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Short-term vs long-term memory 

• Long-term memory 

Can last a lifetime 

Large capacity—can hold many memories 

Mechanism: physical changes in neurons and synapses 

• Short-term memory 

Lasts tens of seconds 

Small capacity—only can hold a small number at any time 

Mechanism: persistent firing in a population of neurons 
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Short-term memory 
• Persistent firing is the neural correlate of short-term memory 

Delayed Saccade Task: 

1) Fixate cross 2) Cue turns on 3) Delay period 4) Response: 
--Saccade to 

Neural activity in memorized location 
prefrontal cortex: 

Figure removed due to copyright restrictions. Source unknown. See Lecture 19 video for visual. 

Funahashi, 
Goldman-Rakic (1991) 
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Short-term memory 
• Delay activity is selective for remembered cue location 

Single neuron response to different memorized target locations: 

Figure removed due to copyright restrictions. See Lecture 19 video or Figure 4 in Funahashi,	 S.,	 C.J. Bruce and P.S. Goldman-Rakic.	 
“Mnemonic Coding o Visual Space in the Monkey’s Dorsolateral Prefrontal Cortex.” J. Neurophysiology 61	 no. 2	 (1989): 331-349. 
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https://doi.org/10.1152/jn.1989.61.2.331


        

  

 
   

 

Short-term memory 
• Persistent activity is the neural correlate of short-term memory 

Stimulus on transiently… 

Stimulus: 

time 
Neural activity 
(firing rate in 
spikes/second): 

…but neural activity persists 
for ~10’s of seconds after stimulus 
turns off 
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Evidence accumulation for 
decision-making 

Left side,	 Figure 2. Right side Figure 1. From Shadlen,	 M.N. and A.L. Roskies.	 “The Neurobiology of	 Decision-making and Responsibility.” Front. Neurosci. 6	 
(2012):56. License:	CC BY-NC. 
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https://www.frontiersin.org/articles/10.3389/fnins.2012.00056/full#B21


	 	 	 	
	 	 	 	 	

Video:	 Pamela Reinagel at UCSD. “Rat	 Performing 
Random Dot	 Motion Task.” Nov. 2,	 2015. YouTube. 
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https://www.youtube.com/watch?v=oDxcyTn-0os
https://www.youtube.com/watch?v=oDxcyTn-0os


 

	 	 	 	 	 	 	 	 	 	 	

Evidence accumulation for 
decision-making 

From Shadlen,	 M.N. and A.L. Roskies.	 “The Neurobiology of	 Decision-making and Responsibility.” Front. Neurosci. 6	 (2012):56. License:	CC BY-NC. 
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https://www.frontiersin.org/articles/10.3389/fnins.2012.00056/full#B21


 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

Other Integrators 
-Navigation by path integration: 

Figures removed due to copyright restrictions. See Lecture 19 video or Figure 1 (left side) and 
Figure 4 (right side) in Müller,	 M. and R. Wehner.	 “Path Integration in Desert Ants,	 Cataglyphis 
fortis.” Neurobiology 85 (1988): 5287-5290. 

(Müller & Wehner, 1988) 9 

https://www.pnas.org/content/85/14/5287
https://www.pnas.org/content/85/14/5287


	 	 	 	 	 	 	 	

Short-term memory in the eye-
movement system 

See Lecture 19 video to view goldfish video clip. 
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The eye-movement system 
Lateral (+) 

Medial (-) 

time 
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Record voltage 
Motor neurons 
(position signal) 

“Spike” 
Annotated figure ©	 source unknown.	 All rights reserved. This content is excluded from our Creative 
Commons license. For more information,	 see https://ocw.mit.edu/help/faq-fair-use/. 

~ 1 ms 
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https://ocw.mit.edu/help/faq-fair-use


Saccade burst generator neurons 
(adapted from Yoshida et al., 1982) 

Eye Position 
(degrees) 

Eye movement neuron 
firing rate (# spikes/sec) 

Burst neurons code 
for eye velocity 

Annotated figure ©	 source unknown.	 All rights reserved. This content is excluded from our Creative 
Commons license. For more information,	 see https://ocw.mit.edu/help/faq-fair-use/. 
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The eye-movement system 
Lateral (+) 

Medial (-) 

time 

Eye movement 
“burst” neurons 
(velocity signal) 

(+) direction 

(-) direction 

Lateral 

Medial 

ò 
Integrator 
neurons 

Eye 
position E 
(degrees) 

E 

Motor neurons 
(position signal) 

Record voltage 

“Spike” 

~ 1 ms 

Goldfish 
‘Area 1’ 

 

 

 

 

 

 
 

 
 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

Annotated figure ©	 source unknown.	 All rights reserved. This content is excluded from our Creative Commons license. 
For more information,	 see https://ocw.mit.edu/help/faq-fair-use/. 13 

https://ocw.mit.edu/help/faq-fair-use


	 	 	 	 	 	 	 	 	

Integrator neurons 

See Lecture 19 video to view integrator neuron video clip. 
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Integrator neuron carry an eye-position 
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How neurons integrate 

v(t) = h(t) dt ∫ ò 

1) Addition 
due to input 

2) Persistent activity when 
input is absent 

h(t) 

time 

time 
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Basic model of a neuron 

= firing rate of neuron synapse 

dv τ = −v + Input n dt 
change in firing intrinsic synaptic 

input rate over time decay Synaptic 
input: 

Single neuron time 

firing rate v: 
τ n 

But, motor 
neuron dv firing rate: = 0 when Input = 0 

dt 17 



Eye movement
command input

(burst)

  
τ n

dva

dt
= − va + Maa '

a '
∑ va ' + burst input

Integrator circuit

Feedback from
other neurons

Leak

1 ( )
neuron

r burst input dt
t

= òIf Feedback balances Leak

Network mechanism of persistence

= input to neuron a
from neuron a’  Maa '

  Maa ' Output to eye motor 
neurons
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Recurrent networks

19

• We saw how the behavior of a recurrent network can be 
described if M is symmetric. 

m21

m12

h1 h2

v1 v2m11
m22

M = m11 m12
m21 m22
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c = ΦT v

hf 1 hf 2

λ1 λ2
c1 c2



Eigenvectors: o Most have eigenvalue << 1: rapid exponential decay
after burst terminates

o One has eigenvalue ≈ 1: 

  
τ n

dc1

dt
= −c1 + λ1c1 + burst input

Equation for component along this eigenvector:

Perfect integrator!

  
c(t) = 1

τ neuron

(burst input)∫ dt

Network mechanism of persistence

If

feedback balances leak

 λ1 = 1
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dc1

dt
=

λ1 −1
τ n

⎛

⎝⎜
⎞

⎠⎟
c1

Between bursts



Integrating network
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• Now let’s look at a case where two output neurons are connected to 
each other by mutual excitation with synaptic strength of one.

1

1

h1 h2
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Recurrent networks
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• If the input is parallel to the eigenvectors, then only one mode is 
excited.

f̂1 =
1
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Recurrent networks
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• If the input is parallel to the eigenvectors, then only one mode is 
excited.

f̂1 =
1
2
1
1
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Decay along direction
of decaying eigenvectors

No decay or growth along direction 
of eigenvector with eigenvalue = 1

Axes = firing rates 
of neurons

“Line Attractor” or “Line of Fixed Points”

r1

r2

Geometric interpretation
• Line attractor picture of neural integrator

24Annotated	figure	©	source	unknown.	All	rights	reserved.	This	content	is	excluded	from	our	Creative	Commons	license.	For	more	
information,	see	https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use


Geometrical picture of line attractor

Geometric interpretation
• Line attractor picture of neural integrator

25

v1

v2

f̂2

f̂1
Screen	shot	of	eye	movement	simulation	©	source	unknown.	All	rights	
reserved.	This	content	is	excluded	from	our	Creative	Commons	license.	
For	more	information,	see	https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use


Synaptic
input:

time

If network feedback
exactly balances
intrinsic decay:

If too much feedback

If too little feedback

Perfect, leaky, and unstable integrators
• Network requires precise tuning of feedback strength

Eye movement
command input

(burst)

= input to neuron a
from neuron a’  Maa '

  Maa ' Output to eye motor 
neurons

26



  
dc
dt

= kc,Between bursts:
  
k = λ −1

τ n

where

:		Perfect	integrator

  c(t) ~constant
 λ = 1

:		Leaky	integrator

  
τ leak =

1
k
=

τ n

1− λ

  c(t) ~e−|k|t
 λ <1

:		Unstable	integrator

  c(t) ~e+ k t
 λ >1

Perfect, leaky, and unstable integrators

27



leaky integrator
• Experiment: reduce feedback in the integrator circuit with 

local anesthetic

28

Figure	removed	due	to	copyright	restrictions.	Source	unknown.	See	Lecture	19	video	for	visual.



E

dE
dt

unstable integrator
• Human patient with unstable congenital nystagmus

29
Unstable neural integrator!

See	Lecture	19	video	to	view	video	clip.

Courtesy	of	Elsevier,	Inc.,	https://www.sciencedirect.com.	
Used	with	permission.

https://www.sciencedirect.com/


  

dc
dt

= (λ −1)
τ n

c + burst inputIntegrator equation:

  
τ network =

τ n

|1− λ|
≈ 30 sec

Experimental values:

Synaptic feedback must be tuned to accuracy of:

  
|1− λ|=

τ n

τ network

≈ 0.3%

λ

  τ n ≈10−100 msSingle isolated neuron:

Integrator circuit:

Robustness of the integrator
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Leaky integrator
(synaptic weights
decreased 10%)

(Seung et al., 2000)

Robustness of the integrator

Unstable integrator
(synaptic weights
increased 10%)

• Results with spiking network model

31Courtesy	of	Elsevier,	Inc.,	https://www.sciencedirect.com.	Used	with	permission.

https://www.sciencedirect.com/


Image slip = dE
dt

-

Need to turn up feedback
 
Δλ ∝ − dE

dt

IDEA: Synaptic weights learned from “image slip”
(Arnold & Robinson, 1992)

Part III: Learning to Integrate
• How to accomplish fine-tuning of synaptic weights?

• Imagine we have a leaky integrator
dE
dt

 E
 
= dE

dt
 < 0

32

Eye slip
(decay)

λ



Magnetic	coil
measures

eye	position

E(t)

Compute 
image slip     

that would result
if eye were

leaky/unstable

v dE
dt

= -

E = dE
dt

-

dE
dt

Learning to Integrate
• Experiment: Give feedback as if integrator is leaky or unstable

33



Learning to Integrate
• Experimental setup for tuning integrator

34

Lab	photos	removed	due	to	copyright	restrictions.
See	Lecture	19	video.



Give feedback
as if leaky

Give feedback
as if unstable

• Integrator can be trained to become leaky or unstable
Learning to Integrate

Control (in dark):

 200

  5s

35

Leaky:

Unstable:



II. How goldfish do integrals: neural mechanism

III. Goldfish learn to do integrals!

-Network feedback balances leakiness of neurons

-But…model is less robust than real integrator

-Integrator compensates for image slip

I.  Goldfish do integrals!

EyePosition EyeVelocity dt= ò
Integrator neurons burst input

-How and where does learning occur? 
Synapse modification?   Intrinsic neuronal modification?

-Is visual feedback the only learning signal?

Summary and open questions

36
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Recurrent networks

38

• The behavior of the network depends critically on λ

With zero input… 
relaxation back to zero

With zero input… 
persistent activity!

MEMORY!

v

h(t)

t

Integration

λ = 1

Exponential relaxation

v

h(t)

λ <1

t

Exponential growth

λ >1

v

h(t)

t
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