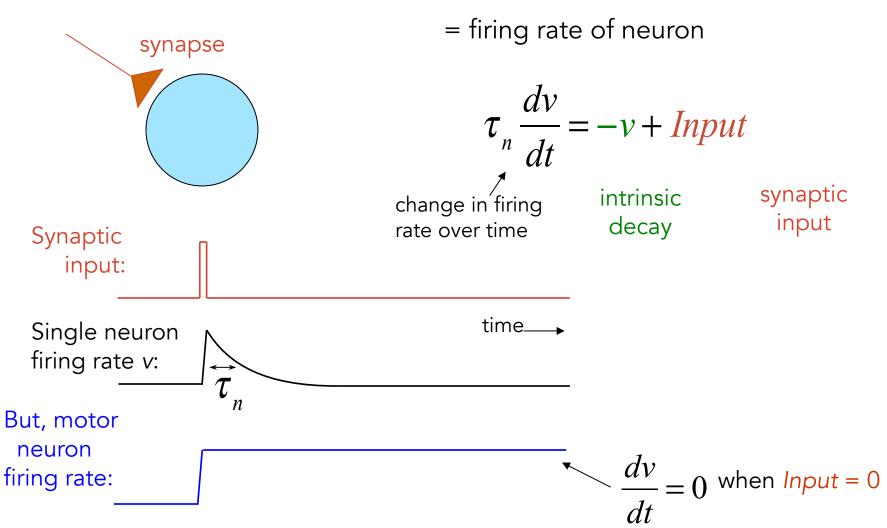
Integrator neuron carry an eye-position signal



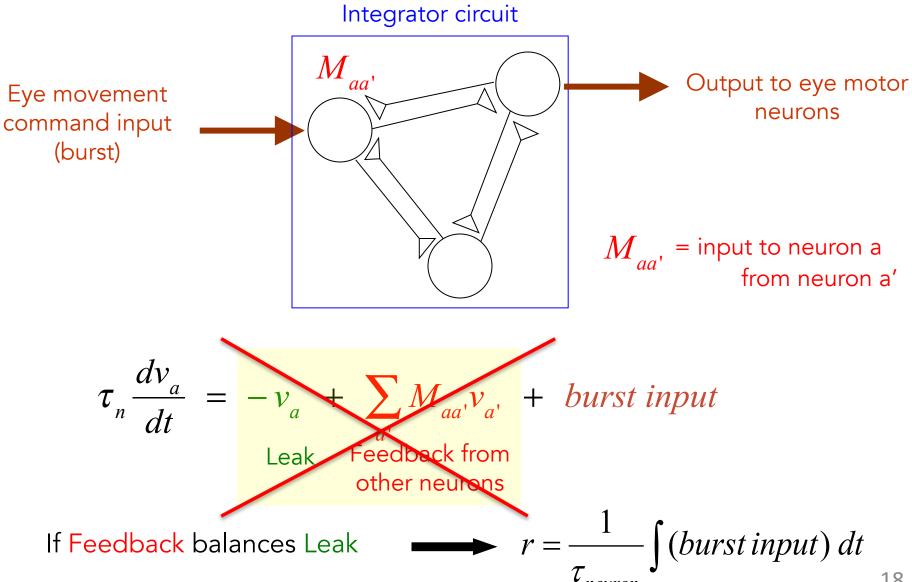
How neurons integrate



Basic model of a neuron



Network mechanism of persistence

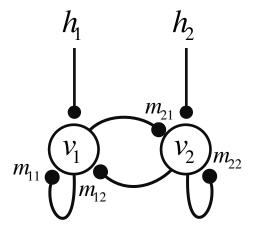


Recurrent networks

• We saw how the behavior of a recurrent network can be described if M is symmetric. $M = \Phi \Lambda \Phi^T$

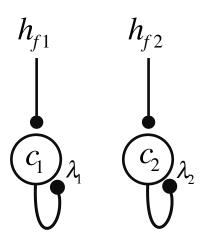
$$M = \left(\begin{array}{cc} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array} \right)$$

$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \quad \mathbf{\Phi} = \begin{bmatrix} \hat{f}_1 \mid \hat{f}_2 \end{bmatrix}$$





$$\vec{c} = \mathbf{\Phi}^T \, \vec{v}$$



Network mechanism of persistence

- Eigenvectors: o Most have eigenvalue << 1: rapid exponential decay after burst terminates
 - One has eigenvalue ≈ 1 :

Equation for component along this eigenvector:

$$\tau_n \frac{dc_1}{dt} = -c_1 + \lambda_1 c_1 + burst input$$

Between bursts

$$\frac{dc_1}{dt} = \left(\frac{\lambda_1 - 1}{\tau_n}\right) c_1$$

If
$$\lambda_1 = 1$$
 Perfect integrator!
$$c(t) = \frac{1}{\tau_{neuron}} \int (burst \, input) \, dt$$
 feedback balances leak

$$c(t) = \frac{1}{\tau_{neuron}} \int (burst input) dt$$

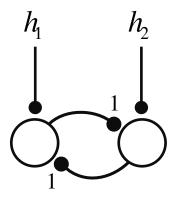
Integrating network

 Now let's look at a case where two output neurons are connected to each other by mutual excitation with synaptic strength of one.

What is the weight matrix?

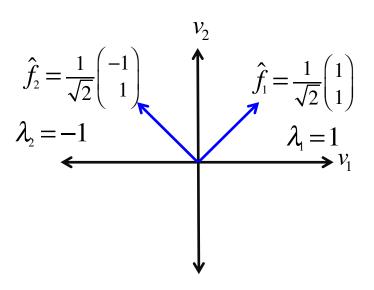
$$M = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

$$M\Phi = \Phi\Lambda$$



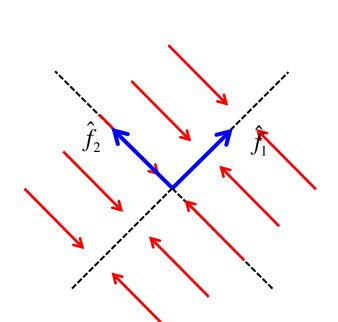
$$\mathbf{\Phi} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

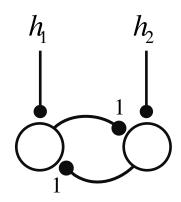
$$\Lambda = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right)$$

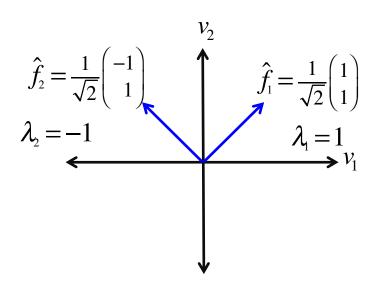


Recurrent networks

• If the input is parallel to the eigenvectors, then only one mode is excited.

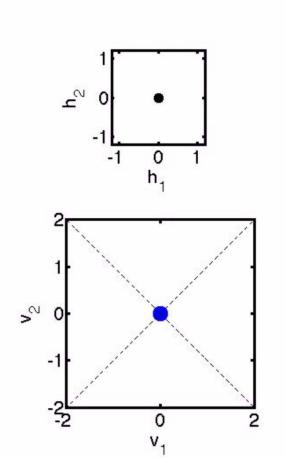


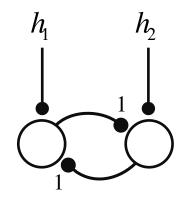


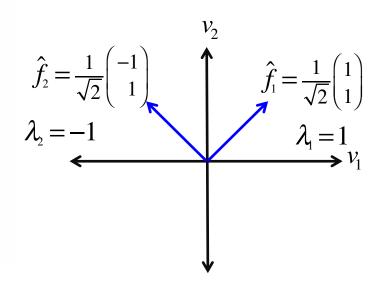


Recurrent networks

• If the input is parallel to the eigenvectors, then only one mode is excited.

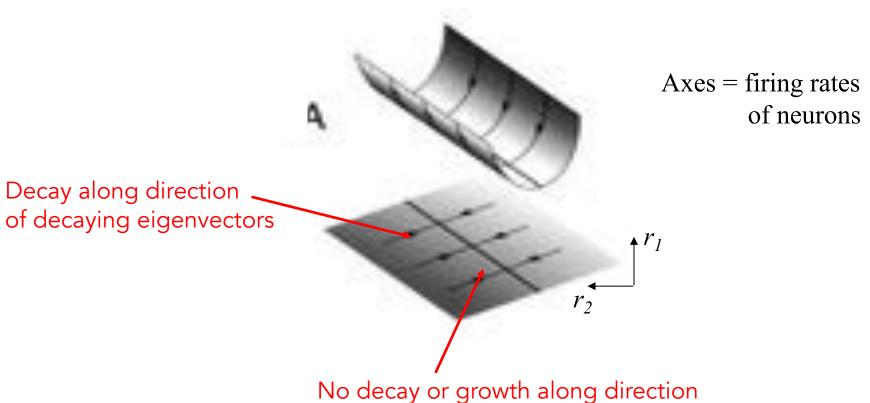






Geometric interpretation

• Line attractor picture of neural integrator



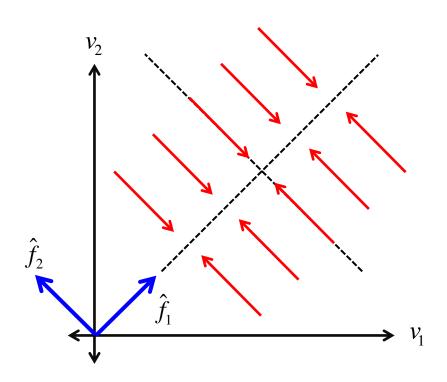
No decay or growth along direction of eigenvector with eigenvalue = 1

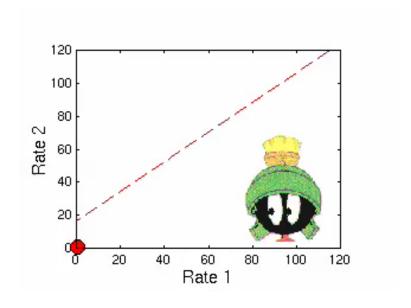
"Line Attractor" or "Line of Fixed Points"

Geometric interpretation

• Line attractor picture of neural integrator

Geometrical picture of line attractor

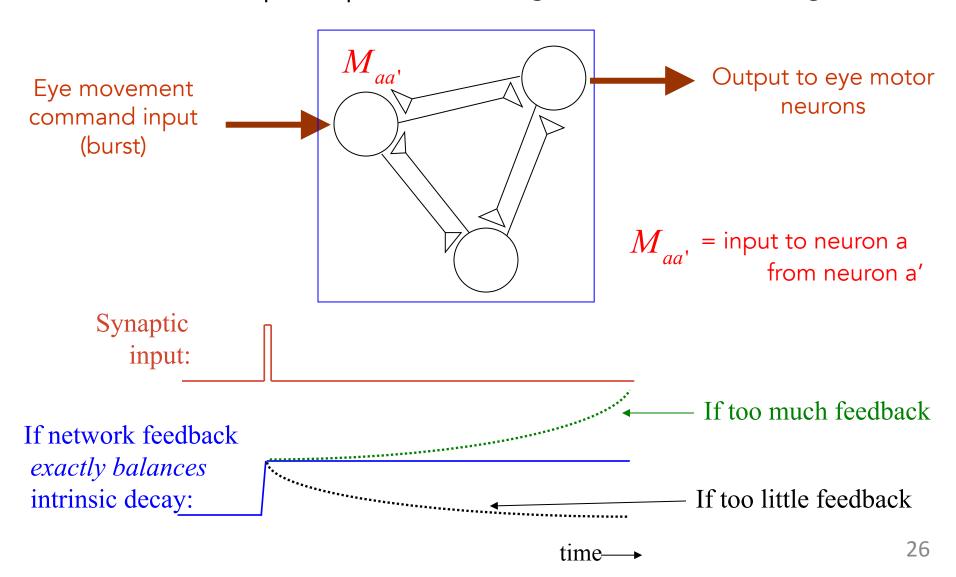




Screen shot of eye movement simulation © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Perfect, leaky, and unstable integrators

Network requires precise tuning of feedback strength



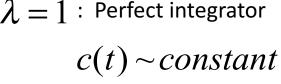
Perfect, leaky, and unstable integrators

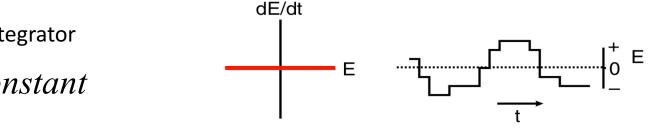
Between bursts:

$$\frac{dc}{dt} = kc$$
, where $k = \frac{\lambda - 1}{\tau_n}$

STABLE INTEGRATOR

$$\lambda=1$$
 : Perfect integrator $c(t)\!\sim\!constant$

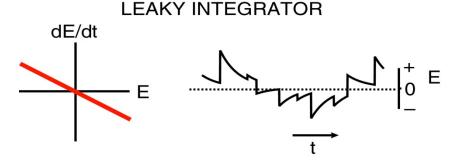




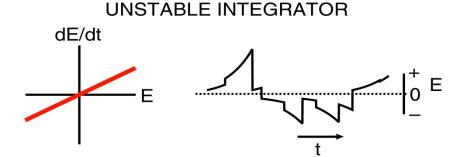
 $\lambda < 1$: Leaky integrator

$$c(t) \sim e^{-|k|t}$$

$$\tau_{leak} = \frac{1}{|k|} = \frac{\tau_n}{1 - \lambda}$$



 $\lambda > 1$: Unstable integrator $c(t) \sim e^{+|k|t}$



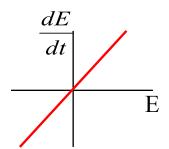
leaky integrator

 Experiment: reduce feedback in the integrator circuit with local anesthetic

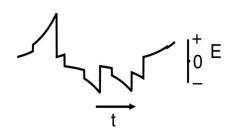
Figure removed due to copyright restrictions. Source unknown. See Lecture 19 video for visual.

unstable integrator

· Human patient with unstable congenital nystagmus



See Lecture 19 video to view video clip.



Courtesy of Elsevier, Inc., https://www.sciencedirect.com. Used with permission.

Robustness of the integrator

Integrator equation:
$$\frac{dc}{dt} = \frac{(\lambda - 1)}{\tau_n}c + burst input$$

Experimental values:

Single isolated neuron:
$$\tau_n \approx 10-100 \text{ ms}$$

Integrator circuit:
$$\tau_{network} = \frac{\tau_n}{|1 - \lambda|} \approx 30 \text{ sec}$$

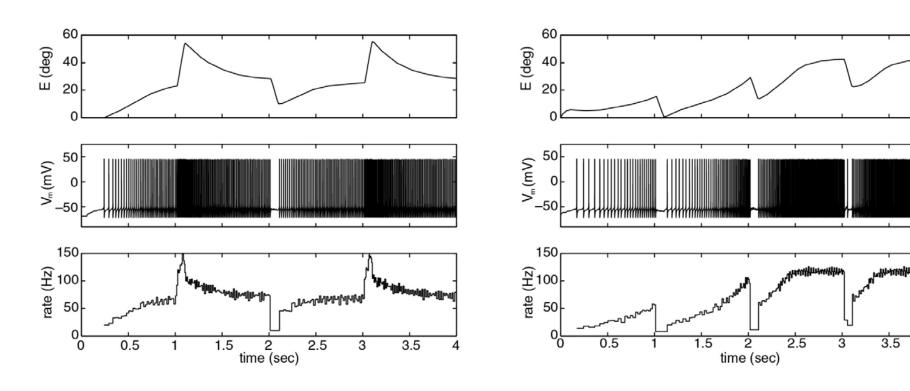
Synaptic feedback λ must be tuned to accuracy of:

$$|1 - \lambda| = \frac{\tau_n}{\tau_{network}} \approx 0.3\%$$

Robustness of the integrator

Results with spiking network model

(Seung et al., 2000)



Leaky integrator (synaptic weights decreased 10%)

Unstable integrator (synaptic weights increased 10%)

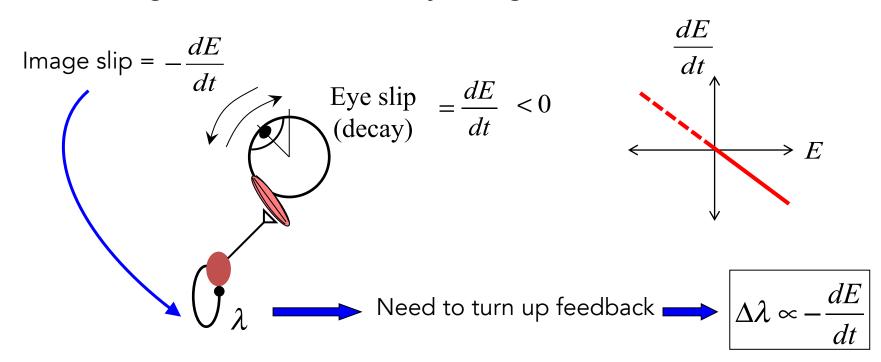
Part III: Learning to Integrate

How to accomplish fine-tuning of synaptic weights?

→ IDEA: Synaptic weights learned from "image slip"

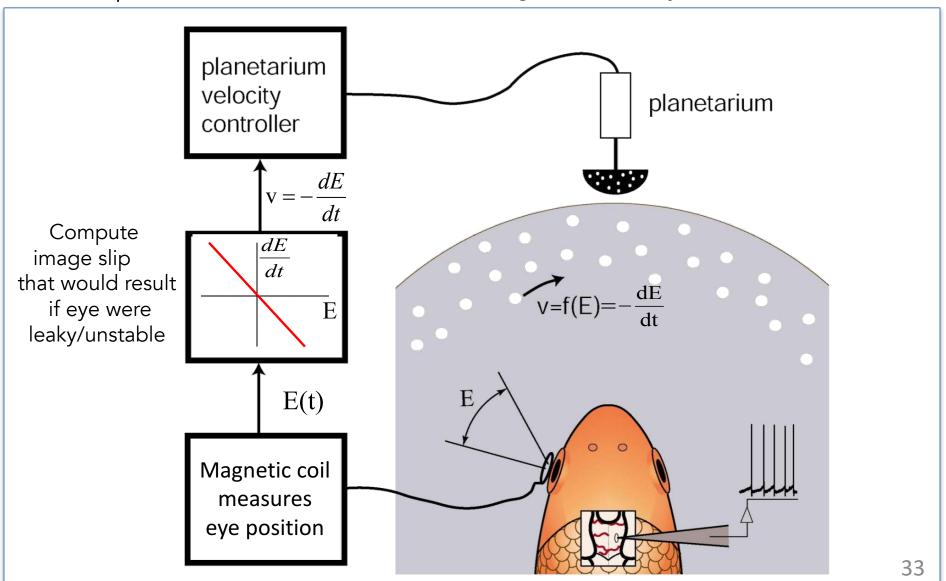
(Arnold & Robinson, 1992)

Imagine we have a leaky integrator



Learning to Integrate

• Experiment: Give feedback as if integrator is leaky or unstable



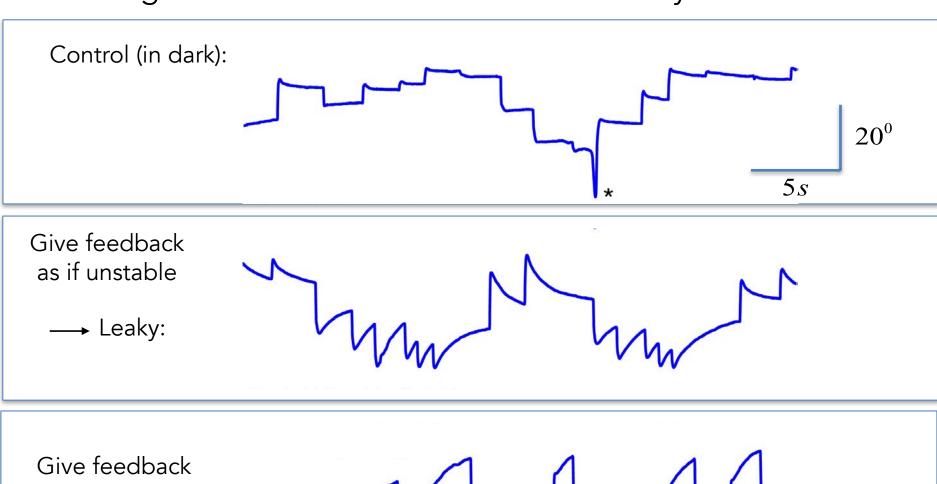
Learning to Integrate

Experimental setup for tuning integrator

Lab photos removed due to copyright restrictions. See Lecture 19 video.

Learning to Integrate

• Integrator can be trained to become leaky or unstable



Give feedback as if leaky

→ Unstable:

35

Summary and open questions

I. Goldfish do integrals!

$$Eye Position = \int Eye Velocity dt$$
Integrator neurons burst input

- II. How goldfish do integrals: neural mechanism
 - -Network feedback balances leakiness of neurons
 - -But...model is less robust than real integrator
- III. Goldfish learn to do integrals!
 - -Integrator compensates for image slip
 - -How and where does learning occur?

 Synapse modification? Intrinsic neuronal modification?
 - -Is visual feedback the only learning signal?

Acknowledgements

UC Davis

Mark Goldman

MIT

Sebastian Seung

<u>N.Y.U.</u>

Bob Baker

Princeton University

David Tank

Guy Major (Cardiff Univ.)

Emre Aksay (Cornell Med.)

Recurrent networks

• The behavior of the network depends critically on λ

 $\lambda < 1$

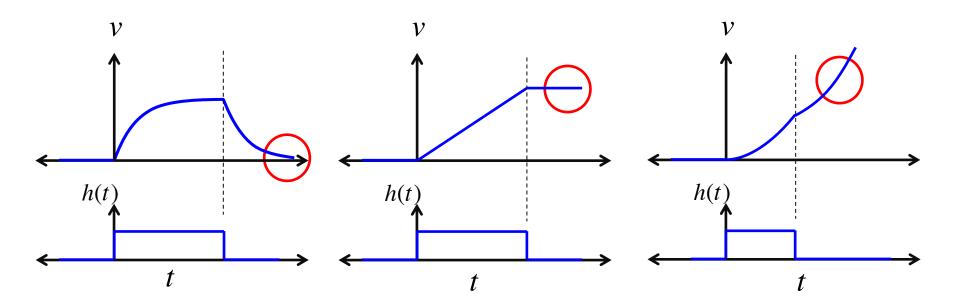
 $\lambda = 1$

 $\lambda > 1$

Exponential relaxation

Integration

Exponential growth



With zero input... relaxation back to zero

With zero input... persistent activity!

MEMORY!

MIT OpenCourseWare https://ocw.mit.edu/

9.40 Introduction to Neural Computation Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.